植物生态学报 ›› 2023, Vol. 47 ›› Issue (5): 644-659.DOI: 10.17521/cjpe.2022.0160
所属专题: 凋落物
李小玲1,2, 朱道明3, 余玉蓉1, 吴浩1, 牟利1, 洪柳1, 刘雪飞1, 卜贵军1, 薛丹4, 吴林1,*()
接受日期:
2022-09-28
出版日期:
2023-05-20
发布日期:
2023-02-28
通讯作者:
* (wulin20054557@163.com)
基金资助:
LI Xiao-Ling1,2, ZHU Dao-Ming3, YU Yu-Rong1, WU Hao1, MOU Li1, HONG Liu1, LIU Xue- Fei1, BU Gui-Jun1, XUE Dan4, WU Lin1,*()
Accepted:
2022-09-28
Online:
2023-05-20
Published:
2023-02-28
Supported by:
摘要:
以泥炭藓属(Sphagnum)植物为优势种的贫营养泥炭地是陆地生态系统重要的碳汇, 其优势植物的生长与分解动态关系着贫营养泥炭地碳汇潜力, 但有关氮沉降对贫营养泥炭地优势藓类植物生长与分解的影响还存在很大争议, 并且氮沉降对亚热带贫营养泥炭地优势藓类植物生长与分解的研究鲜有报道。该研究以鄂西南贫营养泥炭地为研究对象, 通过原位喷洒不同浓度的NH4Cl溶液, 采用生物量收割法和分解袋法, 探讨模拟氮沉降对泥炭藓(S. palustre)与金发藓(Polytrichum commune)生长及分解的影响。研究结果表明: (1)氮沉降对两种藓类植物生长高度与生物量均有明显的影响, 且两种藓类植物生长存在一定的氮沉降阈值, 约为3 g·m-2·a-1; (2)氮沉降对两种藓类植物生长影响程度不同, 金发藓对氮沉降的响应灵敏度要大于泥炭藓; (3)高浓度氮沉降(6和12 g·m-2·a-1)抑制了泥炭藓分解, 低浓度氮沉降(3 g·m-2·a-1)对泥炭藓分解的影响取决于分解时间, 而所有浓度氮沉降均抑制了金发藓凋落物的分解; (4)分解1年以后, 泥炭藓的最终质量残留率平均值为105.99%, 金发藓的最终质量残留率平均值为70.79%, 金发藓的分解速率远大于泥炭藓; (5)氮沉降对两种藓类凋落物化学元素含量与化学计量比有显著影响, 且与分解时间密切相关。
李小玲, 朱道明, 余玉蓉, 吴浩, 牟利, 洪柳, 刘雪飞, 卜贵军, 薛丹, 吴林. 模拟氮沉降对鄂西南贫营养泥炭地两种藓类植物生长与分解的影响. 植物生态学报, 2023, 47(5): 644-659. DOI: 10.17521/cjpe.2022.0160
LI Xiao-Ling, ZHU Dao-Ming, YU Yu-Rong, WU Hao, MOU Li, HONG Liu, LIU Xue- Fei, BU Gui-Jun, XUE Dan, WU Lin. Effects of simulated nitrogen deposition on growth and decomposition of two bryophytes in ombrotrophic peatland, southwestern Hubei, China. Chinese Journal of Plant Ecology, 2023, 47(5): 644-659. DOI: 10.17521/cjpe.2022.0160
物种 Species | 重要值 IV (%) | 物种 Species | 重要值 IV (%) |
---|---|---|---|
泥炭藓 Sphagnum palustre* | 90.23 | 耳叶杜鹃 Rhododendron auriculatum | 24.94 |
大理薹草 Carex rubrobrunnea var. taliensis | 62.31 | 芒 Miscanthus sinensis | 23.45 |
齿缘吊钟花 Enkianthus serrulatus | 61.83 | 茶荚蒾 Viburnum setigerum | 13.26 |
多齿长尾槭 Acer caudatum var. multiserratum | 48.00 | 紫萁 Osmunda japonica | 11.64 |
金发藓 Polytrichum commune* | 40.35 | 华西华楸 Sorbus wilsoniana | 9.18 |
西南凤尾蕨 Pteris wallichiana | 36.25 | 湖北海棠 Malus hupehensis | 8.43 |
灯心草 Juncus effusus | 31.36 | 四川冬青 Ilex szechwanensis | 6.19 |
小灯心草 Juncus bufonius | 25.12 | 金丝桃 Hypericum monogynum | 4.81 |
表1 太山庙泥炭地主要物种重要值
Table 1 Important values of dominant plant species in Taishanmiao peatland
物种 Species | 重要值 IV (%) | 物种 Species | 重要值 IV (%) |
---|---|---|---|
泥炭藓 Sphagnum palustre* | 90.23 | 耳叶杜鹃 Rhododendron auriculatum | 24.94 |
大理薹草 Carex rubrobrunnea var. taliensis | 62.31 | 芒 Miscanthus sinensis | 23.45 |
齿缘吊钟花 Enkianthus serrulatus | 61.83 | 茶荚蒾 Viburnum setigerum | 13.26 |
多齿长尾槭 Acer caudatum var. multiserratum | 48.00 | 紫萁 Osmunda japonica | 11.64 |
金发藓 Polytrichum commune* | 40.35 | 华西华楸 Sorbus wilsoniana | 9.18 |
西南凤尾蕨 Pteris wallichiana | 36.25 | 湖北海棠 Malus hupehensis | 8.43 |
灯心草 Juncus effusus | 31.36 | 四川冬青 Ilex szechwanensis | 6.19 |
小灯心草 Juncus bufonius | 25.12 | 金丝桃 Hypericum monogynum | 4.81 |
物种 Species | 初始总碳(C)含量 Initial total carbon (C) content (%) | 初始总氮(N)含量 Initial total nitrogen (N) content (%) | 初始总酚含量 Initial total phenolics content (%) | 初始C:N Initial C:N | 初始总酚:C Initial total phenolics:C | 初始总酚:N Initial total phenolics:N | 初始灰分含量 Initial ash content (%) |
---|---|---|---|---|---|---|---|
泥炭藓 Sphagnum palustre | 37.39 ± 0.07b | 0.98 ± 0.03b | 1.26 ± 0.02b | 39.50 ± 0.09a | 3.34 ± 0.04b | 1.29 ± 0.02b | 0.96 ± 0.02b |
金发藓 Polytrichum commune | 42.28 ± 0.09a | 1.35 ± 0.01a | 2.04 ± 0.03a | 31.40 ± 0.22b | 4.83 ± 0.06a | 1.52 ± 0.01a | 4.17 ± 0.04a |
表2 太山庙泥炭地中泥炭藓和金发藓的初始化学组分(平均值±标准误, n = 4)
Table 2 Initial chemical composition of Sphagnum palustre and Polytrichum commune in Taishanmiao peatland (mean ± SE, n = 4)
物种 Species | 初始总碳(C)含量 Initial total carbon (C) content (%) | 初始总氮(N)含量 Initial total nitrogen (N) content (%) | 初始总酚含量 Initial total phenolics content (%) | 初始C:N Initial C:N | 初始总酚:C Initial total phenolics:C | 初始总酚:N Initial total phenolics:N | 初始灰分含量 Initial ash content (%) |
---|---|---|---|---|---|---|---|
泥炭藓 Sphagnum palustre | 37.39 ± 0.07b | 0.98 ± 0.03b | 1.26 ± 0.02b | 39.50 ± 0.09a | 3.34 ± 0.04b | 1.29 ± 0.02b | 0.96 ± 0.02b |
金发藓 Polytrichum commune | 42.28 ± 0.09a | 1.35 ± 0.01a | 2.04 ± 0.03a | 31.40 ± 0.22b | 4.83 ± 0.06a | 1.52 ± 0.01a | 4.17 ± 0.04a |
因素 Factor | df | 高度增长量 Height increment (cm) | 净初级生产力 Net primary productivity (g·m-2) | ||
---|---|---|---|---|---|
F | p | F | p | ||
氮沉降 Nitrogen deposition | 3 | 5.210 | 0.007 | 30.851 | <0.001 |
物种 Species | 1 | 129.062 | <0.001 | 41.170 | 0.021 |
氮沉降×物种 Nitrogen deposition × species | 3 | 1.231 | 0.320 | 4.502 | 0.102 |
表3 氮沉降、物种及两者交互作用对两种苔藓高度增长量及净初级生产力影响的双因素方差分析
Table 3 Two-way ANOVA on the effects of nitrogen deposition, species and interaction on height increment, net primary productivity of two bryophytes
因素 Factor | df | 高度增长量 Height increment (cm) | 净初级生产力 Net primary productivity (g·m-2) | ||
---|---|---|---|---|---|
F | p | F | p | ||
氮沉降 Nitrogen deposition | 3 | 5.210 | 0.007 | 30.851 | <0.001 |
物种 Species | 1 | 129.062 | <0.001 | 41.170 | 0.021 |
氮沉降×物种 Nitrogen deposition × species | 3 | 1.231 | 0.320 | 4.502 | 0.102 |
图2 模拟氮沉降对生长季泥炭藓和金发藓高度增长量(A)及净初级生产力(B)的影响(平均值±标准误, n = 4)。不同小写字母表示泥炭藓在不同氮浓度间差异显著(p < 0.05), 不同大写字母表示金发藓在不同氮浓度间差异显著(p < 0.05)。*表示不同物种间差异显著(p < 0.05)。
Fig. 2 Effects of simulated nitrogen deposition on increment of height growth (A) and net primary productivity (B) of Sphagnum palustre and Polytrichum commune in the growing season (mean ± SE, n = 4). Different lowercase letters indicate significant differences at different nitrogen levels in Sphagnum palustre (p < 0.05), and different uppercase letters indicate significant differences at different nitrogen levels in Polytrichum commune (p < 0.05). * refers a significant difference between the two species (p < 0.05).
因素 Factor | df | 质量残留率 Mass remaining rate (%) | 总碳含量 Total carbon (C) content (%) | 总氮含量 Total nitrogen (N) content (%) | 总酚含量 Total polyphenol content (%) | 碳氮比 C:N | 总酚:氮 Total phenolics:N | 灰分含量 Ash content (%) | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
F | p | F | p | F | p | F | p | F | p | F | p | F | p | ||
氮沉降 Nitrogen deposition | 3 | 7.617 | 0.001 | 10.63 | <0.001 | 2.769 | 0.045 | 6.607 | <0.001 | 2.747 | 0.046 | 2.939 | 0.036 | 1.085 | 0.358 |
分解时间 Decomposition time | 4 | 52.281 | 0.001 | 140.99 | <0.001 | 40.725 | <0.001 | 79.714 | <0.001 | 14.593 | <0.001 | 218.590 | <0.001 | 2.541 | 0.043 |
物种 Species | 1 | 222.556 | <0.001 | 257.46 | <0.001 | 53.950 | <0.001 | 14.674 | <0.001 | 97.856 | <0.001 | 213.010 | <0.001 | 0.563 | 0.048 |
氮沉降×物种 Nitrogen deposition × species | 3 | 4.154 | 0.008 | 9.32 | <0.001 | 4.811 | 0.003 | 1.684 | 0.174 | 4.507 | 0.005 | 0.576 | 0.632 | 0.871 | 0.458 |
氮沉降×分解时间 Nitrogen deposition × decomposition time | 12 | 4.073 | <0.001 | 1.43 | 0.163 | 3.137 | 0.001 | 2.238 | 0.014 | 3.017 | 0.001 | 2.752 | 0.002 | 0.949 | 0.502 |
物种×分解时间 Species × decomposition time | 4 | 27.864 | <0.001 | 15.49 | <0.001 | 55.146 | <0.001 | 12.199 | <0.001 | 20.915 | <0.001 | 199.327 | <0.001 | 0.635 | 0.639 |
氮沉降×物种×分解时间 Nitrogen deposition × species × decomposition time | 12 | 2.175 | 0.017 | 4.127 | <0.001 | 1.336 | 0.207 | 2.429 | 0.007 | 1.743 | 0.066 | 2.535 | 0.005 | 0.899 | 0.550 |
表4 凋落物的分解指标在氮沉降、分解时间及物种间的多因素方差分析
Table 4 Multivariate analysis of variance on the differences in the decomposing indicators of two bryophytes litters among nitrogen deposition, species and decomposition time
因素 Factor | df | 质量残留率 Mass remaining rate (%) | 总碳含量 Total carbon (C) content (%) | 总氮含量 Total nitrogen (N) content (%) | 总酚含量 Total polyphenol content (%) | 碳氮比 C:N | 总酚:氮 Total phenolics:N | 灰分含量 Ash content (%) | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
F | p | F | p | F | p | F | p | F | p | F | p | F | p | ||
氮沉降 Nitrogen deposition | 3 | 7.617 | 0.001 | 10.63 | <0.001 | 2.769 | 0.045 | 6.607 | <0.001 | 2.747 | 0.046 | 2.939 | 0.036 | 1.085 | 0.358 |
分解时间 Decomposition time | 4 | 52.281 | 0.001 | 140.99 | <0.001 | 40.725 | <0.001 | 79.714 | <0.001 | 14.593 | <0.001 | 218.590 | <0.001 | 2.541 | 0.043 |
物种 Species | 1 | 222.556 | <0.001 | 257.46 | <0.001 | 53.950 | <0.001 | 14.674 | <0.001 | 97.856 | <0.001 | 213.010 | <0.001 | 0.563 | 0.048 |
氮沉降×物种 Nitrogen deposition × species | 3 | 4.154 | 0.008 | 9.32 | <0.001 | 4.811 | 0.003 | 1.684 | 0.174 | 4.507 | 0.005 | 0.576 | 0.632 | 0.871 | 0.458 |
氮沉降×分解时间 Nitrogen deposition × decomposition time | 12 | 4.073 | <0.001 | 1.43 | 0.163 | 3.137 | 0.001 | 2.238 | 0.014 | 3.017 | 0.001 | 2.752 | 0.002 | 0.949 | 0.502 |
物种×分解时间 Species × decomposition time | 4 | 27.864 | <0.001 | 15.49 | <0.001 | 55.146 | <0.001 | 12.199 | <0.001 | 20.915 | <0.001 | 199.327 | <0.001 | 0.635 | 0.639 |
氮沉降×物种×分解时间 Nitrogen deposition × species × decomposition time | 12 | 2.175 | 0.017 | 4.127 | <0.001 | 1.336 | 0.207 | 2.429 | 0.007 | 1.743 | 0.066 | 2.535 | 0.005 | 0.899 | 0.550 |
图3 模拟氮沉降对泥炭藓(A)和金发藓(B)凋落物质量残留率的影响(平均值±标准误, n = 4)。N0、N3、N6及N12分别表示氮添加浓度为0、3、6及12 g·m-2·a-1。不同小写字母表示同一时间内不同氮浓度间差异显著(p < 0.05)。
Fig. 3 Effects of simulated nitrogen deposition on remaining rate of Sphagnum palustre (A) and Polytrichum commune (B) litters (mean ± SE, n = 4). N0, N3, N6 and N12 represent nitrogen addition concentrations of 0, 3, 6 and 12 g·m-2·a-1, respectively. Different lowercase letters indicate significant differences at different nitrogen level at the same time periods (p < 0.05).
图4 模拟氮沉降对泥炭藓(A、C、E)和金发藓(B、D、F)凋落物元素含量的影响(平均值±标准误, n = 4)。N0、N3、N6及N12分别表示氮添加浓度为0、3、6及12 g·m-2·a-1。不同小写字母表示同一时间内不同氮浓度间差异显著(p < 0.05)。
Fig. 4 Effects of simulated nitrogen deposition on element contents of the Sphagnum palustre (A, C, E) and Polytrichum commune (B, D, F) (mean ± SE, n = 4). N0, N3, N6 and N12 represent nitrogen addition concentrations of 0, 3, 6 and 12 g·m-2·a-1, respectively. Different lowercase letters indicate significant differences at different nitrogen level at the same time periods (p < 0.05).
图5 模拟氮沉降对泥炭藓(A、C)和金发藓(B、D)凋落物化学计量比的影响(平均值±标准误, n = 4)。N0、N3、N6及N12分别表示氮添加浓度为0、3、6及12 g·m-2·a-1。不同小写字母表示同一时间内不同氮浓度间差异显著(p < 0.05)。
Fig. 5 Effects of simulated nitrogen deposition on element ratios of the Sphagnum palustre (A, C) and Polytrichum commune (B, D) litters (mean ± SE, n = 4). N0, N3, N6 and N12 represent nitrogen addition concentrations of 0, 3, 6 and 12 g·m-2·a-1, respectively. Different lowercase letters indicate significant differences at different nitrogen level at the same time periods (p < 0.05).
图6 模拟氮沉降对泥炭藓(A)和金发藓(B)凋落物灰分含量的影响(平均值±标准误, n = 4)。N0、N3、N6及N12分别表示氮添加浓度为0、3、6及12 g·m-2·a-1。不同小写字母表示同一时间内不同氮浓度间差异显著(p < 0.05)。
Fig. 6 Effects of simulated nitrogen deposition on ash content of Sphagnum palustre (A) and Polytrichum commune (B) litters (mean ± SE, n = 4). N0, N3, N6 and N12 represent nitrogen addition concentrations of 0, 3, 6 and 12 g·m-2·a-1, respectively. Different lowercase letters indicate significant differences at different nitrogen level at the same time periods (p < 0.05).
图7 模拟氮沉降对泥炭藓氮含量的影响(平均值±标准误, n = 4)。不同小写字母表示不同氮处理间差异显著(p < 0.05)。
Fig. 7 Effects of simulated nitrogen deposition on the total nitrogen content of Sphagnum palustre (mean ± SE, n = 4). Different lowercase letters indicate significant differences at different nitrogen levels (p < 0.05).
图8 苔藓植物初始化学组分与凋落物分解指标的相关性。*, p < 0.05; **, p < 0.01; ***, p < 0.001。
Fig. 8 Correlation between the initial chemical traits and the decomposition indicators of two bryophytes litters. *, p < 0.05; **, p < 0.01; ***, p < 0.001。
[1] |
Ainsworth EA, Gillespie KM (2007). Estimation of total phenolic content and other oxidation substrates in plant tissues using Folin-Ciocalteu reagent. Nature Protocols, 2, 875-877.
DOI PMID |
[2] |
Berendse F, van Breemen N, Rydin H, Buttler A, Heijmans M, Hoosbeek MR, Lee JA, Mitchell E, Saarinen T, Vasander H, Wallén B (2001). Raised atmospheric CO2 levels and increased N deposition cause shifts in plant species composition and production in Sphagnum bogs. Global Change Biology, 7, 591-598.
DOI URL |
[3] |
Bragazza L, Buttler A, Habermacher J, Brancaleoni L, Gerdol R, Fritze H, Hanajík P, Laiho R, Johnson D (2012). High nitrogen deposition alters the decomposition of bog plant litter and reduces carbon accumulation. Global Change Biology, 18, 1163-1172.
DOI URL |
[4] |
Bragazza L, Freeman C (2007). High nitrogen availability reduces polyphenol content in Sphagnum peat. Science of the Total Environment, 377, 439-443.
PMID |
[5] |
Bragazza L, Limpens J, Gerdol R, Grosvernier P, Tahvanainen T (2010). Nitrogen concentration and δ15N signature of ombrotrophic sphagnum mosses at different N deposition levels in europe. Global Change Biology, 11, 106-114.
DOI URL |
[6] |
Bragazza L, Freeman C, Jones T, Rydin H, Limpens J, Fenner N, Ellis T, Gerdol R, Hájek M, Hájek T, Iacumin P, Kutnar L, Tahvanainen T, Toberman H (2006). Atmospheric nitrogen deposition promotes carbon loss from peat bogs. Proceedings of the National Academy of Sciences of the United States of America, 103, 19386-19389.
PMID |
[7] |
Bragazza L, Limpens J (2004). Dissolved organic nitrogen dominates in European bogs under increasing atmospheric N deposition. Global Biogeochemical Cycles, 18, GB4018. DOI: 10.1029/2004GB002267.
DOI |
[8] |
Bu ZJ, Rydin H, Chen X (2011). Direct and interaction- mediated effects of environmental changes on peatland bryophytes. Oecologia, 166, 555-563.
DOI URL |
[9] |
Bubier JL, Moore TR, Bledzki LA (2007). Effects of nutrient addition on vegetation and carbon cycling in an ombrotrophic bog. Global Change Biology, 13, 1168-1186.
DOI URL |
[10] | Chai X (1990). Peatland. Geological Publishing House, Beijing. |
[柴岫 (1990). 泥炭地学. 地质出版社, 北京.] | |
[11] | Chen LD, Zhang QC, Chen JJ, Xiao ZJ, Huang BJ (2020). Monthly dynamics in leaf calorific value and ash content of five dominant broad-leaved tree species in eastern Jilin Province. Journal of Beihua University (Natural Science), 21, 23-28. |
[陈连栋, 张启昌, 陈建军, 肖泽君, 黄兵军 (2020). 吉林省东部5种主要阔叶树种叶片热值及灰分含量月变化. 北华大学学报(自然科学版), 21, 23-28.] | |
[12] |
Clymo RS (1970). The growth of Sphagnum: methods of measurement. Journal of Ecology, 58, 13-49.
DOI URL |
[13] | Clymo RS, Hayward PM (1982). The ecology of Sphagnum// Smith AJE. Bryophyte Ecology. Springer, Dordrecht, the Netherlands. |
[14] |
Currey PM, Johnson D, Sheppard LJ, Leith ID, Toberman H, van der Wal R, Dawson LA, Artz RRE (2009). Turnover of labile and recalcitrant soil carbon differ in response to nitrate and ammonium deposition in an ombrotrophic peatland. Global Change Biology, 16, 2307-2321.
DOI URL |
[15] |
DeForest JL, Zak DR, Pregitzer KS, Burton AJ (2004). Atmospheric nitrate deposition and the microbial degradation of cellobiose and vanillin in a northern hardwood forest. Soil Biology & Biochemistry, 36, 965-971.
DOI URL |
[16] |
Fog K (1988). The effect of added nitrogen on the rate of decomposition of organic matter. Biological Reviews, 63, 433-462.
DOI URL |
[17] | Freeman C, Ostle N, Kang H (2001). An enzymic “latch” on a global carbon store. Nature, 409, 149. |
[18] |
Freeman C, Ostle NJ, Fenner N, Kang H (2004). A regulatory role for phenol oxidase during decomposition in peatlands. Soil Biology & Biochemistry, 36, 1663-1667.
DOI URL |
[19] |
Fritz C, Lamers LPM, Riaz M, van den Berg LJL, Elzenga TJTM (2014). Sphagnum mosses—Masters of efficient N-uptake while avoiding intoxication. PLoS ONE, 9, e79991. DOI: 10.1371/journal.pone.0079991.
DOI |
[20] |
Fritz C, van Dijk G, Smolders AJP, Pancotto VA, Elzenga TJTM, Roelofs JGM, Grootjans AP (2012). Nutrient additions in pristine Patagonian Sphagnum bog vegetation: Can phosphorus addition alleviate (the effects of) increased nitrogen loads. Plant Biology, 14, 491-499.
DOI PMID |
[21] |
Gallo M, Amonette R, Lauber C, Sinsabaugh RL, Zak DR (2004). Microbial community structure and oxidative enzyme activity in nitrogen-amended north temperate forest soils. Microbial Ecology, 48, 218-229.
PMID |
[22] |
Galloway JN, Townsend AR, Erisman JW, Bekunda M, Cai Z, Freney JR, Martinelli LA, Seitzinger SP, Sutton MA (2008). Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. Science, 320, 889-892.
DOI PMID |
[23] |
Gaudig G, Krebs M, Joosten H (2020). Sphagnum growth under N saturation: interactive effects of water level and P or K fertilization. Plant Biology, 22, 394-403.
DOI PMID |
[24] |
Gerdol R, Petraglia A, Bragazza L, Iacumin P, Brancaleoni L (2007). Nitrogen deposition interacts with climate in affecting production and decomposition rates in Sphagnum mosses. Global Change Biology, 13, 1810-1821.
DOI URL |
[25] |
González E, Rochefort L, Boudreau S, Hugron S, Poulin M (2013). Can indicator species predict restoration outcomes early in the monitoring process? A case study with peatlands. Ecological Indicators, 32, 232-238.
DOI URL |
[26] |
Gorham E (1991). Northern peatlands: role in the carbon cycle and probable responses to climatic warming. Ecological Applications, 1, 182-195.
DOI PMID |
[27] |
Graham JA, Vitt DH (2016). The limiting roles of nitrogen and moisture on Sphagnum angustifolium growth over a depth to water table gradient. Plant and Soil, 404, 427-439.
DOI URL |
[28] |
Granath G, Strengbom J, Rydin H (2012). Direct physiological effects of nitrogen on Sphagnum: a greenhouse experiment. Functional Ecology, 26, 353-364.
DOI URL |
[29] | Gu XN, Bu ZJ, Ge JL, Liu SS, Jiang T, Lu M, Guo ZY, Ding JZ (2016). Effect of water table and neighbor on three mosses in Hani Peatland in Changbai Mountains. Bulletin of Botanical Research, 36, 683-691. |
[谷晓楠, 卜兆君, 葛佳丽, 刘莎莎, 蒋涛, 卢孟, 郭震宇, 丁继昭 (2016). 潜水位和邻体对长白山哈泥泥炭地3种苔藓的影响. 植物研究, 36, 683-691.]
DOI |
|
[30] |
Gunnarsson U, Rydin H (2000). Nitrogen fertilization reduces Sphagnum production in bog communities. New Phytologist, 147, 527-537.
DOI PMID |
[31] |
Hogg EH, Malmer N, Wallén B (1994). Microsite and regional variation in the potential decay rate of Sphagnum magellanicum in south Swedish raised bogs. Ecography, 17, 50-59.
DOI URL |
[32] | Huang YB, Zhao TT, Xiang W, Zhao YP, Liu Y (2021). Stability of organic iron complexes in Dajiuhu Peats and its ecological significance. Earth Science, 46, 1862-1870. |
[黄玉冰, 赵甜甜, 向武, 赵云鹏, 刘洋 (2021). 大九湖泥炭沼泽源铁有机配合物的络合稳定性及其生态环境意义. 地球科学, 46, 1862-1870.] | |
[33] | Huo LX, Hong M, Zhao B, Gao HY, Ye H (2019). Effects of increased nitrogen deposition and changing rainfall patterns on litter decomposition in a desert grassland. Acta Ecologica Sinica, 39, 2139-2146. |
[霍利霞, 红梅, 赵巴音那木拉, 高海燕, 叶贺, (2019). 氮沉降和降雨变化对荒漠草原凋落物分解的影响. 生态学报, 39, 2139-2146.] | |
[34] | Jauhiainen J, Silvola J, Vasander H (1998). The effects of increased nitrogen deposition and CO2 on Sphagnum angustifolium and S. warnstorfii. Annales Botanici Fennici, 35, 247-256. |
[35] | Jia YL (2016). Study on the Temporal and Spatial Pattern of Atmospheric Nitrogen Deposition in China and the World. PhD dissertation, University of Chinese Academy of Science, Beijing. |
[贾彦龙 (2016). 中国及全球大气氮沉降的时空格局研究. 博士学位论文, 中国科学院大学, 北京.] | |
[36] |
Johnson LC, Damman AWH (1991). Species-controlled Sphagnum decay on a south Swedish raised bog. Oikos, 61, 234-242.
DOI URL |
[37] |
Juutinen S, Moore TR, Laine AM, Bubier JL, Tuittila ES, de Young A, Chong M (2016). Responses of the mosses Sphagnum capillifolium and Polytrichum strictum to nitrogen deposition in a bog: growth, ground cover, and CO2 exchange. Botany, 94, 127-138.
DOI URL |
[38] |
Kivimäki SK, Sheppard LJ, Leith ID, Grace J (2013). Long- term enhanced nitrogen deposition increases ecosystem respiration and carbon loss from a Sphagnum bog in the scottish borders. Environmental and Experimental Botany, 90, 53-61.
DOI URL |
[39] |
Lamers LPM, Bobbink R, Roelofs JGM (2000). Natural nitrogen filter fails in polluted raised bogs. Global Change Biology, 6, 583-586.
DOI URL |
[40] |
Lang SI, Cornelissen JHC, Klahn T, Broekman R, Schweikert W, Aerts R (2009). An experimental comparison of chemical traits and litter decomposition rates in a diverse range of subarctic bryophyte, lichen and vascular plant species. Journal of Ecology, 97, 886-900.
DOI URL |
[41] |
Le TB, Wu J, Gong Y (2021). Vascular plants regulate responses of boreal peatland Sphagnum to climate warming and nitrogen addition. Science of the Total Environment, 819, 152077. DOI: 10.1016/j.scitotenv.2021.152077.
DOI |
[42] | Li XL, Zhou JS, Mou L, Wang H, Bu GJ, Wu L (2021). Effects of simulated nitrogen deposition on decomposition of Sphagnum in a subalpine wetland, south-western Hubei Province. Chinese Journal of Applied and Environmental Biology, 27, 916-922. |
[李小玲, 周建山, 牟利, 王涵, 卜贵军, 吴林 (2021). 模拟氮沉降对鄂西南亚高山湿地泥炭藓(Sphagnum)凋落物分解的影响. 应用与环境生物学报, 27, 916-922.] | |
[43] |
Li Y, Vitt DH (1997). Patterns of retention and utilization of aerially deposited nitrogen in boreal peatlands. Ecoscience, 4, 106-116.
DOI URL |
[44] |
Limpens J, Berendse F (2003). How litter quality affects mass loss and N loss from decomposing Sphagnum. Oikos, 103, 537-547.
DOI URL |
[45] |
Limpens J, Granath G, Gunnarsson U, Aerts R, Bayley S, Bragazza L, Bubier J, Buttler A, van den Berg LJL, Francez AJ, Gerdol R, Grosvernier P, Hoosbeek MR, Hotes S, Ilomets M, et al. (2011). Climatic modifiers of the response to nitrogen deposition in peat-forming Sphagnum mosses: a meta-analysis. New Phytologist, 191, 496-507.
DOI PMID |
[46] |
Liu L, Greaver TL (2010). A global perspective on belowground carbon dynamics under nitrogen enrichment. Ecology Letters, 13, 819-828.
DOI PMID |
[47] |
Liu XF, Wu L, Wang H, Hong L, Xiong LJ (2020). Growth and decomposition characteristics of Sphagnum in a subalpine wetland, southwestern Hubei, China. Chinese Journal of Plant Ecology, 44, 228-235.
DOI URL |
[刘雪飞, 吴林, 王涵, 洪柳, 熊莉军 (2020). 鄂西南亚高山湿地泥炭藓的生长与分解. 植物生态学报, 44, 228-235.]
DOI |
|
[48] |
Liu YY, Ma JZ, Bu ZJ, Wang SZ, Zhang XB, Zhang TY, Liu SS, Fu B, Kang Y (2018). Effect of geographical sources and biochemical traits on plant litter decomposition in a peatland. Chinese Journal of Plant Ecology, 42, 713-722.
DOI URL |
[刘媛媛, 马进泽, 卜兆君, 王升忠, 张雪冰, 张婷玉, 刘莎莎, 付彪, 康媛 (2018). 地理来源与生物化学属性对泥炭地植物残体分解的影响. 植物生态学报, 42, 713-722.]
DOI |
|
[49] |
Luan J, Wu J, Liu S, Roulet N, Wang M (2019). Soil nitrogen determines greenhouse gas emissions from northern peatlands under concurrent warming and vegetation shifting. Communications Biology, 2, 132. DOI: 10.1038/s42003- 019-0370-1.
DOI |
[50] | Ma JH, Li DH, Peng T, Li F, Wen HB, Mo XM, Zhou JZ (2017). Study on water-holding characteristics of five Sphagnum species in Dushan Sphagnum wetland. Molecular Plant Breeding, 15, 1170-1176. |
[麻俊虎, 李大华, 彭涛, 李飞, 文浩斌, 莫秀模, 周建忠 (2017). 独山泥炭藓沼泽湿地五种泥炭藓植物持水特性研究. 分子植物育种, 15, 1170-1176.] | |
[51] | Ma JZ (2018). The Simulation Study on Effects of Climate Warming on Plant Litter Decomposition in Peatland Basing on Three Experimental Modes. PhD dissertation, Northeast Normal University, Jilin. |
[马进泽 (2018). 基于三种实验方式的气候变暖对泥炭地植物凋落物分解影响的模拟研究. 博士学位论文, 东北师范大学, 长春.] | |
[52] |
Mack MC, Schuur EAG, Bret-Harte MS, Shaver GR, Chapin III FS (2004). Ecosystem carbon storage in arctic tundra reduced by long-term nutrient fertilization. Nature, 431, 440-443.
DOI |
[53] |
Manninen S, Kivimäki S, Leith ID, Leeson SR, Sheppard LJ (2016). Nitrogen deposition does not enhance Sphagnum decomposition. Science of the Total Environment, 571, 314-322.
DOI URL |
[54] |
Margna U (1977). Control at the level of substrate supply—An alternative in the regulation of phenylpropanoid accumulation in plant cells. Phytochemistry, 16, 419-426.
DOI URL |
[55] |
Min K, Kang H, Lee D (2011). Effects of ammonium and nitrate additions on carbon mineralization in wetland soils. Soil Biology & Biochemistry, 43, 2461-2469.
DOI URL |
[56] |
Mitchell E, Buttler A, Grosvernier P, Rydin H, Siegenthaler A, Gobat JM (2002). Contrasted effects of increased N and CO2 supply on two keystone species in peatland restoration and implications for global change. Journal of Ecology, 90, 529-533.
DOI URL |
[57] |
Rasmussen S, Peters G, Rudolph H (1995). Regulation of phenylpropanoid metabolism by exogenous precursors in axenic cultures of Sphagnum fallax. Physiologia Plantarum, 95, 83-90.
DOI URL |
[58] |
Robert EC, Rochefort L, Garneau M (1999). Natural revegetation of two block-cut mined peatlands in eastern Canada. Canadian Journal of Botany, 77, 447-459.
DOI URL |
[59] |
Shelley SJ, Brice DJ, Iversen CM, Kolka RK, Sebestyen SD, Griffiths NA (2021). Deciphering the shifting role of intrinsic and extrinsic drivers on moss decomposition in peatlands over a 5-year period. Oikos, 2022, e08584. DOI: 10.1111/oik.08584.
DOI |
[60] |
Solberg S, Dobbertin M, Reinds GJ, Lange H, Andreassen K, Fernandez PG, Hildingsson A, de Vries W (2009). Analyses of the impact of changes in atmospheric deposition and climate on forest growth in European monitoring plots: a stand growth approach. Forest Ecology and Management, 258, 1735-1750.
DOI URL |
[61] |
Stubbs TL, Kennedy AC, Reisenauer PE, Burns JW (2009). Chemical composition of residue from cereal crops and cultivars in dryland ecosystems. Agronomy Journal, 101, 538-545.
DOI URL |
[62] | Sun ZG, Song HL, Hu XY (2017). Response of germination and seedling growth of Suaeda salsa seeds from tidal marshes in the Yellow River Estuary to N/P ratio of soil. Wetland Science, 15, 10-19. |
[孙志高, 宋红丽, 胡星云 (2017). 黄河口潮滩碱蓬种子萌发与幼苗生长对土壤中氮磷比的响应. 湿地科学, 15, 10-19.] | |
[63] | van der Heijden E, Jauhiainen J, Silvola J, Vasander H, Kuiper PJC (2000a). Effects of elevated atmospheric CO2 concentration and increased nitrogen deposition on growth and chemical composition of ombrotrophic Sphagnum balticum and oligo-mesotrophic Sphagnum papillosum. Journal of Bryology, 22, 175-182. |
[64] |
van der Heijden E, Verbeek SK, Kuiper PJC (2000b). Elevated atmospheric CO2 and increased nitrogen deposition: effects on C and N metabolism and growth of the peat moss Sphagnum recurvum P. Beauv. var. mucronatum (Russ.) Warnst. Global Change Biology, 6, 201-212.
DOI URL |
[65] | Wang H, Wu L, Xue D, Liu XF, Hong L, Mou L, Li XL (2020). Distribution and environmental characteristics of Sphagnum peat bogs in Taishanmiao in Enshi City, Hubei Province. Wetland Science, 18, 266-274. |
[王涵, 吴林, 薛丹, 刘雪飞, 洪柳, 牟利, 李小玲 (2020). 湖北省恩施市太山庙泥炭藓泥炭沼泽分布及其环境特征研究. 湿地科学, 18, 266-274.] | |
[66] | Wang J, Huang JH (2001). Comparison of major nutrient release patterns in leaf litter decomposition in warm temperate zone of China. Acta Phytoecologica Sinica, 25, 375-380. |
[王瑾, 黄建辉 (2001). 暖温带地区主要树种叶片凋落物分解过程中主要元素释放的比较. 植物生态学报, 25, 375-380.] | |
[67] |
Wang WJ, Baldock JA, Dalal RC, Moody PW (2004). Decomposition dynamics of plant materials in relation to nitrogen availability and biochemistry determined by NMR and wet-chemical analysis. Soil Biology & Biochemistry, 36, 2045-2058.
DOI URL |
[68] |
Wang YL, Xiang W, Yang WL, Yan S, Bao ZY, Liu Y (2018). Photo-stability of iron-phenolic complexes derived from peatland upon irradiation in waters under simulated sunlight. Chemical Geology, 485, 14-23.
DOI URL |
[69] |
Ward SE, Ostle NJ, Oakley S, Quirk H, Henrys PA, Bardgett RD (2013). Warming effects on greenhouse gas fluxes in peatlands are modulated by vegetation composition. Ecology Letters, 16, 1285-1293.
DOI PMID |
[70] |
Wieder RK, Vile MA, Albright CM, Scott KD, Vitt DH, Quinn JC, Burke-Scoll M (2016). Effects of altered atmospheric nutrient deposition from Alberta oil sands development on Sphagnum fuscum growth and C, N and S accumulation in peat. Biogeochemistry, 129, 1-19.
DOI URL |
[71] |
Wiedermann MM, Gunnarsson U, Ericson L, Nordin A (2009). Ecophysiological adjustment of two Sphagnum species in response to anthropogenic nitrogen deposition. New Phytologist, 181, 208-217.
DOI PMID |
[72] |
Zhou YY, Huang YX, Peng XX, Xu JF, Hu YK (2021). Sphagnum response to nitrogen deposition and nitrogen critical load—A meta-analysis. Global Ecology and Conservation, 30, e01791. DOI: 10.1016/j.gecco.2021.e01791.
DOI |
[1] | 白皓然 侯盟 刘艳杰. 少花蒺藜草入侵与干旱对羊草草原生产力的影响机制[J]. 植物生态学报, 2024, 48(5): 577-589. |
[2] | 常晨晖 朱彪 朱江玲 吉成均 杨万勤. 森林粗木质残体分解研究进展[J]. 植物生态学报, 2024, 48(5): 541-560. |
[3] | 秦文宽, 张秋芳, 敖古凯麟, 朱彪. 土壤有机碳动态对增温的响应及机制研究进展[J]. 植物生态学报, 2024, 48(4): 403-415. |
[4] | 杨宇萌, 来全, 刘心怡. 气候变化和人类活动对内蒙古植被总初级生产力的定量影响[J]. 植物生态学报, 2024, 48(3): 306-316. |
[5] | 陈颖洁, 房凯, 秦书琪, 郭彦军, 杨元合. 内蒙古温带草地土壤有机碳组分含量和分解速率的空间格局及其影响因素[J]. 植物生态学报, 2023, 47(9): 1245-1255. |
[6] | 杜婷, 陈玉莲, 毕境徽, 杨玉婷, 张丽, 游成铭, 谭波, 徐振锋, 王丽霞, 刘思凝, 李晗. 林窗对川西亚高山凋落叶总酚和缩合单宁损失动态的影响[J]. 植物生态学报, 2023, 47(5): 660-671. |
[7] | 郑炀, 孙学广, 熊洋阳, 袁贵云, 丁贵杰. 叶际微生物对马尾松凋落针叶分解的影响[J]. 植物生态学报, 2023, 47(5): 687-698. |
[8] | 仲琦, 李曾燕, 马炜, 况雨潇, 邱岭军, 黎蕴洁, 涂利华. 氮添加和凋落物处理对华西雨屏区常绿阔叶林凋落叶分解的影响[J]. 植物生态学报, 2023, 47(5): 629-643. |
[9] | 赖硕钿, 吴福忠, 吴秋霞, 朱晶晶, 倪祥银. 雪被去除减缓岷江冷杉凋落叶易分解碳释放[J]. 植物生态学报, 2023, 47(5): 672-686. |
[10] | 赵小祥, 朱彬彬, 田秋香, 林巧玲, 陈龙, 刘峰. 叶片凋落物分解的主场优势研究进展[J]. 植物生态学报, 2023, 47(5): 597-607. |
[11] | 李伟, 张荣. 亚高寒草甸群落结构决定群落生产力实例验证[J]. 植物生态学报, 2023, 47(5): 713-723. |
[12] | 李慧璇, 马红亮, 尹云锋, 高人. 亚热带天然阔叶林凋落物分解过程中活性、惰性碳氮的动态特征[J]. 植物生态学报, 2023, 47(5): 618-628. |
[13] | 余玉蓉, 吴浩, 高娅菲, 赵媛博, 李小玲, 卜贵军, 薛丹, 刘正祥, 武海雯, 吴林. 模拟氮沉降对鄂西南湿地泥炭藓生理及形态特征的影响[J]. 植物生态学报, 2023, 47(11): 1493-1506. |
[14] | 杨元合, 张典业, 魏斌, 刘洋, 冯雪徽, 毛超, 徐玮婕, 贺美, 王璐, 郑志虎, 王媛媛, 陈蕾伊, 彭云峰. 草地群落多样性和生态系统碳氮循环对氮输入的非线性响应及其机制[J]. 植物生态学报, 2023, 47(1): 1-24. |
[15] | 曹珍, 刘永英, 宋世凯, 张莉娜, 高德. 陆地生境岛屿藓类植物小岛屿效应驱动因素分析——以太行山脉中段山顶为例[J]. 植物生态学报, 2023, 47(1): 65-76. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19