植物生态学报 ›› 2023, Vol. 47 ›› Issue (5): 660-671.DOI: 10.17521/cjpe.2021.0321
所属专题: 凋落物
杜婷1, 陈玉莲1, 毕境徽2, 杨玉婷1, 张丽1, 游成铭1, 谭波1, 徐振锋1, 王丽霞1, 刘思凝1, 李晗1,*()
收稿日期:
2021-09-09
接受日期:
2022-04-22
出版日期:
2023-05-20
发布日期:
2022-04-22
通讯作者:
* (hannahlisc@163.com)
基金资助:
DU Ting1, CHEN Yu-Lian1, BI Jing-Hui2, YANG Yu-Ting1, ZHANG Li1, YOU Cheng-Ming1, TAN Bo1, XU Zhen-Feng1, WANG Li-Xia1, LIU Si-Ning1, LI Han1,*()
Received:
2021-09-09
Accepted:
2022-04-22
Online:
2023-05-20
Published:
2022-04-22
Supported by:
摘要:
总酚和缩合单宁作为重要组分参与并调控森林凋落物的分解过程, 其可能受到林窗直接或间接的影响。该研究以川西亚高山6种常见植物(包括方枝柏(Juniperus saltuaria)、岷江冷杉(Abies fargesii var. faxoniana)、四川红杉(Larix mastersiana)、红桦(Betula albosinensis)、康定柳(Salix paraplesia)和高山杜鹃(Rhododendron lapponicum))凋落叶为研究对象, 在林窗内外不同位置(林窗中心、林冠林窗、扩展林窗、郁闭林下)进行为期3年的原位分解实验, 探究凋落叶总酚和缩合单宁在3年分解过程中冬季和生长季节的动态特征。研究发现凋落叶总酚和缩合单宁均在分解第一年具有较高的损失速率, 分别为10.76和8.5 mg·d-1; 林窗对酚类物质降解的影响随分解进程逐渐减弱并具有明显的季节性差异; 6种凋落叶总酚含量均在生长季降低较快, 且初始缩合单宁含量较高的凋落叶在第一年冬季有较高的缩合单宁损失速率。研究表明森林林窗内的凋落叶在长期分解过程中, 其酚类物质的降解受凋落叶质量和季节差异的影响更为显著。研究结果有利于深入认识森林生态系统中凋落物的分解特征和物质循环过程, 可为亚高山森林的有效经营管理提供一定的科学数据。
杜婷, 陈玉莲, 毕境徽, 杨玉婷, 张丽, 游成铭, 谭波, 徐振锋, 王丽霞, 刘思凝, 李晗. 林窗对川西亚高山凋落叶总酚和缩合单宁损失动态的影响. 植物生态学报, 2023, 47(5): 660-671. DOI: 10.17521/cjpe.2021.0321
DU Ting, CHEN Yu-Lian, BI Jing-Hui, YANG Yu-Ting, ZHANG Li, YOU Cheng-Ming, TAN Bo, XU Zhen-Feng, WANG Li-Xia, LIU Si-Ning, LI Han. Effects of forest gap on losses of total phenols and condensed tannins of foliar litter in a subalpine forest of western Sichuan, China. Chinese Journal of Plant Ecology, 2023, 47(5): 660-671. DOI: 10.17521/cjpe.2021.0321
图1 凋落叶各分解时期内不同林窗位置凋落物袋内的日平均温度(平均值±标准误, n = 3)。不同小写字母表示同一分解时期不同林窗位置间差异显著(p < 0.05)。阴影部分表示冬季, 非阴影部分表示生长季。
Fig. 1 Daily mean temperature of litter bags on different gap positions at each litter decomposing period (mean ± SE, n = 3). Different lowercase letters indicate significant differences among different gap positions during the same decomposition period (p < 0.05). The shadowed areas indicate winter, the non-shadowed areas indicate growing season.
变异来源 Source of variance | df | 总酚含量 Total phenols content | 总酚损失速率 Total phenols loss rate | ||
---|---|---|---|---|---|
F | p | F | p | ||
物种 Species (S) | 5 | 715.799 | <0.001 | 123.633 | <0.001 |
时期 Periods (P) | 5 | 3 048.926 | <0.001 | 360.981 | <0.001 |
林窗位置 Gap positions (G) | 3 | 13.300 | <0.001 | 0.545 | 0.654 |
时期×物种 P × S | 25 | 104.919 | <0.001 | 24.689 | <0.001 |
物种×林窗位置 S × G | 15 | 4.977 | <0.001 | 0.162 | 0.999 |
时期×林窗位置 P × G | 15 | 11.187 | <0.001 | 7.881 | <0.001 |
物种×时期×林窗位置 S × P × G | 75 | 4.378 | <0.001 | 2.782 | <0.001 |
表1 物种、林窗位置和分解时期对亚高山森林凋落叶分解过程中总酚含量和损失速率影响的重复测量方差分析结果
Table 1 Results of repeated measures ANOVA of the effects of species, gap position and decomposition period on litter total phenols content and loss rate in decomposing litters in the subalpine forest
变异来源 Source of variance | df | 总酚含量 Total phenols content | 总酚损失速率 Total phenols loss rate | ||
---|---|---|---|---|---|
F | p | F | p | ||
物种 Species (S) | 5 | 715.799 | <0.001 | 123.633 | <0.001 |
时期 Periods (P) | 5 | 3 048.926 | <0.001 | 360.981 | <0.001 |
林窗位置 Gap positions (G) | 3 | 13.300 | <0.001 | 0.545 | 0.654 |
时期×物种 P × S | 25 | 104.919 | <0.001 | 24.689 | <0.001 |
物种×林窗位置 S × G | 15 | 4.977 | <0.001 | 0.162 | 0.999 |
时期×林窗位置 P × G | 15 | 11.187 | <0.001 | 7.881 | <0.001 |
物种×时期×林窗位置 S × P × G | 75 | 4.378 | <0.001 | 2.782 | <0.001 |
图2 亚高山森林6种凋落叶分解过程中总酚含量的动态特征(平均值±标准误, n = 3)。A, 方枝柏。B, 岷江冷杉。C, 四川红杉。D, 红桦。E, 康定柳。F, 高山杜鹃。不同小写字母表示同一分解时期不同林窗位置之间差异显著(p < 0.05)。阴影部分表示冬季, 非阴影部分表示生长季。
Fig. 2 Dynamics of total phenols content in six decomposing litters in the subalpine forest (mean ± SE, n = 3). A, Juniperus saltuaria. B, Abies fargesii var. faxoniana. C, Larix mastersiana. D, Betula albosinensis. E, Salix paraplesia. F, Rhododendron lapponicum. Different lowercase letters indicate significant differences among gap positions during the same decomposition period (p < 0.05). The shadowed areas indicate winter, and the non-shadowed areas indicate growing season.
图3 亚高山森林6种凋落叶分解过程中总酚损失速率的动态特征(平均值±标准误, n = 3)。A, 方枝柏。B, 岷江冷杉。C, 四川红杉。D, 红桦。E, 康定柳。F, 高山杜鹃。不同小写字母表示同一分解时期不同林窗位置之间差异显著(p < 0.05)。阴影部分表示冬季, 非阴影部分表示生长季。
Fig. 3 Dynamics of total phenols loss rate in six decomposing litters in the subalpine forest (mean ± SE, n = 3). A, Juniperus saltuaria. B, Abies fargesii var. faxoniana. C, Larix mastersiana. D, Betula albosinensis. E, Salix paraplesia. F, Rhododendron lapponicum. Different lowercase letters indicate significant differences among gap positions during the same decomposing period (p < 0.05). The shadowed areas indicate winter, and the non-shadowed areas indicate growing season.
变异来源 Source of variance | df | 缩合单宁含量 Condensed tannins content | 缩合单宁损失速率 Condensed tannins loss rate | ||
---|---|---|---|---|---|
F | p | F | p | ||
物种 Species (S) | 5 | 931.848 | <0.001 | 1 116.526 | <0.001 |
时期 Periods (P) | 5 | 800.280 | <0.001 | 477.983 | <0.001 |
林窗位置 Gap positions (G) | 3 | 3.335 | 0.027 | 0.269 | 0.847 |
时期×物种 P × S | 25 | 330.278 | <0.001 | 114.603 | <0.001 |
物种×林窗位置 S × G | 15 | 7.423 | <0.001 | 0.163 | 0.999 7 |
时期×林窗位置 P × G | 15 | 13.836 | <0.001 | 11.297 | <0.001 |
物种×时期×林窗位置 S × P × G | 75 | 9.852 | <0.001 | 7.672 | <0.001 |
表2 物种、林窗位置和分解时期对亚高山森林凋落叶分解过程中缩合单宁含量和损失速率影响的重复测量方差分析结果
Table 2 Results of repeated measures ANOVA of the effects of species, gap position and decomposition period on litter condensed tannins content and loss rate in decomposing litters in the subalpine forest
变异来源 Source of variance | df | 缩合单宁含量 Condensed tannins content | 缩合单宁损失速率 Condensed tannins loss rate | ||
---|---|---|---|---|---|
F | p | F | p | ||
物种 Species (S) | 5 | 931.848 | <0.001 | 1 116.526 | <0.001 |
时期 Periods (P) | 5 | 800.280 | <0.001 | 477.983 | <0.001 |
林窗位置 Gap positions (G) | 3 | 3.335 | 0.027 | 0.269 | 0.847 |
时期×物种 P × S | 25 | 330.278 | <0.001 | 114.603 | <0.001 |
物种×林窗位置 S × G | 15 | 7.423 | <0.001 | 0.163 | 0.999 7 |
时期×林窗位置 P × G | 15 | 13.836 | <0.001 | 11.297 | <0.001 |
物种×时期×林窗位置 S × P × G | 75 | 9.852 | <0.001 | 7.672 | <0.001 |
图4 亚高山森林6种凋落叶分解过程中缩合单宁含量的动态特征(平均值±标准误, n = 3)。A, 方枝柏。B, 岷江冷杉。C, 四川红杉。D, 红桦。E, 康定柳。F, 高山杜鹃。不同小写字母表示同一分解时期不同林窗位置之间差异显著(p < 0.05)。阴影部分表示冬季, 非阴影部分表示生长季。
Fig. 4 Dynamics of condensed tannins content in six decomposing litters in the subalpine forest (mean ± SE, n = 3). A, Juniperus saltuaria. B, Abies fargesii var. faxoniana. C, Larix mastersiana. D, Betula albosinensis. E, Salix paraplesia. F, Rhododendron lapponicum. Different lowercase letters indicate significant differences among gap positions during the same decomposition period (p < 0.05). The shadowed areas indicate winter, and the non-shadowed areas indicate growing season.
图5 亚高山森林6种凋落叶分解过程中缩合单宁损失速率的动态特征(平均值±标准误, n = 3)。A, 方枝柏。B, 岷江冷杉。C, 四川红杉。D, 红桦。E, 康定柳。F, 高山杜鹃。不同小写字母表示同一分解时期不同林窗位置之间差异显著(p < 0.05)。阴影部分表示冬季, 非阴影部分表示生长季。
Fig. 5 Dynamics of condensed tannins loss rate in six decomposing litters in the subalpine forest (mean ± SE, n = 3). A, Juniperus saltuaria. B, Abies fargesii var. faxoniana. C, Larix mastersiana. D, Betula albosinensis. E, Salix paraplesia. F, Rhododendron lapponicum. Different lowercase letters indicate significant differences among gap positions during the same decomposing period (p < 0.05). The shadowed areas indicate winter, and the non-shadowed areas indicate growing season.
分解时期 Decomposition period | 因变量 Dependent variable | 进入最优模型的变量 Variables entering the optimal model | n | R2 |
---|---|---|---|---|
冬季 Winter | TP | DMT (+), CT0 (+), TP0 (+), FFTC (+), PAT (-), NAT (-) | 216 | 0.656* |
TPL | PAT (+), TP0 (+), DMT (-) | 216 | 0.270* | |
CT | CT0 (+), DMT (+), PAT (-) | 216 | 0.372** | |
CTL | DMT (+), CT0 (+), PAT (-) | 216 | 0.391** | |
生长季 Growing season | TP | CT0 (+) | 216 | 0.214** |
TPL | DC (+) | 216 | 0.067** | |
CT | CT0 (+) | 216 | 0.147** | |
CTL | CT0 (+) | 216 | 0.250** | |
3年 Three years | TP | DMT (+), CT0 (+), WSE (-), PAT (-) | 432 | 0.545* |
TPL | TP0 (+), NAT (+) | 432 | 0.125** | |
CT | NAT (+), CT0 (+), PAT (-) | 432 | 0.280** | |
CTL | CT0 (+), NAT (+), PAT (-) | 432 | 0.305** |
表3 总酚/缩合单宁含量和损失速率与环境因子和凋落叶初始质量的多元线性(逐步法)回归分析
Table 3 Multiple linear regressions (stepwise method) between the total phenols/condensed tannins content, loss rate and environmental factors, initial quality of foliar litter
分解时期 Decomposition period | 因变量 Dependent variable | 进入最优模型的变量 Variables entering the optimal model | n | R2 |
---|---|---|---|---|
冬季 Winter | TP | DMT (+), CT0 (+), TP0 (+), FFTC (+), PAT (-), NAT (-) | 216 | 0.656* |
TPL | PAT (+), TP0 (+), DMT (-) | 216 | 0.270* | |
CT | CT0 (+), DMT (+), PAT (-) | 216 | 0.372** | |
CTL | DMT (+), CT0 (+), PAT (-) | 216 | 0.391** | |
生长季 Growing season | TP | CT0 (+) | 216 | 0.214** |
TPL | DC (+) | 216 | 0.067** | |
CT | CT0 (+) | 216 | 0.147** | |
CTL | CT0 (+) | 216 | 0.250** | |
3年 Three years | TP | DMT (+), CT0 (+), WSE (-), PAT (-) | 432 | 0.545* |
TPL | TP0 (+), NAT (+) | 432 | 0.125** | |
CT | NAT (+), CT0 (+), PAT (-) | 432 | 0.280** | |
CTL | CT0 (+), NAT (+), PAT (-) | 432 | 0.305** |
[1] |
Bardgett RD, Bowman WD, Kaufmann R, Schmidt SK (2005). A temporal approach to linking aboveground and belowground ecology. Trends in Ecology & Evolution, 20, 634-641.
DOI URL |
[2] |
Bate-Smith EC (1962). The phenolic constituents of plants and their taxonomic significance. I. Dicotyledons. Journal of the Linnean Society of London, Botany, 58, 95-173.
DOI URL |
[3] | Berg B, McClaugherty C (2020). Plant Litter. 4th ed. Springer Nature, Cham, Switzerland. |
[4] |
Buckeridge KM, Grogan P (2008). Deepened snow alters soil microbial nutrient limitations in arctic birch hummock tundra. Applied Soil Ecology, 39, 210-222.
DOI URL |
[5] | Chang CH, Wu FZ, Yang WQ, Tan B, Li H, Xiao S, Gou XL, He LN (2014). The dynamics of microbial community structure at different stages of log decay in an alpine forest of western Sichuan. Chinese Journal of Applied and Environmental Biology, 20, 978-985. |
[常晨晖, 吴福忠, 杨万勤, 谭波, 李晗, 肖洒, 苟小林, 何丽娜 (2014). 川西高山森林倒木不同分解阶段的微生物群落变化特征. 应用与环境生物学报, 20, 978-985.] | |
[6] |
Clein JS, Schimel JP (1994). Reduction in microbial activity in birch litter due to drying and rewetting event. Soil Biology & Biochemistry, 26, 403-406.
DOI URL |
[7] | Colmenares NG, Rodríguez G, Prieto A, Crescente O, Cabrera L (1998). Phytoconstituents and antimicrobial activity of Melaleuca leucadendron leaf essential oil from Venezuela. Ciencia, 6, 123-128. |
[8] | Deng RJ, Yang WQ, Wu FZ (2009). Effects of seasonal freeze-thaw on the enzyme activities in Abies faxoniana and Betula platyphylla litters. Chinese Journal of Applied Ecology, 20, 1026-1031. |
[邓仁菊, 杨万勤, 吴福忠 (2009). 季节性冻融对岷江冷杉和白桦凋落物酶活性的影响. 应用生态学报, 20, 1026-1031.] | |
[9] | Deng RJ, Yang WQ, Zhang J, Wu FZ (2010). Changes in litter quality of subalpine forests during one freeze-thaw season. Acta Ecologica Sinica, 30, 830-835. |
[邓仁菊, 杨万勤, 张健, 吴福忠 (2010). 季节性冻融期间亚高山森林凋落物的质量变化. 生态学报, 30, 830-835.] | |
[10] |
Domine F, Barrere M, Sarrazin D, Morin S, Arnaud L (2015). Automatic monitoring of the effective thermal conductivity of snow in a low-Arctic shrub tundra. The Cryosphere, 9, 1265-1276.
DOI URL |
[11] | Du T, Liu YL, Yang YT, Zhang Y, You CM, Zhang L, Tan B, Xu ZF, Li H (2021). Effects of forest gaps on cellulose degradation during foliar litter decomposition in a subalpine forest of western Sichuan. Chinese Journal of Applied and Environmental Biology, 27, 617-624. |
[杜婷, 刘一霖, 杨玉婷, 张玉, 游成铭, 张丽, 谭波, 徐振锋, 李晗 (2021). 林窗对川西亚高山6种植物凋落叶纤维素降解的影响. 应用与环境生物学报, 27, 617-624.] | |
[12] | Duan HH (2016). Mechanism of allelopathy of phenols. Shanxi Agricultural Economy, (15), 77. |
[段罕慧 (2016). 酚类物质的化感作用的机制. 山西农经, (15), 77.] | |
[13] | Flaig W (1955). Quinones as model substances of humic acid precursors. Journal of Plant Nutrition and Soil Science, 69, 43-50. |
[14] |
Gálhidy L, Mihók B, Hagyó A, Rajkai K, Standovár T (2006). Effects of gap size and associated changes in light and soil moisture on the understorey vegetation of a Hungarian beech forest. Plant Ecology, 183, 133-145.
DOI URL |
[15] |
Gavazov KS (2010). Dynamics of alpine plant litter decomposition in a changing climate. Plant and Soil, 337, 19-32.
DOI URL |
[16] |
Guo CH, Yang WQ, Wu FZ, Xu ZF, Yue K, Ni XY, Yuan J, Yang F, Tan B (2018). Effects of forest gap size on initial decomposition of twig litter in the subalpine forest of western Sichuan, China. Chinese Journal of Plant Ecology, 42, 28-37.
DOI URL |
[郭彩虹, 杨万勤, 吴福忠, 徐振锋, 岳楷, 倪祥银, 袁吉, 杨帆, 谭波 (2018). 川西亚高山森林林窗对凋落枝早期分解的影响. 植物生态学报, 42, 28-37.]
DOI |
|
[17] | Guo JF, Yang YS, Chen GS, Lin P, Xie JS (2006). A review on litter decomposition in forest ecosystem. Scientia Silvae Sinicae, 42(4), 93-100. |
[郭剑芬, 杨玉盛, 陈光水, 林鹏, 谢锦升 (2006). 森林凋落物分解研究进展. 林业科学, 42(4), 93-100.] | |
[18] |
Hagerman AE, Butler LG (1989). Choosing appropriate methods and standards for assaying tannin. Journal of Chemical Ecology, 15, 1795-1810.
DOI PMID |
[19] |
Hartzfeld PW, Forkner R, Hunter MD, Hagerman AE (2002). Determination of hydrolyzable tannins (gallotannins and ellagitannins) after reaction with potassium iodate. Journal of Agricultural and Food Chemistry, 50, 1785-1790.
PMID |
[20] |
Hättenschwiler S, Hagerman AE, Vitousek PM (2003). Polyphenols in litter from tropical montane forests across a wide range in soil fertility. Biogeochemistry, 64, 129-148.
DOI URL |
[21] |
He W, Wu FZ, Yang WQ, Wu QQ, He M, Zhao YY (2013). Effect of snow patches on leaf litter mass loss of two shrubs in an alpine forest. Chinese Journal of Plant Ecology, 37, 306-316.
DOI |
[何伟, 吴福忠, 杨万勤, 武启骞, 何敏, 赵野逸 (2013). 雪被斑块对高山森林两种灌木凋落叶质量损失的影响. 植物生态学报, 37, 306-316.]
DOI |
|
[22] |
He W, Wu FZ, Zhang DJ, Yang WQ, Tan B, Zhao YY, Wu QQ (2015). The effects of forest gaps on cellulose degradation in the foliar litter of two shrub species in an alpine fir forest. Plant and Soil, 393, 109-122.
DOI URL |
[23] |
He W, Yang WQ (2020). Loss of total phenols from leaf litter of two shrub species: dual responses to alpine forest gap disturbance during winter and the growing season. Journal of Plant Ecology, 13, 369-377.
DOI URL |
[24] |
Heil M, Baumann B, Andary C, Linsenmair EK, McKey D (2002). Extraction and quantification of “condensed tannins” as a measure of plant anti-herbivore defence? Revisiting an old problem. Naturwissenschaften, 89, 519-524.
DOI URL |
[25] |
Hilli S, Stark S, Derome J (2008). Carbon quality and stocks in organic horizons in boreal forest soils. Ecosystems, 11, 270-282.
DOI URL |
[26] |
Hobbie SE, Chapin III FS (1996). Winter regulation of tundra litter carbon and nitrogen dynamics. Biogeochemistry, 35, 327-338.
DOI URL |
[27] |
Ise T, Moorcroft PR (2006). The global-scale temperature and moisture dependencies of soil organic carbon decomposition: an analysis using a mechanistic decomposition model. Biogeochemistry, 80, 217-231.
DOI URL |
[28] |
Kuiters AT, Sarink HM (1986). Leaching of phenolic compounds from leaf and needle litter of several deciduous and coniferous trees. Soil Biology & Biochemistry, 18, 475-480.
DOI URL |
[29] |
Li H, Wu FZ, Yang WQ, Xu LY, Ni XY, He J, Hu Y (2015). Effects of forest gap on hemicellulose dynamics during foliar litter decomposition in a subalpine forest. Chinese Journal of Plant Ecology, 39, 229-238.
DOI URL |
[李晗, 吴福忠, 杨万勤, 徐李亚, 倪祥银, 何洁, 胡义 (2015). 亚高山森林林窗对凋落物分解过程中半纤维素动态的影响. 植物生态学报, 39, 229-238.]
DOI |
|
[30] |
Li H, Xu LY, Wu FZ, Yang WQ, Ni XY, He J, Tan B, Hu Y (2016). Forest gaps alter the total phenol dynamics in decomposing litter in an alpine fir forest. PLoS ONE, 11, e0148426. DOI: 10.1371/journal.pone.0148426.
DOI |
[31] | Li T, Song JX, Zhang ZR, Jiang GQ (2020). Research progress of degradation methods of condensed tannin. Chemistry and Industry of Forest Products, 40(5), 10-16. |
[李特, 宋见喜, 张卓睿, 姜贵全 (2020). 缩合单宁降解方法研究进展. 林产化学与工业, 40(5), 10-16.] | |
[32] |
Liang RB, Liang J, Qiao MF, Xu ZF, Liu Q, Yin HJ (2015). Effects of simulated exudate C:N stoichiometry on dynamics of carbon and microbial community composition in a subalpine coniferous forest of western Sichuan, China. Chinese Journal of Plant Ecology, 39, 466-476.
DOI URL |
[梁儒彪, 梁进, 乔明锋, 徐振锋, 刘庆, 尹华军 (2015). 模拟根系分泌物C:N化学计量特征对川西亚高山森林土壤碳动态和微生物群落结构的影响. 植物生态学报, 39, 466-476.]
DOI |
|
[33] | Liang XD, Ye WH (2001). Advances in study on forest gaps. Journal of Tropical and Subtropical Botany, 9, 355-364. |
[梁晓东, 叶万辉 (2001). 林窗研究进展. 热带亚热带植物学报, 9, 355-364.] | |
[34] |
Ni XY, Yang WQ, Li H, Xu LY, He J, Wu FZ (2014). Effects of snowpack on early foliar litter humification during winter in a subalpine forest of western Sichuan. Chinese Journal of Plant Ecology, 38, 540-549.
DOI URL |
[倪祥银, 杨万勤, 李晗, 徐李亚, 何洁, 吴福忠 (2014). 雪被斑块对川西亚高山森林6种凋落叶冬季腐殖化的影响. 植物生态学报, 38, 540-549.]
DOI |
|
[35] |
Olsson PQ, Sturm M, Racine CH, Romanovsky V, Liston GE (2003). Five stages of the Alaskan Arctic cold season with ecosystem implications. Arctic, Antarctic, and Alpine Research, 35, 74-81.
DOI URL |
[36] |
Ouyang XP, Tan YD, Qiu XQ (2014). Oxidative degradation of lignin for producing monophenolic compounds. Journal of Fuel Chemistry and Technology, 42, 677-682.
DOI URL |
[37] |
Preston CM, Trofymow JA (2015). The chemistry of some foliar litters and their sequential proximate analysis fractions. Biogeochemistry, 126, 197-209.
DOI URL |
[38] |
Preston CM, Nault JR, Trofymow JA (2009). Chemical changes during 6 years of decomposition of 11 litters in some Canadian forest sites. Part 2. 13C abundance, solid-state 13C NMR spectroscopy and the meaning of “Lignin”. Ecosystems, 12, 1078-1102.
DOI URL |
[39] | Raven, Evert RF, Eichhorn SE (2013). Biology of Plants. W.H. Freeman and Company Publishers, New York. |
[40] |
Rief A, Knapp BA, Seeber J (2012). Palatability of selected alpine plant litters for the decomposer Lumbricus rubellus (Lumbricidae). PLoS ONE, 7, e45345. DOI: 10.1371/journal.pone.0045345.
DOI |
[41] |
Ryan MG, Melillo JM, Ricca A (1990). A comparison of methods for determining proximate carbon fractions of forest litter. Canadian Journal of Forest Research, 20, 166-171.
DOI URL |
[42] |
Schofield JA, Hagerman AE, Harold A (1998). Loss of tannins and other phenolics from willow leaf litter. Journal of Chemical Ecology, 24, 1409-1421.
DOI URL |
[43] | Song XZ, Jiang H, Zhang HL, Yu SQ, Zhou GM, Ma YD, Chang SX (2008). A review on the effects of global environment change on litter decomposition. Acta Ecologica Sinica, 28, 4414-4423. |
[宋新章, 江洪, 张慧玲, 余树全, 周国模, 马元丹, Chang SX (2008). 全球环境变化对森林凋落物分解的影响. 生态学报, 28, 4414-4423.] | |
[44] |
Swaby RJ (1950). The influence of humus on soil aggregation. Journal of Soil Science, 1, 182-194.
DOI URL |
[45] |
Tan B, Wu FZ, Yang WQ, Liu L, Yu S (2010). Characteristics of soil animal community in the subalpine/alpine forests of western Sichuan during onset of freezing. Acta Ecologica Sinica, 30, 93-99.
DOI URL |
[46] |
Tan B, Wu FZ, Yang WQ, Yu S, Liu L, Wang A, Yang YL (2012). Activities of soil oxidordeuctase and their response to seasonal freeze-thaw in the subalpine/alpine forests of western Sichuan. Acta Ecologica Sinica, 32, 6670-6678.
DOI URL |
[谭波, 吴福忠, 杨万勤, 余胜, 刘利, 王奥, 杨玉莲 (2012). 川西亚高山/高山森林土壤氧化还原酶活性及其对季节性冻融的响应. 生态学报, 32, 6670-6678.] | |
[47] | The State Forestry Administration of the Peopleʼs Republic of China (1999). The Analysis Methods of Forest Soil: the Forestry Industry Standard of the People’s Republic of China LY/T 1228-1999, LY/T 1237-1999. China Standard Press, Beijing. |
[ 中华人民共和国国家林业局 (1999). 森林土壤分析方法: 中华人民共和国林业行业标准 LY/T 1228-1999, 1237-1999. 中国标准出版社, 北京.] | |
[48] |
Torti SD, Dearing MD, Kursar TA (1995). Extraction of phenolic compounds from fresh leaves: a comparison of methods. Journal of Chemical Ecology, 21, 117-125.
DOI PMID |
[49] |
Wu FZ, Yang WQ, Zhang J, Deng RJ (2010). Fine root decomposition in two subalpine forests during the freeze-thaw season. Canadian Journal of Forest Research, 40, 298-307.
DOI URL |
[50] | Wu QG, Wu FZ, Tan B, Yang WQ, He W, Ni XY (2016). Effects of gap sizes on foliar litter decomposition in alpine forests. Acta Ecologica Sinica, 36, 3537-3545. |
[吴庆贵, 吴福忠, 谭波, 杨万勤, 何伟, 倪祥银 (2016). 高山森林林窗对凋落叶分解的影响. 生态学报, 36, 3537-3545.] | |
[51] | Xia B, Deng F, He SA (1997). Research progress of forest window. Journal of Plant Resources and Environment, 6(4), 50-57. |
[夏冰, 邓飞, 贺善安 (1997). 林窗研究进展. 植物资源与环境, 6(4), 50-57.] | |
[52] |
Yang KJ, Yang WQ, Tan Y, He RY, Zhuang LY, Li ZJ, Tan B, Xu ZF (2017). Short-term responses of winter soil respiration to snow removal in a Picea asperata forest of western Sichuan. Chinese Journal of Plant Ecology, 41, 964-971.
DOI URL |
[杨开军, 杨万勤, 谭羽, 贺若阳, 庄丽燕, 李志杰, 谭波, 徐振锋 (2017). 川西亚高山云杉林冬季土壤呼吸对雪被去除的短期响应. 植物生态学报, 41, 964-971.]
DOI |
|
[53] | Yang WQ, Wang KY, Kellomäki S, Gong HD (2005). Litter dynamics of three subalpine forests in western Sichuan. Pedosphere, 15, 653-659. |
[54] |
Yang WQ, Wang KY, Kellomäki S, Zhang J (2006). Annual and monthly variations in litter macronutrients of three subalpine forests in western China. Pedosphere, 16, 788-798.
DOI URL |
[55] | Zang RG (1998). Research advances of gap regeneration dynamics. Chinese Journal of Ecology, 17, 50-58. |
[臧润国 (1998). 林隙(gap)更新动态研究进展. 生态学杂志, 17, 50-58.] | |
[56] | Zeng F, Qiu ZJ, Xu XY (2010). Review on forest litter decomposition. Ecology and Environmental Sciences, 19, 239-243. |
[曾锋, 邱治军, 许秀玉 (2010). 森林凋落物分解研究进展. 生态环境学报, 19, 239-243.]
DOI |
|
[57] |
Zhu JX, He XH, Wu FZ, Yang WQ, Tan B (2012). Decomposition of Abies faxoniana litter varies with freeze-thaw stages and altitudes in subalpine/alpine forests of southwest China. Scandinavian Journal of Forest Research, 27, 586-596
DOI URL |
[1] | 常晨晖 朱彪 朱江玲 吉成均 杨万勤. 森林粗木质残体分解研究进展[J]. 植物生态学报, 2024, 48(5): 541-560. |
[2] | 付粱晨, 丁宗巨, 唐茂, 曾辉, 朱彪. 北京东灵山白桦和蒙古栎的根际效应及其季节动态[J]. 植物生态学报, 2024, 48(4): 508-522. |
[3] | 秦文宽, 张秋芳, 敖古凯麟, 朱彪. 土壤有机碳动态对增温的响应及机制研究进展[J]. 植物生态学报, 2024, 48(4): 403-415. |
[4] | 陈颖洁, 房凯, 秦书琪, 郭彦军, 杨元合. 内蒙古温带草地土壤有机碳组分含量和分解速率的空间格局及其影响因素[J]. 植物生态学报, 2023, 47(9): 1245-1255. |
[5] | 郑炀, 孙学广, 熊洋阳, 袁贵云, 丁贵杰. 叶际微生物对马尾松凋落针叶分解的影响[J]. 植物生态学报, 2023, 47(5): 687-698. |
[6] | 仲琦, 李曾燕, 马炜, 况雨潇, 邱岭军, 黎蕴洁, 涂利华. 氮添加和凋落物处理对华西雨屏区常绿阔叶林凋落叶分解的影响[J]. 植物生态学报, 2023, 47(5): 629-643. |
[7] | 赖硕钿, 吴福忠, 吴秋霞, 朱晶晶, 倪祥银. 雪被去除减缓岷江冷杉凋落叶易分解碳释放[J]. 植物生态学报, 2023, 47(5): 672-686. |
[8] | 余继梅, 吴福忠, 袁吉, 金遐, 魏舒沅, 袁朝祥, 彭艳, 倪祥银, 岳楷. 全球尺度上凋落物初始酚类含量特征及影响因素[J]. 植物生态学报, 2023, 47(5): 608-617. |
[9] | 赵小祥, 朱彬彬, 田秋香, 林巧玲, 陈龙, 刘峰. 叶片凋落物分解的主场优势研究进展[J]. 植物生态学报, 2023, 47(5): 597-607. |
[10] | 李小玲, 朱道明, 余玉蓉, 吴浩, 牟利, 洪柳, 刘雪飞, 卜贵军, 薛丹, 吴林. 模拟氮沉降对鄂西南贫营养泥炭地两种藓类植物生长与分解的影响[J]. 植物生态学报, 2023, 47(5): 644-659. |
[11] | 李慧璇, 马红亮, 尹云锋, 高人. 亚热带天然阔叶林凋落物分解过程中活性、惰性碳氮的动态特征[J]. 植物生态学报, 2023, 47(5): 618-628. |
[12] | 刘美君, 陈秋文, 吕金林, 李国庆, 杜盛. 黄土丘陵区辽东栎和刺槐树干径向生长与微变化季节动态特征[J]. 植物生态学报, 2023, 47(2): 227-237. |
[13] | 何茜, 冯秋红, 张佩佩, 杨涵, 邓少军, 孙小平, 尹华军. 基于叶片和土壤酶化学计量的川西亚高山岷江冷杉林养分限制海拔变化规律[J]. 植物生态学报, 2023, 47(12): 1646-1657. |
[14] | 杨元合, 张典业, 魏斌, 刘洋, 冯雪徽, 毛超, 徐玮婕, 贺美, 王璐, 郑志虎, 王媛媛, 陈蕾伊, 彭云峰. 草地群落多样性和生态系统碳氮循环对氮输入的非线性响应及其机制[J]. 植物生态学报, 2023, 47(1): 1-24. |
[15] | 曹珍, 刘永英, 宋世凯, 张莉娜, 高德. 陆地生境岛屿藓类植物小岛屿效应驱动因素分析——以太行山脉中段山顶为例[J]. 植物生态学报, 2023, 47(1): 65-76. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19