植物生态学报 ›› 2020, Vol. 44 ›› Issue (6): 669-676.DOI: 10.17521/cjpe.2019.0331
宋琳1,2, 雒文涛1,*(), 马望1,2, 何鹏3, 梁潇洒1, 王正文1
出版日期:
2020-06-20
发布日期:
2020-03-26
通讯作者:
雒文涛
基金资助:
SONG Lin1,2, LUO Wen-Tao1,*(), MA Wang1,2, HE Peng3, LIANG Xiao-Sa1, WANG Zheng-Wen1
Online:
2020-06-20
Published:
2020-03-26
Contact:
LUO Wen-Tao
Supported by:
摘要:
植物光合作用产生的非结构性碳水化合物(NSCs)水平可以反映植物和生态系统对环境变化的响应程度。近年来, 草原极端干旱事件的发生频率和持续时间增加趋势明显, 对生态系统结构和功能产生深远影响。该研究以内蒙古呼伦贝尔草甸草原为研究对象, 通过连续4年减少66%生长季降水量的控制实验来模拟极端干旱事件, 分析草原6种优势物种和植物功能群NSCs各组分对极端干旱的响应规律与机制。结果显示, 由于植物生物学、光合特性以及生理生态等特性的差异, 不同物种对干旱胁迫的响应具有明显差异。这表明草地植物NSCs组分及其利用策略对干旱胁迫的响应具有物种特异性, 从而导致其生物量的不同响应。将6种植物分为禾草和非禾草两类, 发现干旱显著增加了禾草的淀粉含量, 但对其可溶性糖含量无显著影响; 相反, 干旱显著增加了非禾草功能群的可溶性糖含量, 对其淀粉含量无显著影响, 表明不同功能群采取了不同的干旱应对策略。禾草选择将光合作用固定的能量进行储存以应对干旱胁迫, 其生物量对干旱响应不敏感; 而非禾草选择将能量以可溶性糖的形式直接供植物生长利用以及抵御干旱胁迫, 其生物量对干旱响应较为敏感。这一发现可为预测在全球气候变化背景下草甸草原生态系统结构与功能对极端干旱的响应提供科学参考。
宋琳, 雒文涛, 马望, 何鹏, 梁潇洒, 王正文. 极端干旱对草甸草原优势植物非结构性碳水化合物的影响. 植物生态学报, 2020, 44(6): 669-676. DOI: 10.17521/cjpe.2019.0331
SONG Lin, LUO Wen-Tao, MA Wang, HE Peng, LIANG Xiao-Sa, WANG Zheng-Wen. Extreme drought effects on nonstructural carbohydrates of dominant plant species in a meadow grassland. Chinese Journal of Plant Ecology, 2020, 44(6): 669-676. DOI: 10.17521/cjpe.2019.0331
图1 干旱处理对草甸草原降水量发生概率及土壤含水量的影响(平均值±标准误差)。
Fig. 1 Effects of drought treatment on precipitation probability and soil moisture content in a meadow grassland (mean ± SE).
生物量 Biomass | 可溶性糖 SS | 淀粉 ST | 可溶性糖/淀粉 SS/ST | NSCs | ||||||
---|---|---|---|---|---|---|---|---|---|---|
F | p | F | p | F | p | F | p | F | p | |
物种 Species | ||||||||||
干旱 Drought (D) | 2.195 | 0.146 | 33.645 | <0.001 | 0.216 | 0.645 | 12.937 | 0.001 | 27.713 | <0.001 |
物种 Species (S) | 28.212 | <0.001 | 36.017 | <0.001 | 8.115 | <0.001 | 47.012 | <0.001 | 20.478 | <0.001 |
干旱×物种 D × S | 0.558 | 0.732 | 25.508 | <0.001 | 3.321 | 0.012 | 13.872 | <0.001 | 19.880 | <0.001 |
功能群 Functional group | ||||||||||
干旱 Drought (D) | 0.960 | 0.332 | 5.528 | 0.023 | 0.130 | 0.720 | 2.144 | 0.149 | 6.627 | 0.013 |
功能群 Functional (F) | 26.055 | <0.001 | 1.510 | 0.225 | 0.459 | 0.501 | 0.412 | 0.524 | 2.185 | 0.145 |
干旱×功能群 D × F | 0.154 | 0.696 | 0.014 | 0.905 | 6.236 | 0.016 | 0.326 | 0.571 | 0.280 | 0.599 |
表1 干旱处理、物种/功能群及其交互作用对草甸草原优势植物生物量和植物非结构性碳水化合物(NSCs)各组分含量及其比值影响的混合效应模型结果
Table 1 Results of mixed-effect model analysis of drought treatment, species/functional group and their interactions on the nonstructural carbohydrates (NSCs), soluble sugars (SS) and starch (ST) concent and biomass of different species in a meadow grassland
生物量 Biomass | 可溶性糖 SS | 淀粉 ST | 可溶性糖/淀粉 SS/ST | NSCs | ||||||
---|---|---|---|---|---|---|---|---|---|---|
F | p | F | p | F | p | F | p | F | p | |
物种 Species | ||||||||||
干旱 Drought (D) | 2.195 | 0.146 | 33.645 | <0.001 | 0.216 | 0.645 | 12.937 | 0.001 | 27.713 | <0.001 |
物种 Species (S) | 28.212 | <0.001 | 36.017 | <0.001 | 8.115 | <0.001 | 47.012 | <0.001 | 20.478 | <0.001 |
干旱×物种 D × S | 0.558 | 0.732 | 25.508 | <0.001 | 3.321 | 0.012 | 13.872 | <0.001 | 19.880 | <0.001 |
功能群 Functional group | ||||||||||
干旱 Drought (D) | 0.960 | 0.332 | 5.528 | 0.023 | 0.130 | 0.720 | 2.144 | 0.149 | 6.627 | 0.013 |
功能群 Functional (F) | 26.055 | <0.001 | 1.510 | 0.225 | 0.459 | 0.501 | 0.412 | 0.524 | 2.185 | 0.145 |
干旱×功能群 D × F | 0.154 | 0.696 | 0.014 | 0.905 | 6.236 | 0.016 | 0.326 | 0.571 | 0.280 | 0.599 |
图2 草甸草原物种和功能群植物生物量对干旱处理的响应。 Grass, 禾草功能群; Non-grass, 非禾草功能群。其中响应比为干旱与对照小区中非结构性碳水化合物(NSCs)的比值, 水平误差条表示95%的置信区间, 皆由R语言中的“metaphor”包计算得出。圆代表物种, 方块代表功能群; 实心表示响应显著(p < 0.05), 空心表示响应不显著。
Fig. 2 Response ratio of the biomass of six herbaceous species and different plant functional groups to drought in a meadow grassland. T.l., Thermopsis lanceolata; A.f., Artemisia frigida; C.d., Carex duriuscula; Cy.d., Cymbaria dahurica; L.c., Leymus chinensis; S.b., Stipa baicalensis; Grass, grass functional group; Non-grass, non-grass functional group. The response ratio is biomass (drought)/biomass (control), the horizontal error bars represent the 95% confidence interval, which are calculated by “metaphor” in R. Solid circles indicate the significant responses of herbaceous plant species level nonstructural carbohydrates (NSCs) to drought (p < 0.05), while the hollow circles represent no significant response. Solid squares represent significant response of NSCs in different functional groups to drought, while hollow squares represent no significant response.
图3 草甸草原不同物种和功能群植物叶片可溶性糖含量(A)、淀粉含量(B)、可溶性糖/淀粉(C)及非结构性碳水化合物(NSCs) 含量(D)对干旱的响应。 水平误差条表示95%的置信区间。圆代表物种, 方块代表功能群; 实心表示响应显著(p < 0.05), 空心表示响应不显著。
Fig. 3 Response ratio of soluble sugar content (A), starch concentrations content (B), soluble sugar/starch ratios (C) and nonstructural carbohydrates (NSCs) content (D) in leaves of six herbaceous species and two plant functional groups to drought treatments. T.l., Thermopsis lanceolata; A.f., Artemisia frigida; C.d., Carex duriuscula; Cy.d., Cymbaria dahurica; L.c., Leymus chinensis; S.b., Stipa baicalensis; Grass, grass functional group; Non-grass, non-grass functional group. The horizontal error bars represent the 95% confidence interval. Solid circles indicate the significant responses of herbaceous plant species level NSCs to drought (p < 0.05), while the hollow circles represent no significant response. Solid squares represent significant response of NSCs in different functional groups to drought, while hollow squares represent no significant response.
[1] | Chen LP, Zhao NX, Zhang LH, Gao YB (2013). Responses of two dominant plant species to drought stress and defoliation in the Inner Mongolia Steppe of China. Plant Ecology, 214, 221-229. |
[2] | Chen SP, Bai YF, Zhang LX, Han XG (2005). Comparing physiological responses of two dominant grass species to nitrogen addition in Xilin River Basin of China. Environmental and Experimental Botany, 53, 65-75. |
[3] |
Cherwin K, Knapp AK (2012). Unexpected patterns of sensitivity to drought in three semi-arid grasslands. Oecologia, 169, 845-852.
DOI URL PMID |
[4] |
Dietze MC, Sala AN, Carbone MS, Czimczik CI, Mantooth JA, Richardson AD, Vargas R (2014). Nonstructural carbon in woody plants. Annual Review of Plant Biology, 65, 667-687.
DOI URL PMID |
[5] | Fan Y, Miguez-Macho G, Jobbágy EG, Jackson RB, Otero- Casal C (2017). Hydrologic regulation of plant rooting depth. Proceedings of the National Academy of Sciences of the United States of America, 114, 10572-10577. |
[6] | Ford CW, Wilson JR (1981). Changes in levels of solutes during osmotic adjustment to water-stress in leaves of four tropical pasture species. Functional Plant Biology, 8, 77-91. |
[7] | Graefe J, Sandmann M (2015). Shortwave radiation transfer through a plant canopy covered by single and double layers of plastic. Agricultural and Forest Meteorology, 201, 196-208. |
[8] |
Hartmann H, Trumbore S (2016). Understanding the roles of nonstructural carbohydrates in forest trees-from what we can measure to what we want to know. New Phytologist, 211, 386-403.
URL PMID |
[9] |
Hewitt BR (1958). Spectrophotometric determination of total carbohydrate. Nature, 182, 246-247.
URL PMID |
[10] | Iannucci A, Russo M, Arena L, di Fonzo N, Martiniello P (2002). Water deficit effects on osmotic adjustment and solute accumulation in leaves of annual clovers. European Journal of Agronomy, 16, 111-122. |
[11] | Jentsch A, Kreyling J, Boettcher-Treschkow J, Beierkuhnlein C (2009). Beyond gradual warming: extreme weather events alter flower phenology of European grassland and heath species. Global Change Biology, 15, 837-849. |
[12] | Kang XM, Cui LJ, Hao YB, Li W, Cui XY, Wang YF (2015). Effects of extreme drought on the water balance of aLeymus chinensis steppe in Inner Mongolia, China. Chinese Journal of Applied and Environmental Biology, 21, 700-709. |
[ 康晓明, 崔丽娟, 郝彦宾, 李伟, 崔骁勇, 王艳芬 (2015). 极端干旱对内蒙古羊草草原水分平衡的影响. 应用与环境生物学报, 21, 700-709.] | |
[13] | Körner C (1999). Alpine Plant Life: Functional Plant Ecology of High Mountain Ecosystems. Springer Science & Business Media, Berlin. |
[14] | Leloir L, Cardini C (1955). The biosynthesis of sucrose-correction. Journal of the American Chemical Society, 214, 157-165. |
[15] | Li MH, Cherubini P, Dobbertin M, Arend M, Xiao WF, Rigling A (2013). Responses of leaf nitrogen and mobile carbohydrates in different Quercus species/provenances to moderate climate changes. Plant Biology, 15, 177-184. |
[16] |
Li MH, Xiao WF, Wang SG, Cheng GW, Cherubini P, Cai XH, Liu XL, Wang XD, Zhu WZ (2008). Mobile carbohydrates in Himalayan treeline trees I. Evidence for carbon gain limitation but not for growth limitation. Tree Physiology, 28, 1287-1296.
DOI URL PMID |
[17] | Loewe A, Einig W, Shi LB, Dizengremel P, Hampp R (2000). Mycorrhiza formation and elevated CO2 both increase the capacity for sucrose synthesis in source leaves of spruce and aspen. New Phytologist, 145, 565-574. |
[18] | Luo WT, Zuo XA, Griffin-Nolan RJ, Xu C, Ma W, Song L, Helsen K, Lin YC, Cai JP, Yu Q, Wang ZW, Smith MD, Han XG, Knapp AK (2019). Long term experimental drought alters community plant trait variation, not trait means, across three semiarid grasslands. Plant and Soil, 442, 343-353. |
[19] |
Luo WT, Zuo XA, Ma W, Xu C, Li A, Yu Q, Knapp AK, Tognetti R, Dijkstra FA, Li MH, Han GD, Wang ZW, Han XG (2018). Differential responses of canopy nutrients to experimental drought along a natural aridity gradient. Ecology, 99, 2230-2239.
DOI URL PMID |
[20] |
McDowell N, Pockman WT, Allen CD, Breshears DD, Cobb N, Kolb T, Plaut J, Sperry J, West A, Williams DG, Yepez EA (2008). Mechanisms of plant survival and mortality during drought: Why do some plants survive while others succumb to drought? New Phytologist, 178, 719-739.
DOI URL PMID |
[21] | McInerny GJ, Etienne RS (2012). Pitch the niche-taking responsibility for the concepts we use in ecology and species distribution modelling. Journal of Biogeography, 39, 2112-2118. |
[22] | Pan QM, Han XG, Bai YF, Yang JC (2002). Advances in physiology and ecology studies on stored non-structure carbohydrates in plants. Chinese Bulletin of Botany, 19, 30-38. |
[ 潘庆民, 韩兴国, 白永飞, 杨景成 (2002). 植物非结构性贮藏碳水化合物的生理生态学研究进展. 植物学通报, 19, 30-38.] | |
[23] |
Peng WJ, Wang XM (2016). Concept and connotation development of niche and its ecological orientation. Chinese Journal of Applied Ecology, 27, 327-334.
URL PMID |
[ 彭文俊, 王晓鸣 (2016). 生态位概念和内涵的发展及其在生态学中的定位. 应用生态学报, 27, 327-334.]
PMID |
|
[24] |
Slette IJ, Post AK, Awad M, Even T, Punzalan A, Williams S, Smith MD, Knapp AK (2019). How ecologists define drought, and why we should do better. Global Change Biology, 25, 3193-3200.
DOI URL PMID |
[25] |
Smith MD (2011). An ecological perspective on extreme climatic events: a synthetic definition and framework to guide future research. Journal of Ecology, 99, 656-663.
DOI URL |
[26] |
Sparks JP, Black RA (1999). Regulation of water loss in populations of Populus trichocarpa: the role of stomatal control in preventing xylem cavitation. Tree Physiology, 19, 453-459.
DOI URL PMID |
[27] |
Sushandoyo D, Magnusson T (2014). Strategic niche management from a business perspective: taking cleaner vehicle technologies from prototype to series production. Journal of Cleaner Production, 74, 17-26.
DOI URL |
[28] | Wang CT, Long RJ, Ding LM (2004). The effects of differences in functional group diversity and composition on plant community productivity in four types of alpine meadow communities. Chinese Biodiversity, 12, 403-409. |
[ 王长庭, 龙瑞军, 丁路明 (2004). 高寒草甸不同草地类型功能群多样性及组成对植物群落生产力的影响. 生物多样性, 12, 403-409.] | |
[29] | Wang X, Luo WT, Yu Q, Yan CF, Xu ZW, Li MH, Jiang Y (2014). Effects of nutrient addition on nitrogen, phosphorus and non-structural carbohydrates concentrations in leaves of dominant plant species in a semiarid steppe. Chinese Journal of Ecology, 33, 1795-1802. |
[ 王雪, 雒文涛, 庾强, 闫彩凤, 徐柱文, 李迈和, 姜勇 (2014). 半干旱典型草原养分添加对优势物种叶片氮磷及非结构性碳水化合物含量的影响. 生态学杂志, 33, 1795-1802.] | |
[30] |
Wang XY, Wang SL, Tang Y, Zhou WM, Zhou L, Zhong QL, Dai LM, Yu DP (2019). Characteristics of non-structural carbohydrate reserves of three dominant tree species in broadleaved Korean pine forest in Changbai Mountain, China. Chinese Journal of Applied Ecology, 30, 1608-1614.
DOI URL PMID |
[ 王晓雨, 王守乐, 唐杨, 周旺明, 周莉, 仲庆林, 代力民, 于大炮 (2019). 长白山阔叶红松林3个主要树种的非结构性碳储存特征. 应用生态学报, 30, 1608-1614.]
PMID |
|
[31] | Wang YL, Xu ZZ, Zhou GS (2004). Changes in biomass allocation and gas exchange characteristics ofLeymus chinensis in response to soil water stress. Acta Phytoecologica Sinica, 28, 803-809. |
[ 王云龙, 许振柱, 周广胜 (2004). 水分胁迫对羊草光合产物分配及其气体交换特征的影响. 植物生态学报, 28, 803-809.] | |
[32] | Zhang B, Zhu JJ, Liu HM, Pan QM (2014). Effects of extreme rainfall and drought events on grassland ecosystems. Chinese Journal of Plant Ecology, 38, 1008-1018. |
[ 张彬, 朱建军, 刘华民, 潘庆民 (2014). 极端降水和极端干旱事件对草原生态系统的影响. 植物生态学报, 38, 1008-1018.] | |
[33] | Zhao GF, Xu L, Zhang LJ (2003). Environmental adaptation in plant population in the process of molecular evolution. Acta Botanica Boreali-Occidentalia Sinica, 23, 1084-1090. |
[ 赵桂仿, 徐莉, 张林静 (2003). 植物种群分子进化中对生境的适应. 西北植物学报, 23, 1084-1090.] | |
[34] |
Zheng YP, Wang HX, Lou X, Yang QP, Xu M (2014). Changes of non-structural carbohydrates and its impact factors in trees: a review. Chinese Journal of Applied Ecology, 25, 1188-1196.
URL PMID |
[ 郑云普, 王贺新, 娄鑫, 杨庆朋, 徐明 (2014). 木本植物非结构性碳水化合物变化及其影响因子研究进展. 应用生态学报, 25, 1188-1196.]
PMID |
|
[35] | Zhou M, Wang J, Bai WM, Zhang YS, Zhang WH (2019). The response of root traits to precipitation change of herbaceous species in temperate steppes. Functional Ecology, 33, 2030-2041. |
[36] | Zhou SR, Zhang DY (2006). Neutral theory in community ecology. Journal of Plant Ecology (Chinese Veision), 30, 868-877. |
[ 周淑荣, 张大勇 (2006). 群落生态学的中性理论. 植物生态学报, 30, 868-877.] | |
[37] | Zi HB, Ade LJ, Liu M, Hu L, Chen Y, Yang YF, Wang CT (2016). Difference of community characteristics and niche of dominant species in different grassland types of alpine meadow. Chinese Journal of Applied and Environmental Biology, 22, 546-554. |
[ 字洪标, 阿的鲁骥, 刘敏, 胡雷, 陈焱, 杨有芳, 王长庭 (2016). 高寒草甸不同类型草地群落特征及优势种植物生态位差异. 应用与环境生物学报, 22, 546-554.] |
[1] | 俞庆水 倪晓凤 吉成均 朱江玲 唐志尧 方精云. 10年氮磷添加对海南尖峰岭两种热带雨林优势植物叶片非结构性碳水化合物的影响[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[2] | 江康威 张青青 王亚菲 李宏 丁雨 杨永强 吐尔逊娜依·热依木. 放牧干扰下天山北坡中段植物功能群特征及其与土壤环境因子的关系[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[3] | 王袼, 胡姝娅, 李阳, 陈晓鹏, 李红玉, 董宽虎, 何念鹏, 王常慧. 不同类型草原土壤净氮矿化速率的温度敏感性[J]. 植物生态学报, 2024, 48(4): 523-533. |
[4] | 梁逸娴, 王传宽, 臧妙涵, 上官虹玉, 刘逸潇, 全先奎. 落叶松径向生长和生物量分配对气候变暖的响应[J]. 植物生态学报, 2024, 48(4): 459-468. |
[5] | 黄玲, 王榛, 马泽, 杨发林, 李岚, SEREKPAYEV Nurlan, NOGAYEV Adilbek, 侯扶江. 长期放牧和氮添加对黄土高原典型草原长芒草种群生长的影响[J]. 植物生态学报, 2024, 48(3): 317-330. |
[6] | 耿雪琪, 唐亚坤, 王丽娜, 邓旭, 张泽凌, 周莹. 氮添加增加中国陆生植物生物量并降低其氮利用效率[J]. 植物生态学报, 2024, 48(2): 147-157. |
[7] | 韩路, 冯宇, 李沅楷, 王雨晴, 王海珍. 地下水埋深对灰胡杨叶片与土壤养分生态化学计量特征及其内稳态的影响[J]. 植物生态学报, 2024, 48(1): 92-102. |
[8] | 李娜, 唐士明, 郭建英, 田茹, 王姗, 胡冰, 罗永红, 徐柱文. 放牧对内蒙古草地植物群落特征影响的meta分析[J]. 植物生态学报, 2023, 47(9): 1256-1269. |
[9] | 赵艳超, 陈立同. 土壤养分对青藏高原高寒草地生物量响应增温的调节作用[J]. 植物生态学报, 2023, 47(8): 1071-1081. |
[10] | 苏炜, 陈平, 吴婷, 刘岳, 宋雨婷, 刘旭军, 刘菊秀. 氮添加与干季延长对降香黄檀幼苗非结构性碳水化合物、养分与生物量的影响[J]. 植物生态学报, 2023, 47(8): 1094-1104. |
[11] | 李冠军, 陈珑, 余雯静, 苏亲桂, 吴承祯, 苏军, 李键. 固体培养内生真菌对土壤盐胁迫下木麻黄幼苗渗透调节和抗氧化系统的影响[J]. 植物生态学报, 2023, 47(6): 804-821. |
[12] | 罗娜娜, 盛茂银, 王霖娇, 石庆龙, 何宇. 长期植被恢复对中国西南喀斯特石漠化土壤活性有机碳组分含量和酶活性的影响[J]. 植物生态学报, 2023, 47(6): 867-881. |
[13] | 李伟, 张荣. 亚高寒草甸群落结构决定群落生产力实例验证[J]. 植物生态学报, 2023, 47(5): 713-723. |
[14] | 杜英东, 袁相洋, 冯兆忠. 不同形态氮对杨树光合特性及生长的影响[J]. 植物生态学报, 2023, 47(3): 348-360. |
[15] | 余海霞, 曲鲁平, 汤行昊, 刘南, 张子雷, 王浩, 王艺璇, 邵长亮, 董刚, 胡亚林. 闽楠和木荷非结构性碳水化合物对不同模式热浪的差异性响应[J]. 植物生态学报, 2023, 47(2): 249-261. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19