植物生态学报 ›› 2020, Vol. 44 ›› Issue (6): 669-676.DOI: 10.17521/cjpe.2019.0331
宋琳1,2, 雒文涛1,*(), 马望1,2, 何鹏3, 梁潇洒1, 王正文1
出版日期:
2020-06-20
发布日期:
2020-03-26
通讯作者:
雒文涛
基金资助:
SONG Lin1,2, LUO Wen-Tao1,*(), MA Wang1,2, HE Peng3, LIANG Xiao-Sa1, WANG Zheng-Wen1
Online:
2020-06-20
Published:
2020-03-26
Contact:
LUO Wen-Tao
Supported by:
摘要:
植物光合作用产生的非结构性碳水化合物(NSCs)水平可以反映植物和生态系统对环境变化的响应程度。近年来, 草原极端干旱事件的发生频率和持续时间增加趋势明显, 对生态系统结构和功能产生深远影响。该研究以内蒙古呼伦贝尔草甸草原为研究对象, 通过连续4年减少66%生长季降水量的控制实验来模拟极端干旱事件, 分析草原6种优势物种和植物功能群NSCs各组分对极端干旱的响应规律与机制。结果显示, 由于植物生物学、光合特性以及生理生态等特性的差异, 不同物种对干旱胁迫的响应具有明显差异。这表明草地植物NSCs组分及其利用策略对干旱胁迫的响应具有物种特异性, 从而导致其生物量的不同响应。将6种植物分为禾草和非禾草两类, 发现干旱显著增加了禾草的淀粉含量, 但对其可溶性糖含量无显著影响; 相反, 干旱显著增加了非禾草功能群的可溶性糖含量, 对其淀粉含量无显著影响, 表明不同功能群采取了不同的干旱应对策略。禾草选择将光合作用固定的能量进行储存以应对干旱胁迫, 其生物量对干旱响应不敏感; 而非禾草选择将能量以可溶性糖的形式直接供植物生长利用以及抵御干旱胁迫, 其生物量对干旱响应较为敏感。这一发现可为预测在全球气候变化背景下草甸草原生态系统结构与功能对极端干旱的响应提供科学参考。
宋琳, 雒文涛, 马望, 何鹏, 梁潇洒, 王正文. 极端干旱对草甸草原优势植物非结构性碳水化合物的影响. 植物生态学报, 2020, 44(6): 669-676. DOI: 10.17521/cjpe.2019.0331
SONG Lin, LUO Wen-Tao, MA Wang, HE Peng, LIANG Xiao-Sa, WANG Zheng-Wen. Extreme drought effects on nonstructural carbohydrates of dominant plant species in a meadow grassland. Chinese Journal of Plant Ecology, 2020, 44(6): 669-676. DOI: 10.17521/cjpe.2019.0331
图1 干旱处理对草甸草原降水量发生概率及土壤含水量的影响(平均值±标准误差)。
Fig. 1 Effects of drought treatment on precipitation probability and soil moisture content in a meadow grassland (mean ± SE).
生物量 Biomass | 可溶性糖 SS | 淀粉 ST | 可溶性糖/淀粉 SS/ST | NSCs | ||||||
---|---|---|---|---|---|---|---|---|---|---|
F | p | F | p | F | p | F | p | F | p | |
物种 Species | ||||||||||
干旱 Drought (D) | 2.195 | 0.146 | 33.645 | <0.001 | 0.216 | 0.645 | 12.937 | 0.001 | 27.713 | <0.001 |
物种 Species (S) | 28.212 | <0.001 | 36.017 | <0.001 | 8.115 | <0.001 | 47.012 | <0.001 | 20.478 | <0.001 |
干旱×物种 D × S | 0.558 | 0.732 | 25.508 | <0.001 | 3.321 | 0.012 | 13.872 | <0.001 | 19.880 | <0.001 |
功能群 Functional group | ||||||||||
干旱 Drought (D) | 0.960 | 0.332 | 5.528 | 0.023 | 0.130 | 0.720 | 2.144 | 0.149 | 6.627 | 0.013 |
功能群 Functional (F) | 26.055 | <0.001 | 1.510 | 0.225 | 0.459 | 0.501 | 0.412 | 0.524 | 2.185 | 0.145 |
干旱×功能群 D × F | 0.154 | 0.696 | 0.014 | 0.905 | 6.236 | 0.016 | 0.326 | 0.571 | 0.280 | 0.599 |
表1 干旱处理、物种/功能群及其交互作用对草甸草原优势植物生物量和植物非结构性碳水化合物(NSCs)各组分含量及其比值影响的混合效应模型结果
Table 1 Results of mixed-effect model analysis of drought treatment, species/functional group and their interactions on the nonstructural carbohydrates (NSCs), soluble sugars (SS) and starch (ST) concent and biomass of different species in a meadow grassland
生物量 Biomass | 可溶性糖 SS | 淀粉 ST | 可溶性糖/淀粉 SS/ST | NSCs | ||||||
---|---|---|---|---|---|---|---|---|---|---|
F | p | F | p | F | p | F | p | F | p | |
物种 Species | ||||||||||
干旱 Drought (D) | 2.195 | 0.146 | 33.645 | <0.001 | 0.216 | 0.645 | 12.937 | 0.001 | 27.713 | <0.001 |
物种 Species (S) | 28.212 | <0.001 | 36.017 | <0.001 | 8.115 | <0.001 | 47.012 | <0.001 | 20.478 | <0.001 |
干旱×物种 D × S | 0.558 | 0.732 | 25.508 | <0.001 | 3.321 | 0.012 | 13.872 | <0.001 | 19.880 | <0.001 |
功能群 Functional group | ||||||||||
干旱 Drought (D) | 0.960 | 0.332 | 5.528 | 0.023 | 0.130 | 0.720 | 2.144 | 0.149 | 6.627 | 0.013 |
功能群 Functional (F) | 26.055 | <0.001 | 1.510 | 0.225 | 0.459 | 0.501 | 0.412 | 0.524 | 2.185 | 0.145 |
干旱×功能群 D × F | 0.154 | 0.696 | 0.014 | 0.905 | 6.236 | 0.016 | 0.326 | 0.571 | 0.280 | 0.599 |
图2 草甸草原物种和功能群植物生物量对干旱处理的响应。 Grass, 禾草功能群; Non-grass, 非禾草功能群。其中响应比为干旱与对照小区中非结构性碳水化合物(NSCs)的比值, 水平误差条表示95%的置信区间, 皆由R语言中的“metaphor”包计算得出。圆代表物种, 方块代表功能群; 实心表示响应显著(p < 0.05), 空心表示响应不显著。
Fig. 2 Response ratio of the biomass of six herbaceous species and different plant functional groups to drought in a meadow grassland. T.l., Thermopsis lanceolata; A.f., Artemisia frigida; C.d., Carex duriuscula; Cy.d., Cymbaria dahurica; L.c., Leymus chinensis; S.b., Stipa baicalensis; Grass, grass functional group; Non-grass, non-grass functional group. The response ratio is biomass (drought)/biomass (control), the horizontal error bars represent the 95% confidence interval, which are calculated by “metaphor” in R. Solid circles indicate the significant responses of herbaceous plant species level nonstructural carbohydrates (NSCs) to drought (p < 0.05), while the hollow circles represent no significant response. Solid squares represent significant response of NSCs in different functional groups to drought, while hollow squares represent no significant response.
图3 草甸草原不同物种和功能群植物叶片可溶性糖含量(A)、淀粉含量(B)、可溶性糖/淀粉(C)及非结构性碳水化合物(NSCs) 含量(D)对干旱的响应。 水平误差条表示95%的置信区间。圆代表物种, 方块代表功能群; 实心表示响应显著(p < 0.05), 空心表示响应不显著。
Fig. 3 Response ratio of soluble sugar content (A), starch concentrations content (B), soluble sugar/starch ratios (C) and nonstructural carbohydrates (NSCs) content (D) in leaves of six herbaceous species and two plant functional groups to drought treatments. T.l., Thermopsis lanceolata; A.f., Artemisia frigida; C.d., Carex duriuscula; Cy.d., Cymbaria dahurica; L.c., Leymus chinensis; S.b., Stipa baicalensis; Grass, grass functional group; Non-grass, non-grass functional group. The horizontal error bars represent the 95% confidence interval. Solid circles indicate the significant responses of herbaceous plant species level NSCs to drought (p < 0.05), while the hollow circles represent no significant response. Solid squares represent significant response of NSCs in different functional groups to drought, while hollow squares represent no significant response.
[1] | Chen LP, Zhao NX, Zhang LH, Gao YB (2013). Responses of two dominant plant species to drought stress and defoliation in the Inner Mongolia Steppe of China. Plant Ecology, 214, 221-229. |
[2] | Chen SP, Bai YF, Zhang LX, Han XG (2005). Comparing physiological responses of two dominant grass species to nitrogen addition in Xilin River Basin of China. Environmental and Experimental Botany, 53, 65-75. |
[3] |
Cherwin K, Knapp AK (2012). Unexpected patterns of sensitivity to drought in three semi-arid grasslands. Oecologia, 169, 845-852.
DOI URL PMID |
[4] |
Dietze MC, Sala AN, Carbone MS, Czimczik CI, Mantooth JA, Richardson AD, Vargas R (2014). Nonstructural carbon in woody plants. Annual Review of Plant Biology, 65, 667-687.
DOI URL PMID |
[5] | Fan Y, Miguez-Macho G, Jobbágy EG, Jackson RB, Otero- Casal C (2017). Hydrologic regulation of plant rooting depth. Proceedings of the National Academy of Sciences of the United States of America, 114, 10572-10577. |
[6] | Ford CW, Wilson JR (1981). Changes in levels of solutes during osmotic adjustment to water-stress in leaves of four tropical pasture species. Functional Plant Biology, 8, 77-91. |
[7] | Graefe J, Sandmann M (2015). Shortwave radiation transfer through a plant canopy covered by single and double layers of plastic. Agricultural and Forest Meteorology, 201, 196-208. |
[8] |
Hartmann H, Trumbore S (2016). Understanding the roles of nonstructural carbohydrates in forest trees-from what we can measure to what we want to know. New Phytologist, 211, 386-403.
URL PMID |
[9] |
Hewitt BR (1958). Spectrophotometric determination of total carbohydrate. Nature, 182, 246-247.
URL PMID |
[10] | Iannucci A, Russo M, Arena L, di Fonzo N, Martiniello P (2002). Water deficit effects on osmotic adjustment and solute accumulation in leaves of annual clovers. European Journal of Agronomy, 16, 111-122. |
[11] | Jentsch A, Kreyling J, Boettcher-Treschkow J, Beierkuhnlein C (2009). Beyond gradual warming: extreme weather events alter flower phenology of European grassland and heath species. Global Change Biology, 15, 837-849. |
[12] | Kang XM, Cui LJ, Hao YB, Li W, Cui XY, Wang YF (2015). Effects of extreme drought on the water balance of aLeymus chinensis steppe in Inner Mongolia, China. Chinese Journal of Applied and Environmental Biology, 21, 700-709. |
[ 康晓明, 崔丽娟, 郝彦宾, 李伟, 崔骁勇, 王艳芬 (2015). 极端干旱对内蒙古羊草草原水分平衡的影响. 应用与环境生物学报, 21, 700-709.] | |
[13] | Körner C (1999). Alpine Plant Life: Functional Plant Ecology of High Mountain Ecosystems. Springer Science & Business Media, Berlin. |
[14] | Leloir L, Cardini C (1955). The biosynthesis of sucrose-correction. Journal of the American Chemical Society, 214, 157-165. |
[15] | Li MH, Cherubini P, Dobbertin M, Arend M, Xiao WF, Rigling A (2013). Responses of leaf nitrogen and mobile carbohydrates in different Quercus species/provenances to moderate climate changes. Plant Biology, 15, 177-184. |
[16] |
Li MH, Xiao WF, Wang SG, Cheng GW, Cherubini P, Cai XH, Liu XL, Wang XD, Zhu WZ (2008). Mobile carbohydrates in Himalayan treeline trees I. Evidence for carbon gain limitation but not for growth limitation. Tree Physiology, 28, 1287-1296.
DOI URL PMID |
[17] | Loewe A, Einig W, Shi LB, Dizengremel P, Hampp R (2000). Mycorrhiza formation and elevated CO2 both increase the capacity for sucrose synthesis in source leaves of spruce and aspen. New Phytologist, 145, 565-574. |
[18] | Luo WT, Zuo XA, Griffin-Nolan RJ, Xu C, Ma W, Song L, Helsen K, Lin YC, Cai JP, Yu Q, Wang ZW, Smith MD, Han XG, Knapp AK (2019). Long term experimental drought alters community plant trait variation, not trait means, across three semiarid grasslands. Plant and Soil, 442, 343-353. |
[19] |
Luo WT, Zuo XA, Ma W, Xu C, Li A, Yu Q, Knapp AK, Tognetti R, Dijkstra FA, Li MH, Han GD, Wang ZW, Han XG (2018). Differential responses of canopy nutrients to experimental drought along a natural aridity gradient. Ecology, 99, 2230-2239.
DOI URL PMID |
[20] |
McDowell N, Pockman WT, Allen CD, Breshears DD, Cobb N, Kolb T, Plaut J, Sperry J, West A, Williams DG, Yepez EA (2008). Mechanisms of plant survival and mortality during drought: Why do some plants survive while others succumb to drought? New Phytologist, 178, 719-739.
DOI URL PMID |
[21] | McInerny GJ, Etienne RS (2012). Pitch the niche-taking responsibility for the concepts we use in ecology and species distribution modelling. Journal of Biogeography, 39, 2112-2118. |
[22] | Pan QM, Han XG, Bai YF, Yang JC (2002). Advances in physiology and ecology studies on stored non-structure carbohydrates in plants. Chinese Bulletin of Botany, 19, 30-38. |
[ 潘庆民, 韩兴国, 白永飞, 杨景成 (2002). 植物非结构性贮藏碳水化合物的生理生态学研究进展. 植物学通报, 19, 30-38.] | |
[23] |
Peng WJ, Wang XM (2016). Concept and connotation development of niche and its ecological orientation. Chinese Journal of Applied Ecology, 27, 327-334.
URL PMID |
[ 彭文俊, 王晓鸣 (2016). 生态位概念和内涵的发展及其在生态学中的定位. 应用生态学报, 27, 327-334.]
PMID |
|
[24] |
Slette IJ, Post AK, Awad M, Even T, Punzalan A, Williams S, Smith MD, Knapp AK (2019). How ecologists define drought, and why we should do better. Global Change Biology, 25, 3193-3200.
DOI URL PMID |
[25] |
Smith MD (2011). An ecological perspective on extreme climatic events: a synthetic definition and framework to guide future research. Journal of Ecology, 99, 656-663.
DOI URL |
[26] |
Sparks JP, Black RA (1999). Regulation of water loss in populations of Populus trichocarpa: the role of stomatal control in preventing xylem cavitation. Tree Physiology, 19, 453-459.
DOI URL PMID |
[27] |
Sushandoyo D, Magnusson T (2014). Strategic niche management from a business perspective: taking cleaner vehicle technologies from prototype to series production. Journal of Cleaner Production, 74, 17-26.
DOI URL |
[28] | Wang CT, Long RJ, Ding LM (2004). The effects of differences in functional group diversity and composition on plant community productivity in four types of alpine meadow communities. Chinese Biodiversity, 12, 403-409. |
[ 王长庭, 龙瑞军, 丁路明 (2004). 高寒草甸不同草地类型功能群多样性及组成对植物群落生产力的影响. 生物多样性, 12, 403-409.] | |
[29] | Wang X, Luo WT, Yu Q, Yan CF, Xu ZW, Li MH, Jiang Y (2014). Effects of nutrient addition on nitrogen, phosphorus and non-structural carbohydrates concentrations in leaves of dominant plant species in a semiarid steppe. Chinese Journal of Ecology, 33, 1795-1802. |
[ 王雪, 雒文涛, 庾强, 闫彩凤, 徐柱文, 李迈和, 姜勇 (2014). 半干旱典型草原养分添加对优势物种叶片氮磷及非结构性碳水化合物含量的影响. 生态学杂志, 33, 1795-1802.] | |
[30] |
Wang XY, Wang SL, Tang Y, Zhou WM, Zhou L, Zhong QL, Dai LM, Yu DP (2019). Characteristics of non-structural carbohydrate reserves of three dominant tree species in broadleaved Korean pine forest in Changbai Mountain, China. Chinese Journal of Applied Ecology, 30, 1608-1614.
DOI URL PMID |
[ 王晓雨, 王守乐, 唐杨, 周旺明, 周莉, 仲庆林, 代力民, 于大炮 (2019). 长白山阔叶红松林3个主要树种的非结构性碳储存特征. 应用生态学报, 30, 1608-1614.]
PMID |
|
[31] | Wang YL, Xu ZZ, Zhou GS (2004). Changes in biomass allocation and gas exchange characteristics ofLeymus chinensis in response to soil water stress. Acta Phytoecologica Sinica, 28, 803-809. |
[ 王云龙, 许振柱, 周广胜 (2004). 水分胁迫对羊草光合产物分配及其气体交换特征的影响. 植物生态学报, 28, 803-809.] | |
[32] | Zhang B, Zhu JJ, Liu HM, Pan QM (2014). Effects of extreme rainfall and drought events on grassland ecosystems. Chinese Journal of Plant Ecology, 38, 1008-1018. |
[ 张彬, 朱建军, 刘华民, 潘庆民 (2014). 极端降水和极端干旱事件对草原生态系统的影响. 植物生态学报, 38, 1008-1018.] | |
[33] | Zhao GF, Xu L, Zhang LJ (2003). Environmental adaptation in plant population in the process of molecular evolution. Acta Botanica Boreali-Occidentalia Sinica, 23, 1084-1090. |
[ 赵桂仿, 徐莉, 张林静 (2003). 植物种群分子进化中对生境的适应. 西北植物学报, 23, 1084-1090.] | |
[34] |
Zheng YP, Wang HX, Lou X, Yang QP, Xu M (2014). Changes of non-structural carbohydrates and its impact factors in trees: a review. Chinese Journal of Applied Ecology, 25, 1188-1196.
URL PMID |
[ 郑云普, 王贺新, 娄鑫, 杨庆朋, 徐明 (2014). 木本植物非结构性碳水化合物变化及其影响因子研究进展. 应用生态学报, 25, 1188-1196.]
PMID |
|
[35] | Zhou M, Wang J, Bai WM, Zhang YS, Zhang WH (2019). The response of root traits to precipitation change of herbaceous species in temperate steppes. Functional Ecology, 33, 2030-2041. |
[36] | Zhou SR, Zhang DY (2006). Neutral theory in community ecology. Journal of Plant Ecology (Chinese Veision), 30, 868-877. |
[ 周淑荣, 张大勇 (2006). 群落生态学的中性理论. 植物生态学报, 30, 868-877.] | |
[37] | Zi HB, Ade LJ, Liu M, Hu L, Chen Y, Yang YF, Wang CT (2016). Difference of community characteristics and niche of dominant species in different grassland types of alpine meadow. Chinese Journal of Applied and Environmental Biology, 22, 546-554. |
[ 字洪标, 阿的鲁骥, 刘敏, 胡雷, 陈焱, 杨有芳, 王长庭 (2016). 高寒草甸不同类型草地群落特征及优势种植物生态位差异. 应用与环境生物学报, 22, 546-554.] |
[1] | 李变变 张凤华 赵亚光 孙秉楠. 不同刈割程度对油莎豆非结构性碳水化合物代谢以及生物量的影响[J]. 植物生态学报, 2023, 47(1): 0-0. |
[2] | 伍敏, 田雨, 樊大勇, 张祥雪. 干旱胁迫下毛白杨和元宝槭的水力学调控[J]. 植物生态学报, 2022, 46(9): 1086-1097. |
[3] | 袁春阳, 李济宏, 韩鑫, 洪宗文, 刘宣, 杜婷, 游成铭, 李晗, 谭波, 徐振锋. 树种对土壤微生物生物量碳氮的影响: 同质园实验[J]. 植物生态学报, 2022, 46(8): 882-889. |
[4] | 董六文, 任正炜, 张蕊, 谢晨笛, 周小龙. 功能多样性比物种多样性更好解释氮添加对高寒草地生物量的影响[J]. 植物生态学报, 2022, 46(8): 871-881. |
[5] | 于水今, 王娟, 张春雨, 赵秀海. 温带针阔混交林生物量稳定性影响机制[J]. 植物生态学报, 2022, 46(6): 632-641. |
[6] | 董涵君, 王兴昌, 苑丹阳, 柳荻, 刘玉龙, 桑英, 王晓春. 温带不同材性树种树干非结构性碳水化合物的径向分配差异[J]. 植物生态学报, 2022, 46(6): 722-734. |
[7] | 王子龙, 胡斌, 包维楷, 李芳兰, 胡慧, 韦丹丹, 杨婷惠, 黎小娟. 西南干旱河谷植物群落组分生物量的纬度格局及其影响因素[J]. 植物生态学报, 2022, 46(5): 539-551. |
[8] | 马和平, 王瑞红, 屈兴乐, 袁敏, 慕金勇, 李金航. 不同生境对藏东南地面生苔藓多样性和生物量的影响[J]. 植物生态学报, 2022, 46(5): 552-560. |
[9] | 张玉林, 尹本丰, 陶冶, 李永刚, 周晓兵, 张元明. 早春首次降雨时间及降雨量对古尔班通古特沙漠两种短命植物形态特征与叶绿素荧光的影响[J]. 植物生态学报, 2022, 46(4): 428-439. |
[10] | 陈丽, 田新民, 任正炜, 董六文, 谢晨笛, 周小龙. 养分添加对天山高寒草地植物多样性和地上生物量的影响[J]. 植物生态学报, 2022, 46(3): 280-289. |
[11] | 李思源, 张照鑫, 饶良懿. 桑苗非结构性碳水化合物和生长激素对水淹胁迫的响应[J]. 植物生态学报, 2022, 46(3): 311-320. |
[12] | 秦慧君, 焦亮, 周怡, 薛儒鸿, 柒常亮, 杜达石. 祁连山优势树木碳水化合物资源分配的海拔和树种效应[J]. 植物生态学报, 2022, 46(2): 208-219. |
[13] | 臧永新 马剑英 周晓兵 陶冶 尹本丰 沙亚古丽·及格尔 张元明. 极端干旱和降水对沙垄不同坡位、坡向短命植物地上生产力的影响[J]. 植物生态学报, 2022, 46(12): 1537-1550. |
[14] | 黄侩侩 胡刚 庞庆玲 张贝 何业涌 胡聪 徐超昊 张忠华. 放牧对中国亚热带喀斯特山地灌草丛物种组成与群落结构的影响[J]. 植物生态学报, 2022, 46(11): 1350-1363. |
[15] | 李斐, 孙明伟, 钟尚志, 宋文政, 钟晓月, 孙伟. 不同光合类型牧草对干旱-复水的光合生理响应及生长适应策略[J]. 植物生态学报, 2022, 46(1): 74-87. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19