植物生态学报 ›› 2020, Vol. 44 ›› Issue (5): 475-493.DOI: 10.17521/cjpe.2019.0163
所属专题: 全球变化与生态系统; 生物地球化学; 微生物生态学
付伟1,2, 武慧1,2, 赵爱花1,2, 郝志鹏1, 陈保冬1,2,*()
收稿日期:
2019-06-27
接受日期:
2020-03-14
出版日期:
2020-05-20
发布日期:
2020-06-23
通讯作者:
ORCID: 陈保冬: 0000-0002-1790-7800
作者简介:
ORCID: 付伟: 0000-0002-5377-307X
基金资助:
FU Wei1,2, WU Hui1,2, ZHAO Ai-Hua1,2, HAO Zhi-Peng1, CHEN Bao-Dong1,2,*()
Received:
2019-06-27
Accepted:
2020-03-14
Online:
2020-05-20
Published:
2020-06-23
Contact:
CHEN Bao-Dong
Supported by:
摘要:
随着人类对能源和食物需求的持续增长, 化石燃料和化学肥料的消耗急剧增加, 导致全球范围内大气氮沉降速率快速升高。目前, 我国已成为全球大气氮沉降的热点区域, 且氮沉降量可能会在较长一段时间内累积增加, 已严重威胁到生态系统结构和功能的稳定。该文梳理了近40年来国内外氮沉降生态效应研究的发展历史和前沿进展, 综述了氮沉降对陆地植被系统、土壤微生物群落和生态系统元素(碳、氮、磷)循环的影响及其作用机制。研究表明: 氮沉降导致的活性氮在陆地生态系统中的累积, 改变了土壤环境、元素平衡和物种共存关系, 驱动了生物多样性以及生态系统结构和功能的改变。氮沉降速率、沉降持续时间、氮输入形式、生物系统的生态化学计量内稳性和非生物环境条件共同决定了生态响应的性质和程度。基于对国内外氮沉降研究进展和发展趋势的分析, 该文讨论了我国在该研究领域存在的问题与不足, 倡议建立更为完善的全国性长期监测研究平台, 开展区域尺度甚至全球联网研究。同时, 要考虑多因子耦合, 从现象特征的描述向机理探究推进, 从而全面提升我国氮沉降生态效应基础研究与生态风险管理水平。
付伟, 武慧, 赵爱花, 郝志鹏, 陈保冬. 陆地生态系统氮沉降的生态效应: 研究进展与展望. 植物生态学报, 2020, 44(5): 475-493. DOI: 10.17521/cjpe.2019.0163
FU Wei, WU Hui, ZHAO Ai-Hua, HAO Zhi-Peng, CHEN Bao-Dong. Ecological impacts of nitrogen deposition on terrestrial ecosystems: research progresses and prospects. Chinese Journal of Plant Ecology, 2020, 44(5): 475-493. DOI: 10.17521/cjpe.2019.0163
图2 1980-2018年中国与全世界氮沉降相关研究论文数量的变化情况。基于Web of Science数据资源进行统计, 检索式详见附录Ⅰ。
Fig. 2 Increase in the number of SCI papers related to nitrogen deposition from China and world from 1980 to 2018. The statistics are based on Web of Science data resources. Check Supplementary I for details.
时间跨度 Time span | 1980-2018 |
---|---|
数据库 Database | Science Citation Index Expanded |
国家/地区 Country/Region | 中国/世界 China/World |
研究领域 Research domains | 环境科学, 生态学, 土壤学, 应用微生物技术, 湖沼学, 地学综合, 植物科学, 微生物学, 多学科科学, 生物学, 农学, 环境工程, 林学, 水资源, 生物多样性保护, 遥感, 海洋学, 海洋与淡水生物学, 生物化学分子生物学, 昆虫学, 进化生物学, 农业综合 Environmental Sciences, Ecology, Soil Science, Biotechnology Applied Microbiology, Limnology, Geosciences Multidisciplinary, Plant Sciences, Microbiology, Multidisciplinary Sciences, Biology, Agronomy, Engineering Environmental, Forestry, Water Resources, Biodiversity Conservation, Remote Sensing, Oceanography, Marine Freshwater Biology, Biochemistry Molecular Biology, Entomology, Evolutionary Biology, Agriculture Multidisciplinary |
排除领域 Excluded domains | 化学, 物理学, 材料学, 气象学 Chemistry, Physics, Materials, Meteorology |
检索式 Search sets | TS = Nitrogen Deposition AND CU = China AND WC = (Environmental Sciences OR Ecology OR Soil Science OR Biotechnology Applied Microbiology OR Limnology OR Geosciences Multidisciplinary OR Plant Sciences OR Microbiology OR Multidisciplinary Sciences OR Biology OR Agronomy OR Engineering Environmental OR Forestry OR Water Resources OR Biodiversity Conservation OR Remote Sensing OR Oceanography OR Marine Freshwater Biology OR Biochemistry Molecular Biology OR Entomology OR Evolutionary Biology OR Agriculture Multidisciplinary) NOT WC = (Chemistry OR Physics OR Materials OR Meteorology) |
检索时间 Search time | 2019-11-10 |
附录I 文献计量分析检索标准
Supplementary I Literature search criteria for bibliometric analysis
时间跨度 Time span | 1980-2018 |
---|---|
数据库 Database | Science Citation Index Expanded |
国家/地区 Country/Region | 中国/世界 China/World |
研究领域 Research domains | 环境科学, 生态学, 土壤学, 应用微生物技术, 湖沼学, 地学综合, 植物科学, 微生物学, 多学科科学, 生物学, 农学, 环境工程, 林学, 水资源, 生物多样性保护, 遥感, 海洋学, 海洋与淡水生物学, 生物化学分子生物学, 昆虫学, 进化生物学, 农业综合 Environmental Sciences, Ecology, Soil Science, Biotechnology Applied Microbiology, Limnology, Geosciences Multidisciplinary, Plant Sciences, Microbiology, Multidisciplinary Sciences, Biology, Agronomy, Engineering Environmental, Forestry, Water Resources, Biodiversity Conservation, Remote Sensing, Oceanography, Marine Freshwater Biology, Biochemistry Molecular Biology, Entomology, Evolutionary Biology, Agriculture Multidisciplinary |
排除领域 Excluded domains | 化学, 物理学, 材料学, 气象学 Chemistry, Physics, Materials, Meteorology |
检索式 Search sets | TS = Nitrogen Deposition AND CU = China AND WC = (Environmental Sciences OR Ecology OR Soil Science OR Biotechnology Applied Microbiology OR Limnology OR Geosciences Multidisciplinary OR Plant Sciences OR Microbiology OR Multidisciplinary Sciences OR Biology OR Agronomy OR Engineering Environmental OR Forestry OR Water Resources OR Biodiversity Conservation OR Remote Sensing OR Oceanography OR Marine Freshwater Biology OR Biochemistry Molecular Biology OR Entomology OR Evolutionary Biology OR Agriculture Multidisciplinary) NOT WC = (Chemistry OR Physics OR Materials OR Meteorology) |
检索时间 Search time | 2019-11-10 |
[1] | Aber J, McDowell W, Nadelhoffer K, Magill A, Berntson G, Kamakea M, McNulty S, Currie W, Rustad L, Fernandez I (1998). Nitrogen saturation in temperate forest ecosystems. BioScience, 48, 921-934. |
[2] | Ackerman D, Millet DB, Chen X (2019). Global estimates of inorganic nitrogen deposition across four decades. Global Biogeochemical Cycles, 33, 100-107. |
[3] | Allison SD, Hanson CA, Treseder KK (2007). Nitrogen fertilization reduces diversity and alters community structure of active fungi in boreal ecosystems. Soil Biology & Biochemistry, 39, 1878-1887. |
[4] | Averill C, Dietze MC, Bhatnagar JM (2018). Continental-scale nitrogen pollution is shifting forest mycorrhizal associations and soil carbon stocks. Global Change Biology, 24, 4544-4553. |
[5] | Averill C, Waring B (2018). Nitrogen limitation of decomposition and decay: How can it occur? Global Change Biology, 24, 1417-1427. |
[6] | Bai WM, Guo DL, Tian QY, Liu NN, Cheng WX, Li LH, Zhang WH (2015). Differential responses of grasses and forbs led to marked reduction in below-ground productivity in temperate steppe following chronic N deposition. Journal of Ecology, 103, 1570-1579. |
[7] | Bai YF, Wu JG, Clark CM, Naeem S, Pan QM, Huang JH, Zhang LX, Han XG (2010). Tradeoffs and thresholds in the effects of nitrogen addition on biodiversity and ecosystem functioning: evidence from Inner Mongolia Grasslands. Global Change Biology, 16, 358-372. |
[8] | Baldi E, Toselli M, Eissenstat DM, Marangoni B (2010). Organic fertilization leads to increased peach root production and lifespan. Tree Physiology, 30, 1373-1382. |
[9] | Bardgett RD, van der Putten WH (2014). Belowground biodiversity and ecosystem functioning. Nature, 515, 505-511. |
[10] |
Berthrong ST, Yeager CM, Gallegos-Graves L, Steven B, Eichorst SA, Jackson RB, Kuske CR (2014). Nitrogen fertilization has a stronger effect on soil nitrogen-fixing bacterial communities than elevated atmospheric CO2. Applied and Environmental Microbiology, 80, 3103-3112.
DOI URL PMID |
[11] | Billings SA, Ziegler SE (2008). Altered patterns of soil carbon substrate usage and heterotrophic respiration in a pine forest with elevated CO2 and N fertilization. Global Change Biology, 14, 1025-1036. |
[12] | Bobbink R, Hicks K, Galloway J, Spranger T, Alkemade R, Ashmore M, Bustamante M, Cinderby S, Davidson E, Dentener F, Emmett B, Erisman JW, Fenn M, Gilliam F, Nordin A, Pardo L, de Vries W (2010). Global assessment of nitrogen deposition effects on terrestrial plant diversity: a synthesis. Ecological Applications, 20, 30-59. |
[13] | Bobbink R, Hornung M, Roelofs JGM (1998). The effects of air-borne nitrogen pollutants on species diversity in natural and semi-natural European vegetation. Journal of Ecology, 86, 717-738. |
[14] | Bouwman AF, Boumans LJM, Batjes NH (2002). Emissions of N2O and NO from fertilized fields: summary of available measurement data. Global Biogeochemical Cycles, 16, 1058. DOI: 10.1029/2001GB001811. |
[15] |
Bragazza L, Freeman C, Jones T, Rydin H, Limpens J, Fenner N, Ellis T, Gerdol R, Hájek M, Hájek T, Iacumin P, Kutnar L, Tahvanainen T, Toberman H (2006). Atmospheric nitrogen deposition promotes carbon loss from peat bogs. Proceedings of the National Academy of Sciences of the United States of America, 103, 19386-19389.
URL PMID |
[16] | Brenner RE, Boone RD, Ruess RW (2005). Nitrogen additions to pristine, high-latitude, forest ecosystems: consequences for soil nitrogen transformations and retention in mid and late succession. Biogeochemistry, 72, 257-282. |
[17] |
Britton AJ, Fisher JM (2010). Terricolous alpine lichens are sensitive to both load and concentration of applied nitrogen and have potential as bioindicators of nitrogen deposition. Environmental Pollution, 158, 1296-1302.
URL PMID |
[18] | Buchkowski RW, Schmitz OJ, Bradford MA (2015). Microbial stoichiometry overrides biomass as a regulator of soil carbon and nitrogen cycling. Ecology, 96, 1139-1149. |
[19] | Burns RG, DeForest JL, Marxsen J, Sinsabaugh RL, Stromberger ME, Wallenstein MD, Weintraub MN, Zoppini A (2013). Soil enzymes in a changing environment: current knowledge and future directions. Soil Biology & Biochemistry, 58, 216-234. |
[20] | Campbell BJ, Polson SW, Hanson TE, Mack MC, Schuur EAG (2010). The effect of nutrient deposition on bacterial communities in Arctic tundra soil. Environmental Microbiology, 12, 1842-1854. |
[21] |
Canfield DE, Glazer AN, Falkowski PG (2010). The evolution and future of earth’s nitrogen cycle. Science, 330, 192-196.
URL PMID |
[22] | Carrara JE, Walter CA, Hawkins JS, Peterjohn WT, Averill C, Brzostek ER (2018). Interactions among plants, bacteria, and fungi reduce extracellular enzyme activities under long- term N fertilization. Global Change Biology, 24, 2721-2734. |
[23] | Carreiro MM, Sinsabaugh RL, Repert DA, Parkhurst DF (2000). Microbial enzyme shifts explain litter decay responses to simulated nitrogen deposition. Ecology, 81, 2359-2365. |
[24] |
Chalot M, Brun A (1998). Physiology of organic nitrogen acquisition by ectomycorrhizal fungi and ectomycorrhizas. FEMS Microbiology Reviews, 22, 21-44.
URL PMID |
[25] | Chen DM, Li JJ, Lan ZC, Hu SJ, Bai YF (2016a). Soil acidification exerts a greater control on soil respiration than soil nitrogen availability in grasslands subjected to long-term nitrogen enrichment. Functional Ecology, 30, 658-669. |
[26] | Chen DM, Xing W, Lan ZC, Saleem M, Wu YQQG, Hu SJ, Bai YF (2019). Direct and indirect effects of nitrogen enrichment on soil organisms and carbon and nitrogen mineralization in a semi-arid grassland. Functional Ecology, 33, 175-187. |
[27] |
Chen H, Gurmesa GA, Zhang W, Zhu XM, Zheng MH, Mao QG, Zhang T, Mo JM (2016b). Nitrogen saturation in humid tropical forests after 6 years of nitrogen and phosphorus addition: hypothesis testing. Functional Ecology, 30, 305-313.
DOI URL |
[28] | Chen YL, Xu ZW, Xu TL, Veresoglou SD, Yang GW, Chen BD (2017). Nitrogen deposition and precipitation induced phylogenetic clustering of arbuscular mycorrhizal fungal communities. Soil Biology & Biochemistry, 115, 233-242. |
[29] | Chen YL, Zhang X, Ye JS, Han HY, Wan SQ, Chen BD (2014). Six-year fertilization modifies the biodiversity of arbuscular mycorrhizal fungi in a temperate steppe in Inner Mongolia. Soil Biology & Biochemistry, 69, 371-381. |
[30] |
Cheng Y, Wang J, Chang SX, Cai ZC, Müller C, Zhang JB (2019). Nitrogen deposition affects both net and gross soil nitrogen transformations in forest ecosystems: a review. Environmental Pollution, 244, 608-616.
URL PMID |
[31] | Ciais P, Schelhaas MJ, Zaehle S, Piao SL, Cescatti A, Liski J, Luyssaert S, Le-Maire G, Schulze ED, Bouriaud O, Freibauer A, Valentini R, Nabuurs GJ (2008). Carbon accumulation in European forests. Nature Geoscience, 1, 425-429. |
[32] |
Clark CM, Tilman D (2008). Loss of plant species after chronic low-level nitrogen deposition to prairie grasslands. Nature, 451, 712-715.
DOI URL PMID |
[33] | de Schrijver A, de Frenne P, Ampoorter E, van Nevel L, Demey A, Wuyts K, Verheyen K (2011). Cumulative nitrogen input drives species loss in terrestrial ecosystems. Global Ecology and Biogeography, 20, 803-816. |
[34] |
Delgado-Baquerizo M, Maestre FT, Reich PB, Jeffries TC, Gaitan JJ, Encinar D, Berdugo M, Campbell CD, Singh BK (2016). Microbial diversity drives multifunctionality in terrestrial ecosystems. Nature Communications, 7, 10541. DOI: 10.1038/ncomms10541.
URL PMID |
[35] | Demoling F, Ola Nilsson L, Bååth E (2008). Bacterial and fungal response to nitrogen fertilization in three coniferous forest soils. Soil Biology & Biochemistry, 40, 370-379. |
[36] | Deng Q, Hui DF, Dennis S, Reddy KC (2017). Responses of terrestrial ecosystem phosphorus cycling to nitrogen addition: a meta-analysis. Global Ecology and Biogeography, 26, 713-728. |
[37] | Dentener F, Drevet J, Lamarque JF, Bey I, Eickhout B, Fiore AM, Hauglustaine D, Horowitz LW, Krol M, Kulshrestha UC, Lawrence M, Galy-Lacaux C, Rast S, Shindell D, Stevenson D, Van Noije T, Atherton C, Bell N, Bergman D, Butler T, Cofala J, Collins B, Doherty R, Ellingsen K, Galloway J, Gauss M, Montanaro V, Müller JF, Pitari G, Rodriguez J, Sanderson M, Solmon F, Strahan S, Schultz M, Sudo K, Szopa S, Wild O (2006). Nitrogen and sulfur deposition on regional and global scales: a multimodel evaluation. Global Biogeochemical Cycles, 20, GB4003. DOI: 10.1029/2005gb002672. |
[38] | Dickson TL, Mittelbach GG, Reynolds HL, Gross KL (2014). Height and clonality traits determine plant community responses to fertilization. Ecology, 95, 2443-2452. |
[39] |
Du EZ, Liu XY, Fang JY (2014). Effects of nitrogen additions on biomass, stoichiometry and nutrient pools of moss Rhytidium rugosum in a boreal forest in Northeast China. Environmental Pollution, 188, 166-171.
URL PMID |
[40] | Duprè C, Stevens CJ, Ranke T, Bleeker A, Peppler-Lisbach C, Gowing DJG, Dise NB, Dorland E, Bobbink R, Diekmann M (2010). Changes in species richness and composition in European acidic grasslands over the past 70 years: the contribution of cumulative atmospheric nitrogen deposition. Global Change Biology, 16, 344-357. |
[41] |
Elser JJ, Andersen T, Baron JS, Bergström AK, Jansson M, Kyle M, Nydick KR, Steger L, Hessen DO (2009). Shifts in lake N:P stoichiometry and nutrient limitation driven by atmospheric nitrogen deposition. Science, 326, 835-837.
URL PMID |
[42] | Elser JJ, Dobberfuhl DR, MacKay NA, Schampel JH (1996). Organism size, life history, and N:P stoichiometry: toward a unified view of cellular and ecosystem processes. BioScience, 46, 674-684. |
[43] | Erisman JW, Sutton MA, Galloway J, Klimont Z, Winiwarter W (2008). How a century of ammonia synthesis changed the world. Nature Geoscience, 1, 636-639. |
[44] | Fan HB, Wu JP, Liu WF, Yuan YH, Hu L, Cai QK (2015). Linkages of plant and soil C:N:P stoichiometry and their relationships to forest growth in subtropical plantations. Plant and Soil, 392, 127-138. |
[45] | Feng CY, Zheng CY, Tian D (2019). Impacts of nitrogen addition on plant phosphorus content in forest ecosystems and the underlying mechanisms. Chinese Journal of Plant Ecology, 43, 185-196. |
[ 冯婵莹, 郑成洋, 田地 (2019). 氮添加对森林植物磷含量的影响及其机制. 植物生态学报, 43, 185-196.] | |
[46] | Fenn ME, Allen EB, Weiss SB, Jovan S, Geiser LH, Tonnesen GS, Johnson RF, Rao LE, Gimeno BS, Yuan F, Meixner T, Bytnerowicz A (2010). Nitrogen critical loads and management alternatives for N-impacted ecosystems in California. Journal of Environmental Management, 91, 2404-2423. |
[47] |
Fierer N, Lauber CL, Ramirez KS, Zaneveld J, Bradford MA, Knight R (2012). Comparative metagenomic, phylogenetic and physiological analyses of soil microbial communities across nitrogen gradients. The ISME Journal, 6, 1007-1017.
URL PMID |
[48] | Fleischer K, Dolman AJ, Molen MK, Rebel KT, Erisman JW, Wassen MJ, Pak B, Lu XJ, Rammig A, Wang YP (2019). Nitrogen deposition maintains a positive effect on terrestrial carbon sequestration in the 21st century despite growing phosphorus limitation at regional scales. Global Biogeochemical Cycles, 33, 810-824. |
[49] | Flückiger W, Braun S (1998). Nitrogen deposition in Swiss forests and its possible relevance for leaf nutrient status, parasite attacks and soil acidification. Environmental Pollution, 102, 69-76. |
[50] | Fowler D, Coyle M, Skiba U, Sutton MA, Cape JN, Reis S, Sheppard LJ, Jenkins A, Grizzetti B, Galloway JN, Vitousek P, Leach A, Bouwman AF, Butterbach-Bahl K, Dentener F, Stevenson D, Amann M, Voss M (2013). The global nitrogen cycle in the twenty-first century. Philosophical Transactions of the Royal Society B: Biological Sciences, 368, 20130164. DOI: 10.1098/rstb.2013.0164. |
[51] | Galloway JN, Dentener FJ, Capone DG, Boyer EW, Howarth RW, Seitzinger SP, Asner GP, Cleveland CC, Green PA, Holland EA, Karl DM, Michaels AF, Porter JH, Townsend AR, Vöosmarty CJ (2004). Nitrogen cycles: past, present, and future. Biogeochemistry, 70, 153-226. |
[52] |
Galloway JN, Townsend AR, Erisman JW, Bekunda M, Cai ZC, Freney JR, Martinelli LA, Seitzinger SP, Sutton MA (2008). Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. Science, 320, 889-892.
DOI URL PMID |
[53] | Gilliam FS (2006). Response of the herbaceous layer of forest ecosystems to excess nitrogen deposition. Journal of Ecology, 94, 1176-1191. |
[54] | Gilliam FS, Welch NT, Phillips AH, Billmyer JH, Peterjohn WT, Fowler ZK, Walter CA, Burnham MB, May JD, Adams MB (2016). Twenty-five-year response of the herbaceous layer of a temperate hardwood forest to elevated nitrogen deposition. Ecosphere, 7, e01250. DOI: 10.1002/ecs2.1250. |
[55] |
Gomez-Casanovas N, Hudiburg TW, Bernacchi CJ, Parton WJ, DeLucia EH (2016). Nitrogen deposition and greenhouse gas emissions from grasslands: uncertainties and future directions. Global Change Biology, 22, 1348-1360.
URL PMID |
[56] | Gordon C, Wynn JM, Woodin SJ (2001). Impacts of increased nitrogen supply on high Arctic heath: the importance of bryophytes and phosphorus availability. New Phytologist, 149, 461-471. |
[57] | Goulding KWT, Bailey NJ, Bradbury NJ, Hargreaves P, Howe M, Murphy DV, Poulton PR, Willison TW (1998). Nitrogen deposition and its contribution to nitrogen cycling and associated soil processes. New Phytologist, 139, 49-58. |
[58] |
Grman E, Lau JA, Schoolmaster Jr DR, Gross KL (2010). Mechanisms contributing to stability in ecosystem function depend on the environmental context. Ecology Letters, 13, 1400-1410.
DOI URL PMID |
[59] | Gruber N, Galloway JN (2008). An Earth-system perspective of the global nitrogen cycle. Nature, 451, 293-296. |
[60] | Güsewell S, Gessner MO (2009). N:P ratios influence litter decomposition and colonization by fungi and bacteria in microcosms. Functional Ecology, 23, 211-219. |
[61] | Haber F, Le Rossignol R (1909). Production of ammonia: USA, US1202995A. 1909-08-13. |
[62] | Han Y, Zhang Z, Wang CH, Jiang FH, Xia JY (2012). Effects of mowing and nitrogen addition on soil respiration in three patches in an old field grassland in Inner Mongolia. Journal of Plant Ecology, 5, 219-228. |
[63] | Hättenschwiler S, Körner C (1997). Biomass allocation and canopy development in spruce model ecosystems under elevated CO2 and increased N deposition. Oecologia, 113, 104-114. |
[64] | Hedwall PO, Nordin A, Strengbom J, Brunet J, Olsson B (2013). Does background nitrogen deposition affect the response of boreal vegetation to fertilization? Oecologia, 173, 615-624. |
[65] | Högberg MN, Briones MJI, Keel SG, Metcalfe DB, Campbell C, Midwood AJ, Thornton B, Hurry V, Linder S, Näsholm T, Högberg P (2010). Quantification of effects of season and nitrogen supply on tree below-ground carbon transfer to ectomycorrhizal fungi and other soil organisms in a boreal pine forest. New Phytologist, 187, 485-493. |
[66] | Holland EA, Braswell BH, Sulzman J, Lamarque JF (2005). Nitrogen deposition onto the United States and Western Europe: synthesis of observations and models. Ecological applications, 15, 38-57. |
[67] |
Humbert JY, Dwyer JM, Andrey A, Arlettaz R (2016). Impacts of nitrogen addition on plant biodiversity in mountain grasslands depend on dose, application duration and climate: a systematic review. Global Change Biology, 22, 110-120.
DOI URL PMID |
[68] | Hurd TM, Brach AR, Raynal DJ (1998). Response of understory vegetation of Adirondack forests to nitrogen additions. Canadian Journal of Forest Research, 28, 799-807. |
[69] |
Jackson RB, Mooney HA, Schulze ED (1997). A global budget for fine root biomass, surface area, and nutrient contents. Proceedings of the National Academy of Sciences of the United States of America, 94, 7362-7366.
URL PMID |
[70] | Janssens IA, Dieleman W, Luyssaert S, Subke JA, Reichstein M, Ceulemans R, Ciais P, Dolman AJ, Grace J, Matteucci G, Papale D, Piao SL, Schulze ED, Tang J, Law BE (2010). Reduction of forest soil respiration in response to nitrogen deposition. Nature Geoscience, 3, 315-322. |
[71] | Jefferies RL, Maron JL (1997). The embarrassment of riches: atmospheric deposition of nitrogen and community and ecosystem processes. Trends in Ecology & Evolution, 12, 74-78. |
[72] | Jian SY, Li JW, Chen J, Wang GS, Mayes MA, Dzantor KE, Hui DF, Luo YQ (2016). Soil extracellular enzyme activities, soil carbon and nitrogen storage under nitrogen fertilization: a meta-analysis. Soil Biology & Biochemistry, 101, 32-43. |
[73] | Jo I, Fei SL, Oswalt CM, Domke GM, Phillips RP (2019). Shifts in dominant tree mycorrhizal associations in response to anthropogenic impacts. Science Advances, 5, eaav6358. DOI: 10.1126/sciadv.aav6358. |
[74] | Kowaljow E, Mazzarino MJ (2007). Soil restoration in semiarid Patagonia: chemical and biological response to different compost quality. Soil Biology & Biochemistry, 39, 1580-1588. |
[75] | Kuypers MMM, Marchant HK, Kartal B (2018). The microbial nitrogen-cycling network. Nature Reviews Microbiology, 16, 263-276. |
[76] |
Le Bagousse-Pinguet Y, Soliveres S, Gross N, Torices R, Berdugo M, Maestre FT (2019). Phylogenetic, functional, and taxonomic richness have both positive and negative effects on ecosystem multifunctionality. Proceedings of the National Academy of Sciences of the United States of America, 116, 8419-8424.
URL PMID |
[77] | Le Quéré C, Moriarty R, Andrew RM, Canadell JG, Sitch S, Korsbakken JI, Friedlingstein P, Peters GP, Andres RJ, Boden TA, Houghton RA, House JI, Keeling RF, Tans P, Arneth A, Bakker DCE, Barbero L, Bopp L, Chang J, Chevallier F, Chini LP, Ciais P, Fader M, Feely RA, Gkritzalis T, Harris I, Hauck J, Ilyina T, Jain AK, Kato E, Kitidis V, Klein Goldewijk K, Koven C, Landschützer P, Lauvset SK, Lefèvre N, Lenton A, Lima ID, Metzl N, Millero F, Munro DR, Murata A, Nabel JEMS, Nakaoka S, Nojiri Y, OʼBrien K, Olsen A, Ono T, Pérez FF, Pfeil B, Pierrot D, Poulter B, Rehder G, Rödenbeck C, Saito S, Schuster U, Schwinger J, Séférian R, Steinhoff T, Stocker BD, Sutton AJ, Takahashi T, Tilbrook B, van der Laan-Luijkx IT, van der Werf GR, van Heuven S, Vandemark D, Viovy N, Wiltshire A, Zaehle S, Zeng N (2015). Global carbon budget 2015. Earth System Science Data, 7, 349-396. |
[78] |
LeBauer DS, Treseder KK (2008). Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed. Ecology, 89, 371-379.
DOI URL PMID |
[79] | Lee T, Yu XY, Ayres B, Kreidenweis SM, Malm WC, Collett Jr JL (2008). Observations of fine and coarse particle nitrate at several rural locations in the United States. Atmospheric Environment, 42, 2720-2732. |
[80] | Leff JW, Jones SE, Prober SM, Barberán A, Borer ET, Firn JL, Harpole WS, Hobbie SE, Hofmockel KS, Knops JMH, McCulley RL, La Pierre K, Risch AC, Seabloom EW, Schütz M, Steenbock C, Stevens CJ, Fierer N (2015). Consistent responses of soil microbial communities to elevated nutrient inputs in grasslands across the globe. Proceedings of the National Academy of Sciences of the United States of America, 112, 10967-10972. |
[81] | Levy-Booth DJ, Prescott CE, Grayston SJ (2014). Microbial functional genes involved in nitrogen fixation, nitrification and denitrification in forest ecosystems. Soil Biology & Biochemistry, 75, 11-25. |
[82] | Li DJ, Mo JM, Fang YT, Li ZA (2005). Effects of simulated nitrogen deposition on biomass production and allocation in Schima superba and Cryptocarya concinna seedlings in subtropical China. Acta Phytoecologica Sinica, 29, 543-549. |
[ 李德军, 莫江明, 方运霆, 李志安 (2005). 模拟氮沉降对南亚热带两种乔木幼苗生物量及其分配的影响. 植物生态学报, 29, 543-549.] | |
[83] |
Li Y, Schichtel BA, Walker JT, Schwede DB, Chen X, Lehmann CMB, Puchalski MA, Gay DA, Collett Jr JL (2016). Increasing importance of deposition of reduced nitrogen in the United States. Proceedings of the National Academy of Sciences of the United States of America, 113, 5874-5879.
URL PMID |
[84] |
Li ZL, Tian DS, Wang BX, Wang JS, Wang S, Chen HYH, Xu XF, Wang CH, He NP, Niu SL (2019). Microbes drive global soil nitrogen mineralization and availability. Global Change Biology, 25, 1078-1088.
URL PMID |
[85] | Lilleskov EA, Kuyper TW, Bidartondo MI, Hobbie EA (2019). Atmospheric nitrogen deposition impacts on the structure and function of forest mycorrhizal communities: a review. Environmental Pollution, 246, 148-162. |
[86] |
Liu LL, Greaver TL (2009). A review of nitrogen enrichment effects on three biogenic GHGs: the CO2 sink may be largely offset by stimulated N2O and CH4 emission. Ecology Letters, 12, 1103-1117.
DOI URL PMID |
[87] | Liu LL, Greaver TL (2010). A global perspective on belowground carbon dynamics under nitrogen enrichment. Ecology Letters, 13, 819-828. |
[88] |
Liu XJ, Duan L, Mo JM, Du EZ, Shen JL, Lu XK, Zhang Y, Zhou XB, He CE, Zhang FS (2011). Nitrogen deposition and its ecological impact in China: an overview. Environmental Pollution, 159, 2251-2264.
DOI URL PMID |
[89] |
Liu XJ, Zhang Y, Han WX, Tang AH, Shen JL, Cui ZL, Vitousek P, Erisman JW, Goulding K, Christie P, Fangmeier A, Zhang FS (2013). Enhanced nitrogen deposition over China. Nature, 494, 459-462.
DOI URL PMID |
[90] | Lu M, Yang YH, Luo YQ, Fang CM, Zhou XH, Chen JK, Yang X, Li B (2011). Responses of ecosystem nitrogen cycle to nitrogen addition: a meta-analysis. New Phytologist, 189, 1040-1050. |
[91] |
Lu XK, Mao QG, Gilliam FS, Luo YQ, Mo JM (2014). Nitrogen deposition contributes to soil acidification in tropical ecosystems. Global Change Biology, 20, 3790-3801.
DOI URL PMID |
[92] | Lu XK, Mo JM, Gilliam FS, Zhou GY, Fang YT (2010). Effects of experimental nitrogen additions on plant diversity in an old-growth tropical forest. Global Change Biology, 16, 2688-2700. |
[93] | Lu XK, Mo JM, Zhang W, Mao QG, Liu RZ, Wang C, Wang SH, Zheng MH, Taiki M, Mao JH, Zhang YQ, Wang YF, Huang J (2019). Effects of simulated atmospheric nitrogen deposition on forest ecosystems in China: an overview. Journal of Tropical and Subtropical Botany, 27, 500-522. |
[ 鲁显楷, 莫江明, 张炜, 毛庆功, 刘荣臻, 王聪, 王森浩, 郑棉海, Taiki M, 毛晋花, 张勇群, 王玉芳, 黄娟 (2019). 模拟大气氮沉降对中国森林生态系统影响的研究进展. 热带亚热带植物学报, 27, 500-522.] | |
[94] | Mack MC, Schuur EAG, Bret-Harte MS, Shaver GR, Chapin III FS (2004). Ecosystem carbon storage in arctic tundra reduced by long-term nutrient fertilization. Nature, 431, 440-443. |
[95] |
Maestre FT, Quero JL, Gotelli NJ, Escudero A, Ochoa V, Delgado-Baquerizo M, García-Gómez M, Bowker MA, Soliveres S, Escolar C, García-Palacios P, Berdugo M, Valencia E, Gozalo B, Gallardo A, Aguilera L, Arredondo T, Blones J, Boeken B, Bran D, Conceição AA, Cabrera O, Chaieb M, Derak M, Eldridge DJ, Espinosa CI, Florentino A, Gaitán J, Gatica MG, Ghiloufi W, Gómez-González S, Gutiérrez JR, Hernández RM, Huang X, Huber-Sannwald E, Jankju M, Miriti M, Monerris J, Mau RL, Morici E, Naseri K, Ospina A, Polo V, Prina A, Pucheta E, Ramírez-Collantes DA, Romão R, Tighe M, Torres-Díaz C, Val J, Veiga JP, Wang D, Zaady E (2012). Plant species richness and ecosystem multifunctionality in global drylands. Science, 335, 214-218.
DOI URL PMID |
[96] | Magnani F, Mencuccini M, Borghetti M, Berbigier P, Berninger F, Delzon S, Grelle A, Hari P, Jarvis PG, Kolari P, Kowalski AS, Lankreijer H, Law BE, Lindroth A, Loustau D, Manca G, Moncrieff JB, Rayment M, Tedeschi V, Valentini R, Grace J (2007). The human footprint in the carbon cycle of temperate and boreal forests. Nature, 447, 849-851. |
[97] | Mahowald N, Jickells TD, Baker AR, Artaxo P, Benitez-Nelson CR, Bergametti G, Bond TC, Chen Y, Cohen DD, Herut B, Kubilay N, Losno R, Luo C, Maenhaut W, McGee KA, Okin GS, Siefert RL, Tsukuda S (2008). Global distribution of atmospheric phosphorus sources, concentrations and deposition rates, and anthropogenic impacts. Global Biogeochemical Cycles, 22, GB4026. DOI: 10.1029/2008gb003240. |
[98] |
Manning P, van der Plas F, Soliveres S, Allan E, Maestre FT, Mace G, Whittingham MJ, Fischer M (2018). Redefining ecosystem multifunctionality. Nature Ecology & Evolution, 2, 427-436.
URL PMID |
[99] |
Marklein AR, Houlton BZ (2012). Nitrogen inputs accelerate phosphorus cycling rates across a wide variety of terrestrial ecosystems. New Phytologist, 193, 696-704.
DOI URL PMID |
[100] | Midolo G, Alkemade R, Schipper AM, Benítez-López A, Perring MP, de Vries W (2018). Impacts of nitrogen addition on plant species richness and abundance: a global meta- analysis. Global Ecology and Biogeography, 28, 398-413. |
[101] | Mo JM, Zhang W, Zhu WX, Gundersen P, Fang YT, Li DJ, Wang H (2008). Nitrogen addition reduces soil respiration in a mature tropical forest in southern China. Global Change Biology, 14, 403-412. |
[102] | Mohan JE, Cowden CC, Baas P, Dawadi A, Frankson PT, Helmick K, Hughes E, Khan S, Lang A, MacHmuller M, Taylor M, Witt CA (2014). Mycorrhizal fungi mediation of terrestrial ecosystem responses to global change: mini-review. Fungal Ecology, 10, 3-19. |
[103] | Morecroft MD, Sellers EK, Lee JA (1994). An experimental investigation into the effects of atmospheric nitrogen deposition on two semi-natural grasslands. Journal of Ecology, 82, 475-483. |
[104] | Morrison EW, Frey SD, Sadowsky JJ, van Diepen LTA, Thomas WK, Pringle A (2016). Chronic nitrogen additions fundamentally restructure the soil fungal community in a temperate forest. Fungal Ecology, 23, 48-57. |
[105] | Moscatelli MC, Lagomarsino A, de Angelis P, Grego S (2008). Short- and medium-term contrasting effects of nitrogen fertilization on C and N cycling in a poplar plantation soil. Forest Ecology and Management, 255, 447-454. |
[106] | Ning QS, Gu Q, Shen JP, Lv XT, Yang JJ, Zhang XM, He JZ, Huang JH, Wang H, Xu ZH, Han XG (2015). Effects of nitrogen deposition rates and frequencies on the abundance of soil nitrogen-related functional genes in temperate grassland of northern China. Journal of Soils and Sediments, 15, 694-704. |
[107] |
Niu SL, Classen AT, Dukes JS, Kardol P, Liu LL, Luo YQ, Rustad L, Sun J, Tang JW, Templer PH, Thomas RQ, Tian DS, Vicca S, Wang YP, Xia JY, Zaehle S (2016). Global patterns and substrate-based mechanisms of the terrestrial nitrogen cycle. Ecology Letters, 19, 697-709.
DOI URL PMID |
[108] |
Nordin A, Strengbom J, Ericson L (2006). Responses to ammonium and nitrate additions by boreal plants and their natural enemies. Environmental Pollution, 141, 167-174.
URL PMID |
[109] | Pachauri RK, Allen MR, Barros VR, Broome J, Cramer W, Christ R, Church JA, Clarke L, Dahe Q, Dasgupta P (2014). Climate Change 2014: Synthesis Report.Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Intergovernmental Panel on Climate Change (IPCC), Geneva. |
[110] |
Pan YD, Birdsey RA, Fang JY, Houghton R, Kauppi PE, Kurz WA, Phillips OL, Shvidenko A, Lewis SL, Canadell JG, Ciais P, Jackson RB, Pacala SW, McGuire AD, Piao SL, Rautiainen A, Sitch S, Hayes D (2011). A large and persistent carbon sink in the world’s forests. Science, 333, 988-993.
DOI URL PMID |
[111] | Payne RJ, Dise NB, Field CD, Dore AJ, Caporn SJM, Stevens CJ (2017). Nitrogen deposition and plant biodiversity: past, present, and future. Frontiers in Ecology and the Environment, 15, 431-436. |
[112] | Peng YF, Guo DL, Yang YH (2017a). Global patterns of root dynamics under nitrogen enrichment. Global Ecology and Biogeography, 26, 102-114. |
[113] |
Peng YF, Li F, Zhou GY, Fang K, Zhang DY, Li CB, Yang GB, Wang GQ, Wang J, Yang YH (2017b). Linkages of plant stoichiometry to ecosystem production and carbon fluxes with increasing nitrogen inputs in an alpine steppe. Global Change Biology, 23, 5249-5259.
DOI URL PMID |
[114] | Peng YF, Peng ZP, Zeng XT, Houx III JH (2019). Effects of nitrogen-phosphorus imbalance on plant biomass production: a global perspective. Plant and Soil, 436, 245-252. |
[115] |
Peñuelas J, Poulter B, Sardans J, Ciais P, van der Velde M, Bopp L, Boucher O, Godderis Y, Hinsinger P, Llusia J, Nardin E, Vicca S, Obersteiner M, Janssens IA (2013). Human-induced nitrogen-phosphorus imbalances alter natural and managed ecosystems across the globe. Nature Communications, 4, 2934. DOI: 10.1038/ncomms3934.
DOI URL PMID |
[116] | Peñuelas J, Sardans J, Rivas-Ubach A, Janssens IA (2012). The human-induced imbalance between C, N and P in earth’s life system. Global Change Biology, 18, 3-6. |
[117] | Phoenix GK, Hicks WK, Cinderby S, Kuylenstierna JCI, Stock WD, Dentener FJ, Giller KE, Austin AT, Lefroy RDB, Gimeno BS, Ashmore MR, Ineson P (2006). Atmospheric nitrogen deposition in world biodiversity hotspots: the need for a greater global perspective in assessing N deposition impacts. Global Change Biology, 12, 470-476. |
[118] |
Poorter H, Niklas KJ, Reich PB, Oleksyn J, Poot P, Mommer L (2012). Biomass allocation to leaves, stems and roots: meta-analyses of interspecific variation and environmental control. New Phytologist, 193, 30-50.
DOI URL PMID |
[119] | Ramirez KS, Craine JM, Fierer N (2010). Nitrogen fertilization inhibits soil microbial respiration regardless of the form of nitrogen applied. Soil Biology & Biochemistry, 42, 2336-2338. |
[120] | Ramirez KS, Craine JM, Fierer N (2012). Consistent effects of nitrogen amendments on soil microbial communities and processes across biomes. Global Change Biology, 18, 1918-1927. |
[121] | Redding MR, Shorten PR, Lewis R, Pratt C, Paungfoo-Lonhienne C, Hill J (2016). Soil N availability, rather than N deposition, controls indirect N2O emissions. Soil Biology & Biochemistry, 95, 288-298. |
[122] |
Reichstein M, Bahn M, Ciais P, Frank D, Mahecha MD, Seneviratne SI, Zscheischler J, Beer C, Buchmann N, Frank DC, Papale D, Rammig A, Smith P, Thonicke K, van der Velde M, Vicca S, Walz A, Wattenbach M (2013). Climate extremes and the carbon cycle. Nature, 500, 287-295.
DOI URL PMID |
[123] | Reynolds B, Wilson EJ, Emmett BA (1998). Evaluating critical loads of nutrient nitrogen and acidity for terrestrial systems using ecosystem-scale experiments (NITREX). Forest Ecology and Management, 101, 81-94. |
[124] | Riggs CE, Hobbie SE (2016). Mechanisms driving the soil organic matter decomposition response to nitrogen enrichment in grassland soils. Soil Biology & Biochemistry, 99, 54-65. |
[125] | Saiya-Cork KR, Sinsabaugh RL, Zak DR (2002). The effects of long term nitrogen deposition on extracellular enzyme activity in an Acer saccharum forest soil. Soil Biology & Biochemistry, 34, 1309-1315. |
[126] |
Sardans J, Grau O, Chen HYH, Janssens IA, Ciais P, Piao SL, Peñuelas J (2017). Changes in nutrient concentrations of leaves and roots in response to global change factors. Global Change Biology, 23, 3849-3856.
DOI URL PMID |
[127] | Sardans J, Rivas-Ubach A, Peñuelas J (2012). The C:N:P stoichiometry of organisms and ecosystems in a changing world: a review and perspectives. Perspectives in Plant Ecology, Evolution and Systematics, 14, 33-47. |
[128] | Schulte-Uebbing L, de Vries W (2018). Global-scale impacts of nitrogen deposition on tree carbon sequestration in tropical, temperate, and boreal forests: a meta-analysis. Global Change Biology, 24, 416-431. |
[129] |
Shcherbak I, Millar N, Robertson GP (2014). Global meta-analysis of the nonlinear response of soil nitrous oxide (N2O) emissions to fertilizer nitrogen. Proceedings of the National Academy of Sciences of the United States of America, 111, 9199-9204.
DOI URL PMID |
[130] | Shen H, Dong SK, Li S, Xiao JN, Han YH, Yang MY, Zhang J, Gao XX, Xu YD, Li Y, Zhi YL, Liu SL, Dong QM, Zhou HK, Yeomans JC (2019). Effects of simulated N deposition on photosynthesis and productivity of key plants from different functional groups of alpine meadow on Qinghai- Tibetan Plateau. Environmental Pollution, 251, 731-737. |
[131] |
Simkin SM, Allen EB, Bowman WD, Clark CM, Belnap J, Brooks ML, Cade BS, Collins SL, Geiser LH, Gilliam FS, Jovan SE, Pardo LH, Schulz BK, Stevens CJ, Suding KN, Throop HL, Waller DM (2016). Conditional vulnerability of plant diversity to atmospheric nitrogen deposition across the United States. Proceedings of the National Academy of Sciences of the United States of America, 113, 4086-4091.
DOI URL PMID |
[132] | Sinsabaugh RL, Gallo ME, Lauber C, Waldrop MP, Zak DR (2005). Extracellular enzyme activities and soil organic matter dynamics for northern hardwood forests receiving simulated nitrogen deposition. Biogeochemistry, 75, 201-215. |
[133] | Smith SE, Read DJ (2008). Mycorrhizal Symbiosis. Academic Press, London. |
[134] | Sterner RW, Elser JJ (2002). Ecological Stoichiometry: the Biology of Elements from Molecules to the Biosphere. Princeton University Press, Princeton. |
[135] |
Stevens CJ, Dise NB, Mountford JO, Gowing DJ (2004). Impact of nitrogen deposition on the species richness of grasslands. Science, 303, 1876-1879.
URL PMID |
[136] | Stevens CJ, Lind EM, Hautier Y, Harpole WS, Borer ET, Hobbie S, Seabloom EW, Ladwig L, Bakker JD, Chu CJ, Collins S, Davies KF, Firn J, Hillebrand H, Pierre KJL, MacDougall A, Melbourne B, McCulley RL, Morgan J, Orrock JL, Prober SM, Risch AC, Schuetz M, Wragg PD (2015). Anthropogenic nitrogen deposition predicts local grassland primary production worldwide. Ecology, 96, 1459-1465. |
[137] | Strengbom J, Nordin A (2012). Physical disturbance determines effects from nitrogen addition on ground vegetation in boreal coniferous forests. Journal of Vegetation Science, 23, 361-371. |
[138] | Strickland MS, Rousk J (2010). Considering fungal:bacterial dominance in soils: methods, controls, and ecosystem implications. Soil Biology & Biochemistry, 42, 1385-1395. |
[139] |
Templer PH, Mack MC, Chapin III FS, Christenson LM, Compton JE, Crook HD, Currie WS, Curtis CJ, Dail DB, D’Antonio CM, Emmett BA, Epstein HE, Goodale CL, Gundersen P, Hobbie SE, Holland K, Hooper DU, Hungate BA, Lamontagne S, Nadelhoffer KJ, Osenberg CW, Perakis SS, Schleppi P, Schimel J, Schmidt IK, Sommerkorn M, Spoelstra J, Tietema A, Wessel WW, Zak DR (2012). Sinks for nitrogen inputs in terrestrial ecosystems: a meta-analysis of 15N tracer field studies. Ecology, 93, 1816-1829.
URL PMID |
[140] | Thomas RQ, Bonan GB, Goodale CL (2013). Insights into mechanisms governing forest carbon response to nitrogen deposition: a model-data comparison using observed responses to nitrogen addition. Biogeosciences, 10, 3869-3887. |
[141] | Thomas RQ, Canham CD, Weathers KC, Goodale CL (2010). Increased tree carbon storage in response to nitrogen deposition in the US. Nature Geoscience, 3, 13-17. |
[142] | Tian D, Du EZ, Jiang L, Ma SH, Zeng WJ, Zou AL, Feng CY, Xu LC, Xing AJ, Wang W, Zheng CY, Ji CJ, Shen HH, Fang JY (2018). Responses of forest ecosystems to increasing N deposition in China: a critical review. Environmental Pollution, 243, 75-86. |
[143] | Tian DS, Niu SL (2015). A global analysis of soil acidification caused by nitrogen addition. Environmental Research Letters, 10, 024019. DOI: 10.1088/1748-9326/10/2/024019. |
[144] |
Tian QY, Liu NN, Bai WM, Li LH, Chen JQ, Reich PB, Yu Q, Guo DL, Smith MD, Knapp AK, Cheng WX, Lu P, Gao Y, Yang A, Wang TZ, Li X, Wang ZW, Ma YB, Han XG, Zhang WH (2016). A novel soil manganese mechanism drives plant species loss with increased nitrogen deposition in a temperate steppe. Ecology, 97, 65-74.
DOI URL PMID |
[145] | Treseder KK (2008). Nitrogen additions and microbial biomass: a meta-analysis of ecosystem studies. Ecology Letters, 11, 1111-1120. |
[146] |
van der Heijden MGA, Bardgett RD, van Straalen NM (2008). The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecology Letters, 11, 296-310.
URL PMID |
[147] | van der Heijden MGA, Klironomos JN, Ursic M, Moutoglis P, Streitwolf-Engel R, Boller T, Wiemken A, Sanders IR (1998). Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature, 396, 69-72. |
[148] | van Diepen LTA, Entwistle EM, Zak DR (2013). Chronic nitrogen deposition and the composition of active arbuscular mycorrhizal fungi. Applied Soil Ecology, 72, 62-68. |
[149] | van Diepen LTA, Lilleskov EA, Pregitzer KS, Miller RM (2010). Simulated nitrogen deposition causes a decline of intra- and extraradical abundance of arbuscular mycorrhizal fungi and changes in microbial community structure in northern hardwood forests. Ecosystems, 13, 683-695. |
[150] | Vitousek PM, Howarth RW (1991). Nitrogen limitation on land and in the sea: How can it occur? Biogeochemistry, 13, 87-115. |
[151] |
Vitousek PM, Porder S, Houlton BZ, Chadwick OA (2010). Terrestrial phosphorus limitation: mechanisms, implications, and nitrogen-phosphorus interactions. Ecological Applications, 20, 5-15.
DOI URL PMID |
[152] | Waldrop MP, Zak DR (2006). Response of oxidative enzyme activities to nitrogen deposition affects soil concentrations of dissolved organic carbon. Ecosystems, 9, 921-933. |
[153] |
Walter CA, Adams MB, Gilliam FS, Peterjohn WT (2017). Non-random species loss in a forest herbaceous layer following nitrogen addition. Ecology, 98, 2322-2332.
URL PMID |
[154] | Wang C, Liu DW, Bai E (2018a). Decreasing soil microbial diversity is associated with decreasing microbial biomass under nitrogen addition. Soil Biology & Biochemistry, 120, 126-133. |
[155] | Wang C, Lu XK, Mori TK, Mao QG, Zhou KJ, Zhou GY, Nie YX, Mo JM (2018b). Responses of soil microbial community to continuous experimental nitrogen additions for 13 years in a nitrogen-rich tropical forest. Soil Biology & Biochemistry, 121, 103-112. |
[156] |
Wang H, Yu LF, Zhang ZH, Liu W, Chen LT, Cao GM, Yue HW, Zhou JZ, Yang YF, Tang YH, He JS (2017). Molecular mechanisms of water table lowering and nitrogen deposition in affecting greenhouse gas emissions from a Tibetan alpine wetland. Global Change Biology, 23, 815-829.
DOI URL PMID |
[157] |
Wang J, Gao YZ, Zhang YH, Yang JJ, Smith MD, Knapp AK, Eissenstat DM, Han XG (2019a). Asymmetry in above- and belowground productivity responses to N addition in a semi-arid temperate steppe. Global Change Biology, 25, 2958-2969.
URL PMID |
[158] | Wang WJ, Mo QF, Han XG, Hui DF, Shen WJ (2019b). Fine root dynamics responses to nitrogen addition depend on root order, soil layer, and experimental duration in a subtropical forest. Biology and Fertility of Soils, 55, 723-736. |
[159] |
Waring BG, Averill C, Hawkes CV (2013). Differences in fungal and bacterial physiology alter soil carbon and nitrogen cycling: insights from meta-analysis and theoretical models. Ecology Letters, 16, 887-894.
DOI URL PMID |
[160] |
Xing AJ, Xu LC, Shen HH, Du EZ, Liu XY, Fang JY (2019). Long term effect of nitrogen addition on understory community in a Chinese boreal forest. Science of the Total Environment, 646, 989-995.
DOI URL PMID |
[161] | Xu WH, Wan SQ (2008). Water- and plant-mediated responses of soil respiration to topography, fire, and nitrogen fertilization in a semiarid grassland in northern China. Soil Biology & Biochemistry, 40, 679-687. |
[162] | Yao MJ, Rui JP, Li JB, Dai YM, Bai YF, Heděnec P, Wang JM, Zhang SH, Pei KQ, Liu C, Wang YF, He ZL, Frouz J, Li XZ (2014). Rate-specific responses of prokaryotic diversity and structure to nitrogen deposition in the Leymus chinensis steppe. Soil Biology & Biochemistry, 79, 81-90. |
[163] |
Ye CL, Chen DM, Hall SJ, Pan S, Yan XB, Bai TS, Guo H, Zhang Y, Bai YF, Hu SJ (2018). Reconciling multiple impacts of nitrogen enrichment on soil carbon: plant, microbial and geochemical controls. Ecology Letters, 21, 1162-1173.
URL PMID |
[164] | Yu GR, Jia YL, He NP, Zhu JX, Chen Z, Wang QF, Piao SL, Liu XJ, He HL, Guo XB, Wen Z, Li P, Ding GA, Goulding K (2019). Stabilization of atmospheric nitrogen deposition in China over the past decade. Nature Geoscience, 12, 424-429. |
[165] |
Yu Q, Chen QS, Elser JJ, He NP, Wu HH, Zhang GM, Wu JG, Bai YF, Han XG (2010). Linking stoichiometric homoeostasis with ecosystem structure, functioning and stability. Ecology Letters, 13, 1390-1399.
URL PMID |
[166] | Yuan ZY, Chen HYH (2015). Decoupling of nitrogen and phosphorus in terrestrial plants associated with global changes. Nature Climate Change, 5, 465-469. |
[167] |
Yue K, Fornara DA, Yang WQ, Peng Y, Li ZJ, Wu FZ, Peng CH (2017). Effects of three global change drivers on terrestrial C:N:P stoichiometry: a global synthesis. Global Change Biology, 23, 2450-2463.
DOI URL PMID |
[168] | Zaehle S, Ciais P, Friend AD, Prieur V (2011). Carbon benefits of anthropogenic reactive nitrogen offset by nitrous oxide emissions. Nature Geoscience, 4, 601-605. |
[169] |
Zeglin LH, Stursova M, Sinsabaugh RL, Collins SL (2007). Microbial responses to nitrogen addition in three contrasting grassland ecosystems. Oecologia, 154, 349-359.
DOI URL PMID |
[170] |
Zhang TA, Chen HYH, Ruan HH (2018). Global negative effects of nitrogen deposition on soil microbes. The ISME Journal, 12, 1817-1825.
DOI URL PMID |
[171] |
Zhang YH, Lü XT, Isbell F, Stevens C, Han X, He NP, Zhang GM, Yu Q, Huang JH, Han XG (2014). Rapid plant species loss at high rates and at low frequency of N addition in temperate steppe. Global Change Biology, 20, 3520-3529.
DOI URL PMID |
[172] |
Zhao AH, Liu L, Xu TL, Shi LL, Xie W, Zhang W, Fu SL, Feng HY, Chen BD (2018). Influences of canopy nitrogen and water addition on AM fungal biodiversity and community composition in a mixed deciduous forest of China. Frontiers in Plant Science, 9, 1842. DOI: 10.3389/fpls.2018.01842.
URL PMID |
[173] |
Zhou LY, Zhou XH, Zhang BC, Lu M, Luo YQ, Liu LL, Li B (2014). Different responses of soil respiration and its components to nitrogen addition among biomes: a meta-analysis. Global Change Biology, 20, 2332-2343.
DOI URL PMID |
[174] | Zhou ZH, Wang CK, Zheng MH, Jiang LF, Luo YQ (2017). Patterns and mechanisms of responses by soil microbial communities to nitrogen addition. Soil Biology & Biochemistry, 115, 433-441. |
[175] |
Zhu JX, He NP, Wang QF, Yuan GF, Wen D, Yu GR, Jia YL (2015). The composition, spatial patterns, and influencing factors of atmospheric wet nitrogen deposition in Chinese terrestrial ecosystems. Science of the Total Environment, 511, 777-785.
DOI URL PMID |
[176] | Zhu ZK, Ge TD, Luo Y, Liu SL, Xu XL, Tong CL, Shibistova O, Guggenberger G, Wu JS (2018). Microbial stoichiometric flexibility regulates rice straw mineralization and its priming effect in paddy soil. Soil Biology & Biochemistry, 121, 67-76. |
[177] | Zong SW, Jin YH, Xu JW, Wu ZF, He HS, Du HB, Wang L (2016). Nitrogen deposition but not climate warming promotes Deyeuxia angustifolia encroachment in alpine tundra of the Changbai Mountains, Northeast China. Science of the Total Environment, 544, 85-93. |
[1] | 俞庆水 倪晓凤 吉成均 朱江玲 唐志尧 方精云. 10年氮磷添加对海南尖峰岭两种热带雨林优势植物叶片非结构性碳水化合物的影响[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[2] | 刘瑶 钟全林 徐朝斌 程栋梁 郑跃芳 邹宇星 张雪 郑新杰 周云若. 不同大小刨花楠细根功能性状与根际微环境关系[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[3] | 张英, 张常洪, 汪其同, 朱晓敏, 尹华军. 氮沉降下西南山地针叶林根际和非根际土壤固碳贡献差异[J]. 植物生态学报, 2023, 47(9): 1234-1244. |
[4] | 张中扬, 宋希强, 任明迅, 张哲. 附生维管植物生境营建作用的生态学功能[J]. 植物生态学报, 2023, 47(7): 895-911. |
[5] | 杨佳绒, 戴冬, 陈俊芳, 吴宪, 刘啸林, 刘宇. 丛枝菌根真菌多样性对植物群落构建和稀有种维持的研究进展[J]. 植物生态学报, 2023, 47(6): 745-755. |
[6] | 张琦, 冯可, 常智慧, 何双辉, 徐维启. 灌丛化对林草交错带植物和土壤微生物的影响[J]. 植物生态学报, 2023, 47(6): 770-781. |
[7] | 郑炀, 孙学广, 熊洋阳, 袁贵云, 丁贵杰. 叶际微生物对马尾松凋落针叶分解的影响[J]. 植物生态学报, 2023, 47(5): 687-698. |
[8] | 仲琦, 李曾燕, 马炜, 况雨潇, 邱岭军, 黎蕴洁, 涂利华. 氮添加和凋落物处理对华西雨屏区常绿阔叶林凋落叶分解的影响[J]. 植物生态学报, 2023, 47(5): 629-643. |
[9] | 赵小祥, 朱彬彬, 田秋香, 林巧玲, 陈龙, 刘峰. 叶片凋落物分解的主场优势研究进展[J]. 植物生态学报, 2023, 47(5): 597-607. |
[10] | 冯可, 刘冬梅, 张琦, 安菁, 何双辉. 旅游干扰对松山油松林土壤微生物多样性及群落结构的影响[J]. 植物生态学报, 2023, 47(4): 584-596. |
[11] | 李耀琪, 王志恒. 植物功能生物地理学的研究进展与展望[J]. 植物生态学报, 2023, 47(2): 145-169. |
[12] | 李万年, 罗益敏, 黄则月, 杨梅. 望天树人工幼林混交对土壤微生物功能多样性与碳源利用的影响[J]. 植物生态学报, 2022, 46(9): 1109-1124. |
[13] | 冯继广, 张秋芳, 袁霞, 朱彪. 氮磷添加对土壤有机碳的影响: 进展与展望[J]. 植物生态学报, 2022, 46(8): 855-870. |
[14] | 马和平, 王瑞红, 屈兴乐, 袁敏, 慕金勇, 李金航. 不同生境对藏东南地面生苔藓多样性和生物量的影响[J]. 植物生态学报, 2022, 46(5): 552-560. |
[15] | 吴赞, 彭云峰, 杨贵彪, 李秦鲁, 刘洋, 马黎华, 杨元合, 蒋先军. 青藏高原高寒草地退化对土壤及微生物化学计量特征的影响[J]. 植物生态学报, 2022, 46(4): 461-472. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19