Chin J Plan Ecolo ›› 2018, Vol. 42 ›› Issue (7): 713-722.doi: 10.17521/cjpe.2018.0029

• Research Articles • Previous Articles     Next Articles

Effect of geographical sources and biochemical traits on plant litter decomposition in a peatland

LIU Yuan-Yuan1,2,3, MA Jin-Ze1,2,3, BU Zhao-Jun1,2,3,*(), WANG Sheng-Zhong1,2,3,*(), ZHANG Xue-Bing1, ZHANG Ting-Yu1, LIU Sha-Sha1,2,3, FU Biao1, KANG Yuan1,2,3   

  1. 1 Institute for Peat and Mire Research, School of Geographical Science, Northeast Normal University, Changchun 130024, China
    2 Key Laboratory for Wetland Conservation and Vegetation Restoration, Ministry of Environmental Protection, Changchun 130024, China
    3 Jilin Provincial Key Laboratory for Wetland Ecological Processes and Environmental Change in the Changbai Mountains, Changchun 130024, China
  • Online:2018-11-03 Published:2018-07-20
  • Contact: Zhao-Jun BU,Sheng-Zhong WANG E-mail:buzhaojun@nenu.edu.cn;szwang@nenu.edu.cn
  • Supported by:
    Supported by the National Natural Science Foundation of China(41371103);Supported by the National Natural Science Foundation of China(41471043);Supported by the National Natural Science Foundation of China(41601085);the National Key Research and Development Program of China(2016YFC0500407)

Abstract:

Aims Few comparative studies have been conducted on the decomposition of the plant litters from different geographical sources in the same site. We aimed to understand the effect of geographical sources and biochemical traits of peatland plants on litter decomposition.

Methods Along a latitudinal gradient, we collected plant materials from three peatlands, Dajiuhu, Hani and Mangui, to carry out a one-year decomposition experiment with litter bags in Hani Peatland, Changbai Mountains.

Important findings When species identity was not considered, we found that overall initial nitrogen (N) content decreased while initial lignin content, carbon nitrogen ratio (C/N) and lignin/N increased with latitude in the litters from 3 peatlands. Litter decomposition differed with plant functional groups. After one year of decomposition, dry mass loss of both birch and sedge (ca. 50%) was higher than that of peat mosses (ca. 10%). No significant difference was observed in litter dry mass loss among different geographical sources. However, dry mass loss of Sphagnum magellanicum from the middle latitudinal peatland (19%) was higher than that from the high latitudinal site (9%). The factors affecting litter decomposition differed among plant functional groups. Initial total phenolics/N was the important factor to determine the difference in litter dry mass loss among the 3 genera. The initial N content and C/N, and Klason lignin content and total phenolics/N were positively related to litter decomposition of Carex and Sphagnum, respectively. If the decrease in latitude is used to indicate climate warming, to some extent, our study suggests that current climate warming, by changing the plant composition and biochemical traits, may alter litter decomposition and even carbon accumulation in high latitudinal peatlands.

Key words: latitudinal gradient pattern, plant functional group, peatland, biochemical quality

Table 1

The sites for litter collection and litter decomposition"

埋放地
Site for decomposition
来源地
Site for collection
物种 Species
哈泥 Hani 大九湖 Dajiuhu 泥炭藓 Sphagnum palustre
签草 Carex doniana
红桦 Betula albosinensis
哈泥 Hani 中央泥炭藓 S. centrale
中位泥炭藓 S. magellanicum
毛薹草 C. lasiocarpa
油桦 B. fruticosa var. ruprechtiana
满归 Mangui 中位泥炭藓 S. magellanicum
锈色泥炭藓S. fuscum
瘤囊薹草 C. schmidtii
柴桦 B. fruticosa

Fig. 1

Initial chemical composition of each plant litter in a peatland and initial chemical composition of all the plant litters from each peatland (mean ± SE, n = 5). Ball, the mean of Betula; Ba, B. albosinensis; Br, B. fruticosa var. ruprechtiana; Bf, B. fruticosa; Call, the mean of Carex; Cd, C. doniana; Cl, C. lasiocarpa; Cs, C. schmidtii; Sall, the mean of Sphagnum; Sp, S. palustre; Sc, S. centrale; Sm, S. magellanicum; Sf, S. fuscum. D, the mean of Dajiuhu; H, the mean of Hani; M, the mean of Mangui. Different capital letters indicate significant differences in initial chemical composition among genera (p < 0.05), and different lowercase letters indicate significant differences in initial chemical composition between both species in a genus or average of all the species among three sites (p < 0.05)."

Fig. 2

Initial stoichiometric ratio of each plant litter in a peatland and average initial stoichiometric ratios of all the plant litters from each peatland (mean ± SE, n = 5). Different capital letters indicate significant differences in initial stoichiometric ratios among genera (p < 0.05). Different lowercase letters indicate significant differences in initial stoichiometric ratios between both species in a genus and average of all the species from three sources (p < 0.05). See Fig. 1 for notes."

Table 2

One-way analysis of variance for the effect of species, genus and source of plants on initial chemical index and stoichiometric ratios of litters"

因素
Factor
相关系数 Correlation coefficient
C N 总酚
Total
phenolics
木质素
Lignin
C/N 总酚/C
Total
phenolics /C
木质素/C
Lignin/C
总酚/N
Total
phenolics/N
木质素/N
Lignin/N
总酚/木质素Total
phenolics/Lignin
种 Species B 106.293*** 41.509*** 62.296*** 0.400 19.628*** 69.213*** 3.821 45.356*** 24.485*** 25.207***
<0.001 <0.001 <0.001 0.679 <0.001 <0.001 0.052 <0.001 <0.001 <0.001
C 2.657 8.308** 45.047*** 4.476* 16.272*** 40.042*** 5.066* 18.049*** 15.195** 16.497***
0.111 0.005 <0.001 0.035 <0.001 <0.001 0.025 <0.001 0.001 <0.001
S 0.827 52.314*** 6.552* 3.242* 73.627*** 6.765** 2.544 1.109 34.728*** 9.823**
0.461 <0.001 0.012 0.075 <0.001 0.011 0.120 0.361 <0.001 0.003
属 Genus - 129.384*** 43.542*** 257.553*** 21.628*** 24.742*** 229.423*** 47.086*** 84.932*** 28.998*** 184.473***
<0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
来源地
Source
- 0.660 3.341* 0.346 2.324 7.034** 0.462 1.294 2.473 5.306** 0.200
0.522 0.045 0.709 0.110 0.002 0.633 0.285 0.097 0.009 0.819

Table 3

One-way analysis of variance for the effect of species, genus and source of plant litters on decomposition in a peatland"

因素
Factor
干质量损失
Dry mass loss (%)
C损失
Carbon loss (%)
N损失
Nitrogen loss (%)
总酚损失
Total phenolics loss (%)
木质素损失
Lignin loss (%)
F p F p F p F p F p
种 Species B 1.411 0.282 0.920 0.425 0.990 0.400 0.020 0.980 4.726* 0.031
C 16.381*** <0.001 14.883** 0.001 15.432*** <0.001 8.005** 0.006 2.229 0.150
S 2.524 0.122 2.902 0.094 38.145*** <0.001 4.842* 0.029 18.463*** <0.001
属 Genus - 57.069*** <0.001 50.719*** <0.001 0.387 0.681 417.741*** <0.001 3.235* 0.049
来源地 Source - 0.046 0.995 0.025 0.976 1.598 0.214 0.201 0.818 1.804 0.177

Fig. 3

The effects of species and source on losses of litter dry mass (A), C (B), N (C), total phenolics (D) and lignin (E)(mean ± SE, n = 5). Different capital letters indicate significant differences in the effects of different genera on dry mass, C, N, total phenolics and lignin loss (p < 0.05). Different lowercase letters indicate significant differences in dry mass, C, N, total phenolics and lignin losses between different species in a same genus and among all species from different sources (p < 0.05). See Fig. 1 for notes."

Fig. 4

Effect of plant litter source on the losses of dry mass (A), C (B), N (C), total phenolics (D) and lignin (E) of Sphagnum magellanicum litters (mean ± SE, n = 5). **, p < 0.01; ***, p < 0.001."

Table 4

Correlation analysis between dry mass loss and initial chemical traits in plant litters"

相关系数 Correlation coefficient
C N 总酚
Total phenolics
木质素
Lignin
C/N 总酚/C
Total phenolics/C
木质素/C
Lignin/C
多酚/N
Total phenolics/N
木质素/N
Lignin/N
多酚/木质素
Total phenolics/Lignin
B -0.291 -0.301 0.370 0.264 0.286 0.404 0.280 0.433 0.281 0.345
C 0.400 0.720** 0.002 -0.526* -0.787** -0.014 -0.518* -0.784** -0.740** 0.251
S 0.469 -0.493 -0.403 0.544* 0.516* -0.403 0.543* 0.472 0.523* -0.444
总体
Total
0.796* 0.531 0.801** -0.793** -0.555 0.815** -0.840** 0.870** -0.655 0.793*
[1] Aerts R ( 1997). Climate, leaf litter chemistry and leaf litter decomposition in terrestrial ecosystems: A triangular relationship. Oikos, 79, 439-449.
doi: 10.2307/3546886
[2] Ayres E, Steltzer H, Simmons BL, Simpson RT, Steinweg JM, Wallenstein MD, Mellor N, Parton WJ, Moore JC, Wall DH ( 2009). Home-field advantage accelerates leaf litter decomposition in forests. Soil Biology & Biochemistry, 41, 606-610.
doi: 10.1016/j.soilbio.2008.12.022
[3] Bai GR, Wang SZ, Gao J, Yu JL ( 2004). Liquid-heat conditions and microbic decomposition on the forming of turf deposits. Journal of Shanghai Normal University (Natural Sciences), 33(3), 91-97.
[ 白光润, 王淑珍, 高峻, 于金莲 ( 2004). 中国亚热带、热带泥炭形成的水热条件与微生物分解相关性. 上海师范大学学报(自然科学版), 33(3), 91-97.]
[4] Berg B, Berg MP, Bottner P, Box E, Breymeyer A, Anta RCD, Couteaux M, Escudero A, Gallardo A, Kratz WR, Madeira M, M?lk?nen E, McClaugherty CA, Meentemeyer V, Mu?oz F, Piussi P, Remacle JA, Santo AVD ( 1993). Litter mass loss rates in pine forest of Europe and Eastern United States: Some relationships with climate and litter quality. Biogeochemistry, 20(3), 127-159.
doi: 10.1007/BF00000785
[5] Bragazza L, Freeman C, Jones T, Rydin H, Limpens J, Fenner N, Ellis T, Gerdol R, Hájek M, Hájek T, Iacumin P, Kutnar L, Tahvanainen T, Toberman H ( 2006). Atmospheric nitrogen deposition promotes carbon loss from peat bogs. Proceedings of the National Academy of Sciences of the United States of America, 103, 19386-19389.
doi: 10.1073/pnas.0606629104 pmid: 17151199
[6] Bragazza L, Siffi C, Iacumin P, Gerdol R ( 2007). Mass loss and nutrient release during litter decay in peatland: The role of microbial adaptability to litter chemistry. Soil Biology & Biochemistry, 39, 257-267.
doi: 10.1016/j.soilbio.2006.07.014
[7] Breeuwer A, Heijmans M, Robroek BJM, Limpens J, Berendse F ( 2008). The effect of increased temperature and nitrogen deposition on decomposition in bogs. Oikos, 117, 1258-1268.
doi: 10.1111/j.0030-1299.2008.16518.x
[8] Bubier JL, Moore TR, Bledzki LA ( 2007). Effects of nutrient addition on vegetation and carbon cycling in an ombrotrophic bog. Global Change Biology, 13, 1168-1186.
doi: 10.1111/j.1365-2486.2007.01346.x
[9] Bu ZJ, Joosten H, Li HK, Zhao GL, Zheng XX, Ma JZ, Zeng J ( 2011 a). The response of peatlands to climate warming: A review. Acta Ecologica Sinica, 31, 157-162.
doi: 10.1016/j.chnaes.2011.03.006
[10] Bu ZJ, Rydin H, Chen X ( 2011 b). Direct and interaction-mediated effects of environmental changes on peatland bryophytes. Oecologia, 166, 555-563.
doi: 10.1007/s00442-010-1880-1 pmid: 21170747
[11] Carvalhais N, Forkel M, Khomik M, Bellarby J, Jung M, Migliavacca M, Mu M, Saatchi S, Santoro M, Thurner M, Weber U, Ahrens B, Beer C, Cescatti A, Randerson JT, Reichstein M ( 2014). Global covariation of carbon turnover times with climate in terrestrial ecosystems. Nature, 514, 213-217.
doi: 10.1038/nature13731 pmid: 25252980
[12] Chen YH, Han WX, Tang LY, Tang ZY, Fang JY ( 2013). Leaf nitrogen and phosphorus concentrations of woody plants differ in responses to climate, soil and plant growth form. Ecography, 36, 178-184.
doi: 10.1111/j.1600-0587.2011.06833.x
[13] Coq S, Weigel J, Butenschoen O, Bonal D, H?ttenschwiler S ( 2011). Litter composition rather than plant presence affects decomposition of tropical litter mixtures. Plant and Soil, 343, 273-286.
doi: 10.1007/s11104-011-0717-y
[14] Dorrepaal E, Cornelissen JHC, Aerts R, Wallén B, van Logtestijn RSP ( 2005). Are growth forms consistent predictors of leaf litter quality and decomposability across peatlands along a latitudinal gradient? Journal of Ecology, 93, 817-828.
doi: 10.1111/j.1365-2745.2005.01024.x
[15] Dyer ML, Meentemeyer V, Berg B ( 1990). Apparent controls of mass loss rate of leaf litter on a regional scale. Scandinavian Journal of Forest Research, 5, 311-323.
doi: 10.1080/02827589009382615
[16] Gogo S, Laggoun-Défarge F, Merzouki F, Mounier S, Guirimand-Dufour A, Jozja N, Huguet A, Delarue F, Défarge C ( 2016). In situ and laboratory non-additive litter mixture effect on C dynamics of Sphagnum rubellum and Molinia caerulea litters. Journal of Soils & Sediments, 16, 13-27.
[17] Hobbie SE ( 2008). Nitrogen effects on decomposition: A five-year experiment in eight temperate sites. Ecology, 89, 2633-2644.
doi: 10.1890/07-1119.1 pmid: 18831184
[18] Irons III JG, Oswood MW, Stout RJ, Pringle CM ( 1994). Latitudinal patterns in leaf litter breakdown: Is temperature really important? Freshwater Biology, 32, 401-411.
doi: 10.1111/j.1365-2427.1994.tb01135.x
[19] Johnson LC, Damman AWH ( 1993). Decay and its regulation in Sphagnum peatlands. Advances in Bryology, 5, 249-296.
[20] Johnson LC, Damman AWH ( 1991). Species-controlled Sphagnum decay on a South Swedish raised bog. Oikos, 61, 234-242.
doi: 10.2307/3545341
[21] K?rner C ( 1989). The nutritional status of plants from high altitudes. Oecologia, 81, 379-391.
doi: 10.1007/BF00377088
[22] Li W, Bu ZJ, Zhang BJ, Long C, Tang RJ, Cui QW ( 2013). Decomposition of Sphagnum litter in 4 peatlands of the Changbai Mountains along an altitudinal gradient. Journal of Mountain Science , 31, 442-447.
[ 李伟, 卜兆君, 张兵将, 龙川, 唐瑞江, 崔钱王 ( 2013). 长白山不同海拔泥炭地泥炭藓残体的分解. 山地学报, 31, 442-447.]
[23] Medvedeff CA, Bridgham SD, Pfeifer-Meister L, Keller JK ( 2015). Can Sphagnum leachate chemistry explain differences in anaerobic decomposition in peatlands? Soil Biology & Biochemistry, 86, 34-41.
doi: 10.1016/j.soilbio.2015.03.016
[24] Melillo JM, Aber JD, Muratore JF ( 1982). Nitrogen and lignin control of hardwood leaf litter decomposition dynamics. Ecology, 63, 621-626.
doi: 10.2307/1936780
[25] Moore TR, Basiliko N ( 2006). Decomposition in boreal peatlands. In: Wieder RK, Vitt DH eds. Boreal Peatland Ecosystems. Springer-Verlag, Berlin.
doi: 10.1007/978-3-540-31913-9_7
[26] Moore TR, Trofymow JA, Siltanen M, Prescott C, Group CW ( 2005). Patterns of decomposition and carbon, nitrogen, and phosphorus dynamic. Canadian Journal of Forest Research, 35, 133-142.
doi: 10.1139/x04-149
[27] Müller T, Magid J, Jensen LS, Nielsen NE ( 2003). Decomposition of plant residues of different quality in soil—DAISY model calibration and simulation based on experimental data. Ecological Modelling, 166, 3-18.
doi: 10.1016/S0304-3800(03)00114-5
[28] Ouyang LM, Wang C, Wang WQ, Tong C ( 2013). Carbon, nitrogen and phosphorus stoichiometric characteristics during the decomposition of Spartina alterniflora and Cyperus malaccensis var. brevifolius litters. Acta Ecologica Sinica, 33, 389-394.
doi: 10.5846/stxb201111211777
[ 欧阳林梅, 王纯, 王维奇, 仝川 ( 2013). 互花米草与短叶茳芏枯落物分解过程中碳氮磷化学计量学特征. 生态学报, 33, 389-394.]
doi: 10.5846/stxb201111211777
[29] Palozzi JE, Lindo Z ( 2017). Pure and mixed litters of Sphagnum and Carex exhibit a home-field advantage in Boreal peatlands. Soil Biology & Biochemistry, 115, 161-168.
[30] Rydin H, Jeglum JK ( 2013). The Biology of Peatlands. Oxford University Press, Oxford.
[31] Singleton VL, Orthofer R, Lamuela-Raventós RM ( 1999). Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Methods in Enzymology, 299, 152-178.
doi: 10.1016/S0076-6879(99)99017-1
[32] Straková P, Anttila J, Spetz P, Kitunen V, Tapanila T, Laiho R ( 2010). Litter quality and its response to water level drawdown in boreal peatlands at plant species and community level. Plant and Soil, 335, 501-520.
doi: 10.1007/s11104-010-0447-6
[33] Stubbs TL, Kennedy AC, Reisenauer PE, Burns JW ( 2009). Chemical composition of residue from cereal crops and cultivars in dryland ecosystems. Agronomy Journal, 101, 538-545.
doi: 10.2134/agronj2008.0107x
[34] Tahvanainen T, Haraguchi A ( 2013). Effect of pH on phenol oxidase activity on decaying Sphagnum mosses. European Journal of Soil Biology, 54, 41-47.
[35] Wang HJ, Richardson CJ, Ho MC ( 2015). Dual controls on carbon loss during drought in peatlands. Nature Climate Change, 5, 584-587.
doi: 10.1038/nclimate2643
[36] Wang H, Yan PF, Zhan PF, Zhang XN, Liu ZY, Guo YJ, Xiao DR ( 2018). The relative contributions of litter quality, simulated rising temperature, and habitat to litter decomposition. Chinese Journal of Applied Ecology, 29, 474-482.
[ 王行, 闫鹏飞, 展鹏飞, 张晓宁, 刘振亚, 郭玉静, 肖德荣 ( 2018). 凋落物植物质量、模拟增温及生境对凋落物分解的相对贡献. 应用生态学报, 29, 474-482.]
[37] Wang J, Huang JH ( 2001). Comparison of major nutrient release patterns in leaf litter decomposition in warm temperate zone of China. Acta Phytoecologica Sinica, 25, 375-380.
doi: 10.4236/ojf.2015.57061
[ 王瑾, 黄建辉 ( 2001). 暖温带地区主要树种叶片凋落物分解过程中主要元素释放的比较. 植物生态学报, 25, 375-380.]
doi: 10.4236/ojf.2015.57061
[38] Zeng J, Bu ZJ, Wang M, Ma JZ, Zhao HY, Li HK, Wang SZ ( 2013). Effects of nitrogen deposition on peatland: A review. Chinese Journal of Ecology, 32, 473-481.
[ 曾竞, 卜兆君, 王猛, 马进泽, 赵红艳, 李鸿凯, 王升忠 ( 2013). 氮沉降对泥炭地影响的研究进展. 生态学杂志, 32, 473-481.]
[39] Zhang JE (2007). Commonly Used Experimental Research Methods and Techniques in Ecology. Chemical Industry Press, Beijing.
[ 章家恩 (2007). 生态学常用实验研究方法与技术. 化学工业出版社, 北京.]
[40] Zhang LH, Zhang SJ, Ye GF, Shao HB, Lin GH, Brestic M ( 2013). Changes of tannin and nutrients during decomposition of branchlets of Casuarina equisetifolia plantation in subtropical coastal areas of China. Plant Soil & Environment, 59, 74-79.
doi: 10.2478/v10247-012-0075-x
[1] MIAO Bai-Ling, LIANG Cun-Zhu, SHI Ya-Bo, LIANG Mao-Wei, LIU Zhong-Ling. Temporal changes in precipitation altered aboveground biomass in a typical steppe in Nei Mongol, China [J]. Chin J Plant Ecol, 2019, 43(7): 557-565.
[2] FU Yi-Wen, TIAN Da-Shuan, WANG Jin-Song, NIU Shu-Li, ZHAO Ken-Tian. Patterns and affecting factors of nitrogen use efficiency of plant leaves and roots in Nei Mongol and Qinghai-Xizang Plateau grasslands [J]. Chin J Plant Ecol, 2019, 43(7): 566-575.
[3] FENG Lu, BU Zhao-Jun, WU Yu-Huan, LIU Sha-Sha, LIU Chao. Characteristic environmental factors in peatlands facilitate the formation of persistent Sphagnum spore banks [J]. Chin J Plant Ecol, 2019, 43(6): 512-520.
[4] Qian YANG, Wei WANG, Hui ZENG. Effects of nitrogen addition on the plant diversity and biomass of degraded grasslands of Nei Mongol, China [J]. Chin J Plan Ecolo, 2018, 42(4): 430-441.
[5] LI Rui, HU Chao-Chen, XU Shi-Qi, WU Di, DONG Yu-Ping, SUN Xin-Chao, MAO Rong, WANG Xian-Wei, LIU Xue-Yan. Leaf C, N, and P concentrations and their stoichiometry in peatland plants of Da Hinggan Ling, China [J]. Chin J Plant Ecol, 2018, 42(12): 1154-1167.
[6] YANG Lei, SUN Han, FAN Yan-Wen, HAN Wei, ZENG Ling-Bing, LIU Chao, WANG Xiang-Ping. Changes in leaf nitrogen and phosphorus stoichiometry of woody plants along an altitudinal gradient in Changbai Mountain, China [J]. Chin J Plan Ecolo, 2017, 41(12): 1228-1238.
[7] Yue Qi,Junsheng Li,Bing Yan,Zhenzhen Deng,Gang Fu. Impact of herbicides on wild plant diversity in agro-ecosystems: a review [J]. Biodiv Sci, 2016, 24(2): 228-236.
[8] Jing WANG, Shan-Shan WANG, Xian-Guo QIAO, Ang LI, Jian-Guo XUE, Muqier HASI, Xue-Yao ZHANG, Jian-Hui HUANG. Influence of nitrogen addition on the primary production in Nei Mongol degraded grassland [J]. Chin J Plan Ecolo, 2016, 40(10): 980-990.
[9] FAN Da-Yong,XIONG Gao-Ming,ZHANG Ai-Ying,LIU Xi,XIE Zong-Qiang,LI Zhao-Jia. Effect of water-lever regulation on species selection for ecological restoration practice in the water-level fluctuation zone of Three Gorges Reservoir [J]. Chin J Plan Ecolo, 2015, 39(4): 416-432.
[10] SONG Yan-Tao, ZHOU Dao-Wei, LI Qiang, WANG Ping, and HUANG Ying-Xin. Leaf nitrogen and phosphorus stoichiometry in 80 herbaceous plant species of Songnen grassland in Northeast China [J]. Chin J Plan Ecolo, 2012, 36(3): 222-230.
[11] LIU Chao, WANG Yang, WANG Nan, and WANG Gen-Xuan. Advances research in plant nitrogen, phosphorus and their stoichiometry in terrestrial ecosystems: a review [J]. Chin J Plan Ecolo, 2012, 36(11): 1205-1216.
[12] ZHANG Zhi-Dong, ZANG Run-Guo. PREDICTING POTENTIAL DISTRIBUTIONS OF DOMINANT WOODY PLANT KEYSTONE SPECIES IN A NATURAL TROPICAL FOREST LANDSCAPE OF BAWANGLING, HAINAN ISLAND, SOUTH CHINA [J]. Chin J Plan Ecolo, 2007, 31(6): 1079-1091.
[13] ZHU Yu-Jie, GAO Qiong, LIU Jun-Shan, XU Xia, ZHOU Chan. AGGREGATION OF PLANT FUNCTIONAL TYPES BASED ON MODELS OF STOMATAL CONDUCTANCE AND PHOTOSYNTHESIS [J]. Chin J Plan Ecolo, 2007, 31(5): 873-882.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Yang Li-rui and Cheng Mu-chu. Relationship between Plant Stress Resistance and Photorespiration[J]. Chin Bull Bot, 1991, 8(01): 43 -47 .
[2] . [J]. Chin Bull Bot, 1996, 13(专辑): 74 -75 .
[3] He Ping. Investigation of Pest Species and the Control of the Main Insect Pests in the Exhibition Green House of Beijing Botanical Garden[J]. Chin Bull Bot, 1996, 13(02): 44 -47 .
[4] Cui Kai-rong;Chen Ke-ming;Wang Xiao-zhe and Wang Ya-fu. Current Reseach on Plant Somatic Embryogenesis[J]. Chin Bull Bot, 1993, 10(03): 14 -20 .
[5] Huang Yao Li Chao-luan Ma Cheng Wu Nai-hu. Chloroplast DNA and Its Application to Plant Systematic Studies[J]. Chin Bull Bot, 1994, 11(02): 11 -25 .
[6] WANG Pu ZHAO Xiu-Qin. The Effect of Extracting Condition on the Analysis Result of Allelochemicals in Wheat Straw[J]. Chin Bull Bot, 2001, 18(06): 735 -738 .
[7] Yun Zihou;Liang Mingxia;Zhang Cunjie and Tan Zhiyi. The Determination of Trace Cytokinin in a Small Plant Sample by Gas Chromatography[J]. Chin Bull Bot, 1988, 5(01): 60 -63 .
[8] Yanxia He;Zicheng Wang*. Variation of DNA Methylation in Arabidopsis thaliana Seedlings After the Cryopreservation[J]. Chin Bull Bot, 2009, 44(03): 317 -322 .
[9] Yiting Shi, ShuhuaYang. Chinese Scientists Made Breakthrough in Study on Ethylene Signaling Transduction in Plants[J]. Chin Bull Bot, 2016, 51(3): 287 -289 .
[10] L Chao-Qun, SUN Shu-Cun. A REVIEW ON THE DISTRIBUTION PATTERNS OF CARBON DENSITY IN TERRESTRIAL ECOSYSTEMS[J]. Chin J Plan Ecolo, 2004, 28(5): 692 -703 .