植物生态学报 ›› 2023, Vol. 47 ›› Issue (7): 895-911.DOI: 10.17521/cjpe.2022.0454
所属专题: 生态系统结构与功能
• 综述 • 下一篇
收稿日期:
2022-11-10
接受日期:
2023-02-24
出版日期:
2023-07-20
发布日期:
2023-07-21
通讯作者:
*张哲(基金资助:
ZHANG Zhong-Yang1, SONG Xi-Qiang1, REN Ming-Xun2, ZHANG Zhe1,2,*()
Received:
2022-11-10
Accepted:
2023-02-24
Online:
2023-07-20
Published:
2023-07-21
Contact:
*ZHANG Zhe(Supported by:
摘要:
在森林生态系统中, 林冠层的附生维管植物通过缓冲环境压力, 为其他生物营建出重要的生境条件, 增加了森林生态系统的复杂性, 提升了物种多样性和群落稳定性。不同附生维管植物类群可以营建出不同的生境形式, 进而发挥独特的生态功能, 根据附生维管植物形态、功能特征的不同, 可将其分为收集型植物和蚁巢型植物两大类, 前者包括“篮式植物”和“水箱植物”, 后者包括“蚂蚁花园植物”和“蚁栖植物”。该文论述了附生维管植物所营建的生境对林冠生物多样性起到的积极作用; 同时揭示这些微生境的存在可以增加林冠群落结构及食物网的复杂性, 使群落更加稳定; 并进一步剖析植食性防御与营养获取是如何促使附生维管植物演化出营建生境的特殊结构, 以及这些结构对其他林冠生物演化产生的影响。结合当前林冠学研究热点, 探究具有生境营建能力的附生维管植物在林冠中的生物互作、群落演替、响应全球变化这3个热点问题中发挥的作用。该文论证了附生维管植物通过营建特殊生境和庇护所, 成为全球变化背景下具有极大保护价值的“伞护种”。建议加强不同类型附生维管植物演化历史与生态功能的研究, 并探讨在全球变化背景下的热带、亚热带森林生态系统生物多样性保护策略。
张中扬, 宋希强, 任明迅, 张哲. 附生维管植物生境营建作用的生态学功能. 植物生态学报, 2023, 47(7): 895-911. DOI: 10.17521/cjpe.2022.0454
ZHANG Zhong-Yang, SONG Xi-Qiang, REN Ming-Xun, ZHANG Zhe. Ecological functions of vascular epiphytes in habitat construction. Chinese Journal of Plant Ecology, 2023, 47(7): 895-911. DOI: 10.17521/cjpe.2022.0454
图1 附生维管植物所营建生境特征。A, 篮式植物。B, 水箱植物。C, 蚂蚁花园。D, 蚁栖植物。1, 篮式结构截获有机物; 2, 营养物质缓慢下渗; 3, 水箱结构储存水分; 4, 两栖动物依赖的水箱生境; 5, 叶片缓冲雨水冲刷; 6, 根系维系蚁巢防止解体; 7, 蚁巢为植物提供营养; 8, 蚂蚁保护附生植物; 9, Dischidia major的常规叶片; 10, 中空膨大的特化叶片; 11, 根向特化叶内部生长; 12, 根吸收蚂蚁活动产生的有机物。
Fig. 1 Habitat characteristics constructed by vascular epiphytes. A, Trash-basket plant. B, Tank forms plant. C, Ant-gardens. D, Ant- house plant. 1, basket structure intercepts organic matter; 2, nutrients slowly penetrate downward; 3, tank structure to store water; 4, amphibians that depend on tank bromeliads; 5, leaves to buffer rainwater erosion; 6, root entanglement prevents the nest from disintegrating; 7, ant nest provides nutrients for the plants; 8, ants protect the epiphytes; 9, regular leaves of Dischidia major; 10, hollow expanded specialized leaves; 11, roots grow into specialized leaves; 12, roots absorb organic matter produced by ant activity.
科 Family | 属 Genus | 分布地 Distribution | 主要共存动物(纲) Main coexisting fauna (class) | 参考文献 Reference |
---|---|---|---|---|
天南星科 Araceae | 花烛属 Anthurium | 中美洲、南美洲 Central, South America | F, M | Zona & Christenhusz, |
喜林芋属 Philodendron | 中美洲、南美洲 Central, South America | |||
崖角藤属 Rhaphidophora | 东南亚 Southeast Asia | |||
藤芋属 Scindapsus | 东南亚 Southeast Asia | |||
铁角蕨科 Aspleniaceae | 铁角蕨属 Asplenium | 热带、亚热带广布 Widespread in Tropics, Subtropics | A-N | |
聚星草科 Asteliaceae | Collospermum | 大洋洲 Oceania | A-G, J, K, L | |
兰科 Orchidaceae | 合萼兰属 Acriopsis | 东南亚、大洋洲 Southeast Asia, Oceania | N | |
Ansellia | 中非、东非、南非 Central Africa, East Africa, South Africa | |||
石豆兰属 Bulbophyllum | 东南亚 Southeast Asia | |||
Catasetum | 中美洲、南美洲 Central, South America | |||
Clowesia | 中美洲 Central America | |||
Coryanthes | 中美洲、南美洲 Central, South America | |||
兰属 Cymbidium | 东南亚 Southeast Asia | |||
Cyrtopodium | 中美洲、南美洲 Central, South America | |||
Gongora | 中美洲、南美洲 Central, South America | |||
Grammangis | 东非 East Africa | |||
Grammatophyllum | 东南亚 Southeast Asia | |||
Graphorkis | 中非、东非 Central Africa, East Africa | |||
Stanhopea | 中美洲、南美洲 Central, South America | |||
Thecostele | 东南亚 Southeast Asia | |||
露兜树科 Pandanaceae | Benstonea | 东南亚 Southeast Asia | — | |
水龙骨科 Polypodiaceae | Campyloneurum | 中美洲、南美洲 Central, South America | A-C, E-G, J, L | |
槲蕨属 Drynaria | 南亚、东亚、东南亚、大洋洲 South Asia, East Asia, Southeast Asia, Oceania | |||
舌蕨属 Elaphoglossum | 热带广布 Widespread in Tropics | |||
禾叶蕨属 Grammitis | 南美洲 South America | |||
剑蕨属 Loxogramme | 中非、东非 Central Africa, East Africa | |||
星蕨属 Microsorum | 中非、东非、东南亚、大洋洲 Central Africa, East Africa, Southeast Asia, Oceania | |||
鹿角蕨属 Platycerium | 热带广布 Widespread in Tropics | |||
环花草科 Cyclanthaceae | Ludovia | 中美洲、南美洲 Central, South America | — |
表1 具有篮式结构的附生植物及其中的动物类型
Table 1 Epiphytes plants with trash-basket structure and animals living inside
科 Family | 属 Genus | 分布地 Distribution | 主要共存动物(纲) Main coexisting fauna (class) | 参考文献 Reference |
---|---|---|---|---|
天南星科 Araceae | 花烛属 Anthurium | 中美洲、南美洲 Central, South America | F, M | Zona & Christenhusz, |
喜林芋属 Philodendron | 中美洲、南美洲 Central, South America | |||
崖角藤属 Rhaphidophora | 东南亚 Southeast Asia | |||
藤芋属 Scindapsus | 东南亚 Southeast Asia | |||
铁角蕨科 Aspleniaceae | 铁角蕨属 Asplenium | 热带、亚热带广布 Widespread in Tropics, Subtropics | A-N | |
聚星草科 Asteliaceae | Collospermum | 大洋洲 Oceania | A-G, J, K, L | |
兰科 Orchidaceae | 合萼兰属 Acriopsis | 东南亚、大洋洲 Southeast Asia, Oceania | N | |
Ansellia | 中非、东非、南非 Central Africa, East Africa, South Africa | |||
石豆兰属 Bulbophyllum | 东南亚 Southeast Asia | |||
Catasetum | 中美洲、南美洲 Central, South America | |||
Clowesia | 中美洲 Central America | |||
Coryanthes | 中美洲、南美洲 Central, South America | |||
兰属 Cymbidium | 东南亚 Southeast Asia | |||
Cyrtopodium | 中美洲、南美洲 Central, South America | |||
Gongora | 中美洲、南美洲 Central, South America | |||
Grammangis | 东非 East Africa | |||
Grammatophyllum | 东南亚 Southeast Asia | |||
Graphorkis | 中非、东非 Central Africa, East Africa | |||
Stanhopea | 中美洲、南美洲 Central, South America | |||
Thecostele | 东南亚 Southeast Asia | |||
露兜树科 Pandanaceae | Benstonea | 东南亚 Southeast Asia | — | |
水龙骨科 Polypodiaceae | Campyloneurum | 中美洲、南美洲 Central, South America | A-C, E-G, J, L | |
槲蕨属 Drynaria | 南亚、东亚、东南亚、大洋洲 South Asia, East Asia, Southeast Asia, Oceania | |||
舌蕨属 Elaphoglossum | 热带广布 Widespread in Tropics | |||
禾叶蕨属 Grammitis | 南美洲 South America | |||
剑蕨属 Loxogramme | 中非、东非 Central Africa, East Africa | |||
星蕨属 Microsorum | 中非、东非、东南亚、大洋洲 Central Africa, East Africa, Southeast Asia, Oceania | |||
鹿角蕨属 Platycerium | 热带广布 Widespread in Tropics | |||
环花草科 Cyclanthaceae | Ludovia | 中美洲、南美洲 Central, South America | — |
亚科 Subfamily | 属 Genus | 分布 Distribution | 主要共存动物(纲) Main coexisting fauna (class) | 参考文献 Reference |
---|---|---|---|---|
沙漠凤梨亚科 Pitcairnioideae | Brocchinia | 南美洲 South America | P | Givnish et al., |
凤梨亚科 Bromelioideae | Aechmea | 中美洲、南美洲 Central, South America | A-N, P-T | Freire et al., |
Androlepis | 中美洲 Central America | F | Fragoso & Rojas-Fernández, | |
Araeococcus | 中美洲 Central America | P | Benzing & Bennett, | |
水塔花属 Billbergia | 中美洲、南美洲 Central, South America | P | Cardoso et al., | |
Canistrum | 中美洲 Central America | P | Albertoni et al., | |
Hohenbergia | 中美洲 Central America | P | Albertoni et al., | |
Lymania | 中美洲 Central America | — | Benzing & Bennett, | |
Neoregelia | 中美洲 Central America | A, I, M, P, Q, R | Almeida & Souza, | |
Ronnbergia | 中美洲、南美洲 Central, South America | — | Benzing & Bennett, | |
Nidularium | 中美洲 Central America | P | Albertoni et al., | |
Quesnelia | 中美洲 Central America | P | Cardoso et al., | |
空气凤梨亚科 Tillandsioideae | Alcantarea | 中美洲 Central America | P, R | Henle & Knogge, |
Mezobromelia | 南美洲 South America | P | Moyano & Benitez-Ortiz, | |
Catopsis | 中美洲 Central America | E, I, P, O, L, K, J | Nielsen, | |
Glomeropitcairnia | 中美洲、南美洲 Central, South America | I, P, Q | Jowers et al., | |
Guzmania | 中美洲、南美洲 Central, South America | P, Q, T | Torreias et al., | |
铁兰属 Tillandsia | 中美洲、南美洲 Central, South America | I, K, M, N, P, H | Frank et al., | |
Vriesea | 中美洲、南美洲 Central, South America | A, F, G, I, K, E, N, P, H, Q | Laviski et al., |
表2 具有水箱结构的凤梨科植物及其中的动物类型
Table 2 Bromeliads plants with tank structure and animals living inside
亚科 Subfamily | 属 Genus | 分布 Distribution | 主要共存动物(纲) Main coexisting fauna (class) | 参考文献 Reference |
---|---|---|---|---|
沙漠凤梨亚科 Pitcairnioideae | Brocchinia | 南美洲 South America | P | Givnish et al., |
凤梨亚科 Bromelioideae | Aechmea | 中美洲、南美洲 Central, South America | A-N, P-T | Freire et al., |
Androlepis | 中美洲 Central America | F | Fragoso & Rojas-Fernández, | |
Araeococcus | 中美洲 Central America | P | Benzing & Bennett, | |
水塔花属 Billbergia | 中美洲、南美洲 Central, South America | P | Cardoso et al., | |
Canistrum | 中美洲 Central America | P | Albertoni et al., | |
Hohenbergia | 中美洲 Central America | P | Albertoni et al., | |
Lymania | 中美洲 Central America | — | Benzing & Bennett, | |
Neoregelia | 中美洲 Central America | A, I, M, P, Q, R | Almeida & Souza, | |
Ronnbergia | 中美洲、南美洲 Central, South America | — | Benzing & Bennett, | |
Nidularium | 中美洲 Central America | P | Albertoni et al., | |
Quesnelia | 中美洲 Central America | P | Cardoso et al., | |
空气凤梨亚科 Tillandsioideae | Alcantarea | 中美洲 Central America | P, R | Henle & Knogge, |
Mezobromelia | 南美洲 South America | P | Moyano & Benitez-Ortiz, | |
Catopsis | 中美洲 Central America | E, I, P, O, L, K, J | Nielsen, | |
Glomeropitcairnia | 中美洲、南美洲 Central, South America | I, P, Q | Jowers et al., | |
Guzmania | 中美洲、南美洲 Central, South America | P, Q, T | Torreias et al., | |
铁兰属 Tillandsia | 中美洲、南美洲 Central, South America | I, K, M, N, P, H | Frank et al., | |
Vriesea | 中美洲、南美洲 Central, South America | A, F, G, I, K, E, N, P, H, Q | Laviski et al., |
科 Family | 属 Genus | 分布地 Distribution | 参考文献 Reference |
---|---|---|---|
夹竹桃科 Apocynaceae | 眼树莲属 Dischidia | 东南亚 Southeast Asia | Kaufmann, |
Hoya | 东南亚 Southeast Asia | Kaufmann, | |
苦苣苔科 Gesneriaceae | 芒毛苣苔属 Aeschynanthus | 东南亚 Southeast Asia | Kaufmann & Maschwitz, |
Codonanthe | 中美洲、南美洲 Central, South America | Blüthgen et al., | |
Columnea | 中美洲、南美洲 Central, South America | Orivel & Leroy, | |
野牡丹科 Melastomataceae | 酸脚杆属 Medinilla | 东南亚 Southeast Asia | Kaufmann, |
厚距花属 Pachycentria | 东南亚 Southeast Asia | Kaufmann, | |
桑科 Moraceae | 榕属 Ficus | 东南亚、中美洲、南美洲 Southeast Asia, Central, South America | Kaufmann, |
荨麻科 Urticaceae | 锥头麻属 Poikilospermum | 东南亚 Southeast Asia | Kaufmann & Maschwitz, |
姜科 Zingiberaceae | 姜花属 Hedychium | 东南亚 Southeast Asia | Kaufmann, |
天南星科 Araceae | 花烛属 Anthurium | 南美洲 South America | Blüthgen et al., |
喜林芋属 Philodendron | 南美洲 South America | Schmit-Neuerburg & Blüthgen, Blüthgen et al., | |
凤梨科 Bromeliaceae | Aechmea | 中美洲、南美洲 Central, South America | Morales-Linares et al., |
Neoregelia | 南美洲 South America | Davidson & Epstein, | |
Streptocalyx | 南美洲 South America | Davidson & Epstein, | |
仙人掌科 Cactaceae | 昙花属 Epiphyllum | 中美洲、南美洲 Central, South America | Schmit-Neuerburg & Blüthgen, |
兰科 Orchidaceae | Coryanthes | 中美洲 Central America | Morales-Linares et al., |
Epidendrum | 中美洲 Central America | Morales-Linares et al., | |
胡椒科 Piperaceae | 草胡椒属 Peperomia | 中美洲、南美洲 Central, South America | Youngsteadt et al., |
茄科 Solanaceae | Markea | 中美洲、南美洲 Central, South America | Dejean et al., |
表3 蚂蚁花园植物代表科、属及其主要分布地
Table 3 Representative families, genera, and the major distribution areas of ant-garden epiphyte species
科 Family | 属 Genus | 分布地 Distribution | 参考文献 Reference |
---|---|---|---|
夹竹桃科 Apocynaceae | 眼树莲属 Dischidia | 东南亚 Southeast Asia | Kaufmann, |
Hoya | 东南亚 Southeast Asia | Kaufmann, | |
苦苣苔科 Gesneriaceae | 芒毛苣苔属 Aeschynanthus | 东南亚 Southeast Asia | Kaufmann & Maschwitz, |
Codonanthe | 中美洲、南美洲 Central, South America | Blüthgen et al., | |
Columnea | 中美洲、南美洲 Central, South America | Orivel & Leroy, | |
野牡丹科 Melastomataceae | 酸脚杆属 Medinilla | 东南亚 Southeast Asia | Kaufmann, |
厚距花属 Pachycentria | 东南亚 Southeast Asia | Kaufmann, | |
桑科 Moraceae | 榕属 Ficus | 东南亚、中美洲、南美洲 Southeast Asia, Central, South America | Kaufmann, |
荨麻科 Urticaceae | 锥头麻属 Poikilospermum | 东南亚 Southeast Asia | Kaufmann & Maschwitz, |
姜科 Zingiberaceae | 姜花属 Hedychium | 东南亚 Southeast Asia | Kaufmann, |
天南星科 Araceae | 花烛属 Anthurium | 南美洲 South America | Blüthgen et al., |
喜林芋属 Philodendron | 南美洲 South America | Schmit-Neuerburg & Blüthgen, Blüthgen et al., | |
凤梨科 Bromeliaceae | Aechmea | 中美洲、南美洲 Central, South America | Morales-Linares et al., |
Neoregelia | 南美洲 South America | Davidson & Epstein, | |
Streptocalyx | 南美洲 South America | Davidson & Epstein, | |
仙人掌科 Cactaceae | 昙花属 Epiphyllum | 中美洲、南美洲 Central, South America | Schmit-Neuerburg & Blüthgen, |
兰科 Orchidaceae | Coryanthes | 中美洲 Central America | Morales-Linares et al., |
Epidendrum | 中美洲 Central America | Morales-Linares et al., | |
胡椒科 Piperaceae | 草胡椒属 Peperomia | 中美洲、南美洲 Central, South America | Youngsteadt et al., |
茄科 Solanaceae | Markea | 中美洲、南美洲 Central, South America | Dejean et al., |
科 Family | 属 Genus | 特化器官 Specialized organ | 分布地 Distribution | 参考文献 Reference |
---|---|---|---|---|
茜草科 Rubiaceae | Myrmecodia | 通道式块状茎 Channel tuberous stem | 东南亚、大洋洲 Southeast Asia, Oceania | Kapitany, |
Hydnophytum | 通道式块状茎 Channel tuberous stem | 东南亚、大洋洲 Southeast Asia, Oceania | Kapitany, | |
Squamellaria | 通道式块状茎 Channel tuberous stem | 大洋洲 Oceania | Chomicki & Renner, | |
夹竹桃科 Apocynaceae | 眼树莲属 Dischidia | 特化叶 Special leaves | 东南亚、大洋洲 Southeast Asia, Oceania | Treseder et al., |
水龙骨科 Polypodiaceae | Lecanopteris | 中空根状茎 Hollow rhizome | 东南亚、大洋洲 Southeast Asia, Oceania | Gay, |
兰科 Orchidaceae | 鹿角蕨属 Platycerium | 叶包鞘 Leaf sheath | 东南亚 Southeast Asia | Franken & Roos, |
Microgramma | 中空的侧根状囊 Hollow lateral root sac | 南美洲 South America | Davidson & Epstein, | |
Caularthron | 中空假鳞茎 Hollow pseudobulb | 中美洲、南美洲 Central, South America | Fisher et al., | |
凤梨科 Bromeliaceae | Myrmecophila | 中空假鳞茎 Hollow pseudobulb | 中美洲、南美洲 Central, South America | Fisher et al., |
Schomburgkia | 中空假鳞茎 Hollow pseudobulb | 中美洲、南美洲 Central, South America | Rico-Gray & Thien, | |
Dimerandra | 中空假鳞茎 Hollow pseudobulb | 中美洲、南美洲 Central, South America | Stuntz et al., | |
Tillandsia | 叶基部扩宽 Leaf base widening | 中美洲、南美洲 Central, South America | Benzing, |
表4 附生蚁栖植物主要科、属、分布地及特化器官
Table 4 Representative families, genera, distribution and the specialized organs of ant-house epiphytes
科 Family | 属 Genus | 特化器官 Specialized organ | 分布地 Distribution | 参考文献 Reference |
---|---|---|---|---|
茜草科 Rubiaceae | Myrmecodia | 通道式块状茎 Channel tuberous stem | 东南亚、大洋洲 Southeast Asia, Oceania | Kapitany, |
Hydnophytum | 通道式块状茎 Channel tuberous stem | 东南亚、大洋洲 Southeast Asia, Oceania | Kapitany, | |
Squamellaria | 通道式块状茎 Channel tuberous stem | 大洋洲 Oceania | Chomicki & Renner, | |
夹竹桃科 Apocynaceae | 眼树莲属 Dischidia | 特化叶 Special leaves | 东南亚、大洋洲 Southeast Asia, Oceania | Treseder et al., |
水龙骨科 Polypodiaceae | Lecanopteris | 中空根状茎 Hollow rhizome | 东南亚、大洋洲 Southeast Asia, Oceania | Gay, |
兰科 Orchidaceae | 鹿角蕨属 Platycerium | 叶包鞘 Leaf sheath | 东南亚 Southeast Asia | Franken & Roos, |
Microgramma | 中空的侧根状囊 Hollow lateral root sac | 南美洲 South America | Davidson & Epstein, | |
Caularthron | 中空假鳞茎 Hollow pseudobulb | 中美洲、南美洲 Central, South America | Fisher et al., | |
凤梨科 Bromeliaceae | Myrmecophila | 中空假鳞茎 Hollow pseudobulb | 中美洲、南美洲 Central, South America | Fisher et al., |
Schomburgkia | 中空假鳞茎 Hollow pseudobulb | 中美洲、南美洲 Central, South America | Rico-Gray & Thien, | |
Dimerandra | 中空假鳞茎 Hollow pseudobulb | 中美洲、南美洲 Central, South America | Stuntz et al., | |
Tillandsia | 叶基部扩宽 Leaf base widening | 中美洲、南美洲 Central, South America | Benzing, |
[1] | Abdullah NS, Ahmad WYW, Sabri NA (2017). New compounds from Hydnophytum formicarum young tubers. Malaysian Journal of Analytical Sciences, 21, 778-783. |
[2] |
Adhikari YP, Fischer A, Fischer HS (2012). Micro-site conditions of epiphytic orchids in a human impact gradient in Kathmandu valley, Nepal. Journal of Mountain Science, 9, 331-342.
DOI URL |
[3] |
Aguilar R, Cristóbal Pérez EJ, Balvino-Olvera FJ, de Jesús Aguilar-Aguilar M, Aguirre-Acosta N, Ashworth L, Lobo JA, Martén-Rodríguez S, Fuchs EJ, Sanchez-Montoya G, Bernardello G, Quesada M (2019). Habitat fragmentation reduces plant progeny quality: a global synthesis. Ecology Letters, 22, 1163-1173.
DOI PMID |
[4] |
Albertoni FF, Steiner J, Zillikens A (2016). The associated beetle fauna of Hohenbergia augusta and Vriesea friburgensis (Bromeliaceae) in southern Brazil. Journal of Natural History, 50, 2917-2939.
DOI URL |
[5] |
Almeida AM, Souza RM (2020). Nematode trophic structure in the phytotelma of Neoregelia cruenta (Bromeliaceae) in relation to microenvironmental and climate variables. Journal of Nematology, 52, e2020-100. DOI: 10.21307/jofnem-2020-100.
DOI |
[6] | Balke M, Gómez-Zurita J, Ribera I, Viloria A, Zillikens A, Steiner J, García M, Hendrich L, Vogler AP (2008). Ancient associations of aquatic beetles and tank bromeliads in the Neotropical forest canopy. Proceedings of the National Academy of Sciences of the United States of America, 105, 6356-6361. |
[7] |
Beaulieu F, Walter DE, Proctor HC, Kitching RL (2010). The canopy starts at 0.5 m: predatory mites (Acari: Mesostigmata) differ between rain forest floor soil and suspended soil at any height. Biotropica, 42, 704-709.
DOI URL |
[8] |
Benzing DH (1970). An investigation of two bromeliad myrmecophytes: Tillandsia butzii Mez, T. caput-medusae E. Morren, and their ants. Bulletin of the Torrey Botanical Club, 97, 109-115.
DOI URL |
[9] | Benzing DH (2008). Vascular Epiphytes: General Biology and Related Biota. Cambridge University Press, New York. |
[10] | Benzing DH, Bennett B (2000). Bromeliaceae: Profile of an Adaptive Radiation. Cambridge University Press, New York. |
[11] |
Bertness MD, Callaway R (1994). Positive interactions in communities. Trends in Ecology & Evolution, 9, 191-193.
DOI URL |
[12] | Blüthgen N, Feldhaar H (2009). Food and shelter: how resources influence ant ecology//Lach L, Parr C, Abbott K. Ant Ecology. Oxford University Press, Oxford. |
[13] |
Blüthgen N, Schmit-Neuerburg V, Engwald S, Barthlott W (2001). Ants as epiphyte gardeners: comparing the nutrient quality of ant and termite canopy substrates in a Venezuelan lowland rain forest. Journal of Tropical Ecology, 17, 887-894.
DOI URL |
[14] |
Brouard O, Céréghino R, Corbara B, Leroy C, Pelozuelo L, Dejean A, Carrias JF (2012). Understorey environments influence functional diversity in tank-bromeliad ecosystems. Freshwater Biology, 57, 815-823.
DOI URL |
[15] |
Cardoso CAA, Lourenço-de-Oliveira R, Codeço CT, Motta MA (2015). Mosquitoes in bromeliads at ground level of the Brazilian Atlantic forest: the relationship between mosquito fauna, water volume, and plant type. Annals of the Entomological Society of America, 108, 449-458.
PMID |
[16] |
Cestari C (2009). Epiphyte plants use by birds in Brazil. Oecologia Australis, 13, 689-712.
DOI URL |
[17] |
Chaves CJN, Rossatto DR (2020). Unravelling intricate interactions among atmospheric bromeliads with highly overlapping niches in seasonal systems. Plant Biology, 22, 243-251.
DOI PMID |
[18] |
Chomicki G, Renner SS (2019). Farming by ants remodels nutrient uptake in epiphytes. New Phytologist, 223, 2011-2023.
DOI PMID |
[19] | Davidson DW, Epstein WW (1989). Epileptic associations with ants//Lüttge U. Vascular Plants as Epiphytes: Evolution and Ecophysiology. Springer, Berlin. |
[20] | Dejean A, Corbara B, Orivel J, Snelling RR, Delabie J, Belin-Depoux M (2000). The importance of ant gardens in the pioneer vegetal formations of French Guiana (Hymenoptera: Formicidae). Sociobiology, 35, 425-440. |
[21] |
Donald J, Bonnett S, Cutler M, Majalap N, Maxfield P, Ellwood MDF (2017a). Physical conditions regulate the fungal to bacterial ratios of a tropical suspended soil. Forests, 8, 474. DOI: 10.3390/f8120474.
DOI URL |
[22] | Donald J, Clegg J, Ellwood MD (2017b). Colonisation of epiphytic ferns by skinks and geckos in the high canopy of a Bornean rainforest. Herpetological Bulletin, 141, 32-34. |
[23] |
Donald J, Maxfield P, Leroy C, Ellwood MDF (2020). Epiphytic suspended soils from Borneo and Amazonia differ in their microbial community composition. Acta Oecologica, 106, 103586. DOI: 10.1016/j.actao.2020.103586.
DOI URL |
[24] |
Durán-Ramírez CA, Dias RJP, Mayén-Estrada R (2020). Checklist of ciliates (Alveolata: Ciliophora) that inhabit in bromeliads from the Neotropical Region. Zootaxa, 4895, zootaxa.4895.1.1. DOI: 10.11646/zootaxa.4895.1.1.
DOI |
[25] |
Durán-Ramírez CA, García-Franco JG, Foissner W, Mayén- Estrada R (2015). Free-living ciliates from epiphytic tank bromeliads in Mexico. European Journal of Protistology, 51, 15-33.
DOI PMID |
[26] |
Ellis CJ, Ellis SC (2013). Signatures of autogenic epiphyte succession for an aspen chronosequence. Journal of Vegetation Science, 24, 688-701.
DOI URL |
[27] |
Ellison AM, Bank MS, Clinton BD, Colburn EA, Elliott K, Ford CR, Foster DR, Kloeppel BD, Knoepp JD, Lovett GM, Mohan J, Orwig DA, Rodenhouse NL, Sobczak WV, Stinson KA, et al. (2005). Loss of foundation species: consequences for the structure and dynamics of forested ecosystems. Frontiers in Ecology and the Environment, 3, 479-486.
DOI URL |
[28] |
Ellwood MDF, Foster WA (2004). Doubling the estimate of invertebrate biomass in a rainforest canopy. Nature, 429, 549-551.
DOI |
[29] |
Fayle TM, Chung AYC, Dumbrell AJ, Eggleton P, Foster WA (2009). The effect of rain forest canopy architecture on the distribution of epiphytic ferns (Asplenium spp.) in Sabah, Malaysia. Biotropica, 41, 676-681.
DOI URL |
[30] |
Fisher BL (1992). Facultative ant association benefits a Neotropical orchid. Journal of Tropical Ecology, 8, 109-114.
DOI URL |
[31] |
Fisher BL, da Silveira Lobo Sternberg L, Price D (1990). Variation in the use of orchid extrafloral nectar by ants. Oecologia, 83, 263-266.
DOI PMID |
[32] | Fisher BL, Zimmerman JK (1988). Ant/orchid associations in the Barro Colorado national monument, Panama. Lindleyana, 3, 12-16. |
[33] |
Flores-Palacios A, Barbosa-Duchateau CL, Valencia-Díaz S, Capistrán-Barradas A, García-Franco JG (2014). Direct and indirect effects of Tillandsia recurvata on Prosopis laevigata in the Chihuahua Desert scrubland of San Luis Potosi, Mexico. Journal of Arid Environments, 104, 88-95.
DOI URL |
[34] |
Flores-Palacios A, García-Franco JG (2008). Habitat isolation changes the beta diversity of the vascular epiphyte community in lower montane forest, Veracruz, Mexico. Biodiversity and Conservation, 17, 191-207.
DOI URL |
[35] |
Foissner W, Strüder-Kypke M, van der Staay GWM, Moon-van der Staay SY, Hackstein JHP (2003). Endemic ciliates (Protozoa, Ciliophora) from tank bromeliads (Bromeliaceae): a combined morphological, molecular, and ecological study. European Journal of Protistology, 39, 365-372.
DOI URL |
[36] |
Fragoso C, Rojas-Fernández P (1996). Earthworms inhabiting bromeliads in Mexican tropical rainforests: ecological and historical determinants. Journal of Tropical Ecology, 12, 729-734.
DOI URL |
[37] | Frank JH, Sreenivasan S, Benshoff PJ, Deyrup MA, Edwards GB, Halbert SE, Hamon AB, Lowman MD, Mockford EL, Scheffrahn RH, Steck GJ, Thomas MC, Walker TJ, Welbourn WC (2004). Invertebrate animals extracted from native tillandsia (Bromeliales: Bromeliaceae) in Sarasota County, Florida. Florida Entomologist, 87, 176-185. |
[38] |
Franken NAP, Roos MC (1982). The first record of Platycerium ridleyi in Sumatera. American Fern Journal, 72, 12-14.
DOI URL |
[39] |
Freire RM, Montero GA, Vesprini JL, Barberis IM (2021). Review of the interactions of an ecological keystone species, Aechmea distichantha Lem. (Bromeliaceae), with the associated fauna. Journal of Natural History, 55, 283-303.
DOI URL |
[40] |
Gamisch A, Winter K, Fischer GA, Comes HP (2021). Evolution of crassulacean acid metabolism (CAM) as an escape from ecological niche conservatism in Malagasy Bulbophyllum (Orchidaceae). New Phytologist, 231, 1236-1248.
DOI URL |
[41] |
Gay H (1991). Ant-houses in the fern genus Lecanopteris Reinw. (Polypodiaceae): the rhizome morphology and architecture of L. sarcopus Teijsm. & Binnend. and L. darnaedii Hennipman. Botanical Journal of the Linnean Society, 106, 199-208.
DOI URL |
[42] |
Gegenbauer C, Mayer VE, Zotz G, Richter A (2012). Uptake of ant-derived nitrogen in the myrmecophytic orchid Caularthron bilamellatum. Annals of Botany, 110, 757-766.
DOI PMID |
[43] |
Gentry AH, Dodson CH (1987). Diversity and biogeography of neotropical vascular epiphytes. Annals of the Missouri Botanical Garden, 74, 205-233.
DOI URL |
[44] |
Giladi I (2006). Choosing benefits or partners: a review of the evidence for the evolution of myrmecochory. Oikos, 112, 481-492.
DOI URL |
[45] |
Givnish TJ, Burkhardt EL, Happel RE, Weintraub JD (1984). Carnivory in the bromeliad Brocchinia reducta, with a cost/benefit model for the general restriction of carnivorous plants to sunny, moist, nutrient-poor habitats. The American Naturalist, 124, 479-497.
DOI URL |
[46] |
Gonçalves AZ, Mercier H, Mazzafera P, Romero GQ (2011). Spider-fed bromeliads: seasonal and interspecific variation in plant performance. Annals of Botany, 107, 1047-1055.
DOI PMID |
[47] |
Helbsing S, Riederer M, Zotz G (2000). Cuticles of vascular epiphytes: efficient barriers for water loss after stomatal closure? Annals of Botany, 86, 765-769.
DOI URL |
[48] |
Henle K, Knogge C (2009). Water-filled bromeliad as roost site of a tropical lizard, Urostrophus vautieri (Sauria: Leiosauridae). Studies on Neotropical Fauna and Environment, 44, 161-162.
DOI URL |
[49] |
Hodgkison R, Balding ST, Akbar Z, Kunz TH (2003). Roosting ecology and social organization of the spotted-winged fruit bat, Balionycteris maculata (Chiroptera: Pteropodidae), in a Malaysian lowland dipterocarp forest. Journal of Tropical Ecology, 19, 667-676.
DOI URL |
[50] | Huang M, Wang D (2015). The role of elaiosome in seed dispersed herbaceous plants. Acta Ecologica Sinica, 35, 5721-5727. |
[黄曼, 王东 (2015). 油质体在5种蚁播植物种子散布中的作用. 生态学报, 35, 5721-5727.] | |
[51] |
Jian PY, Hu FS, Wang CP, Chiang JM, Lin TC (2013). Ecological facilitation between two epiphytes through drought mitigation in a subtropical rainforest. PLoS ONE, 8, e64599. DOI: 10.1371/journal.pone.0064599.
DOI URL |
[52] |
Jowers MJ, Downie JR, Cohen BL (2008). The golden tree frog of Trinidad, Phyllodytes auratus (Anura: Hylidae): systematic and conservation status. Studies on Neotropical Fauna and Environment, 43, 181-188.
DOI URL |
[53] |
Kapitany A (2008). Weird and wonderful ant-house plants. Cactus and Succulent Journal, 80, 276-287.
DOI URL |
[54] |
Karasawa S, Hijii N (2006). Does the existence of bird’s nest ferns enhance the diversity of oribatid (Acari: Oribatida) communities in a subtropical forest? Biodiversity and Conservation, 15, 4533-4553.
DOI URL |
[55] | Kaufmann E (2002). Southeast Asian Ant Gardens: Diversity, Ecology, Ecosystematic Significance, and Evolution of Mutualistic Ant-Epiphyte Associations. PhD dissertation, CiteseerJohann Wolfgang Goethe University, Frankfurt am Main, Germany. 237. |
[56] |
Kaufmann E, Maschwitz U (2006). Ant-gardens of tropical Asian rainforests. Naturwissenschaften, 93, 216-227.
DOI URL |
[57] |
Larrea ML, Werner FA (2010). Response of vascular epiphyte diversity to different land-use intensities in a neotropical montane wet forest. Forest Ecology and Management, 260, 1950-1955.
DOI URL |
[58] |
Laviski BFDS, Monteiro ÍDM, Pinho LC, Baptista RLC, Mayhé-Nunes AJ, Racca-Filho F, Nunes-Freitas AF (2021). Bromeliad habitat regulates the richness of associated terrestrial and aquatic fauna. Austral Ecology, 46, 860-870.
DOI URL |
[59] |
Leroy C, Carrias JF, Céréghino R, Corbara B (2016). The contribution of microorganisms and metazoans to mineral nutrition in bromeliads. Journal of Plant Ecology, 9, 241-255.
DOI URL |
[60] |
Leroy C, Gril E, Ouali LS, Coste S, Gérard B, Maillard P, Mercier H, Stahl C (2019). Water and nutrient uptake capacity of leaf-absorbing trichomes vs. roots in epiphytic tank bromeliads. Environmental and Experimental Botany, 163, 112-123.
DOI URL |
[61] | Li DC, Song XQ, Zhang Z, Chen ZH, Zhang ZY, Zhou K (2022). Strategies for conservation and priority monitoring of key orchid plants in Hainan Tropical Rainforest National Park. Journal of Tropical Biology, 13, 136-148. |
[李大程, 宋希强, 张哲, 陈枳衡, 张中扬, 周康 (2022). 海南热带雨林国家公园兰科植物重点保护与优先监测策略. 热带生物学报, 13, 136-148.] | |
[62] | Liu WY, Ma WZ, Yang LP (2006). Advances in ecological studies on epiphytes in forest canopies. Journal of Plant Ecology (Chinese Version), 30, 522-533. |
[刘文耀, 马文章, 杨礼攀 (2006). 林冠附生植物生态学研究进展. 植物生态学报, 30, 522-533.]
DOI |
|
[63] |
Lowman MD, Schowalter TD (2012). Plant science in forest canopies—The first 30 years of advances and challenges (1980-2010). New Phytologist, 194, 12-27.
DOI URL |
[64] | Mccracken SF, Forstner MRJ (2014). Herpetofaunal community of a high canopy tank bromeliad (Aechmea zebrina) in the Yasuní Biosphere Reserve of Amazonian Ecuador, with comments on the use of “arboreal” in the herpetological literature. Aechmea Zebrina, 8, 65-75. |
[65] | Mendieta-Leiva G, Porada P, Bader MY (2020). Interactions of epiphytes with precipitation partitioning//Van Stan II JT, Gutmann E, Friesen J. Precipitation Partitioning by Vegetation. Springer, Cham, Switzerland. |
[66] |
Morales-Linares J, García-Franco JG, Flores-Palacios A, Valenzuela-González JE, Mata-Rosas M, Díaz-Castelazo C (2016). Vascular epiphytes and host trees of ant-gardens in an anthropic landscape in southeastern Mexico. The Science of Nature, 103, 96. DOI: 10.1007/s00114-016-1421-9.
DOI URL |
[67] |
Moreau CS, Bell CD, Vila R, Archibald SB, Pierce NE (2006). Phylogeny of the ants: diversification in the age of angiosperms. Science, 312, 101-104.
PMID |
[68] |
Moyano FV, Benitez-Ortiz W (2013). A new phytotelm plant, Crinum moorei (Asparagales: Amaryllidaceae), for the Americas and its mosquito inhabitant. Florida Entomologist, 96, 1224-1227.
DOI URL |
[69] |
Nadkarni NM (1981). Canopy roots: convergent evolution in rainforest nutrient cycles. Science, 214, 1023-1024.
PMID |
[70] |
Nadkarni NM (2000). Colonization of stripped branch surfaces by epiphytes in a lower montane cloud forest, Monteverde, Costa Rica. Biotropica, 32, 358-363.
DOI URL |
[71] | Nakamura A, Kitching RL, Cao M, Creedy TJ, Fayle TM, Freiberg M, Hewitt CN, Itioka T, Koh LP, Ma KP, Malhi Y, Mitchell A, Novotny V, Ozanne CMP, Song L, et al. (2017). Forests and their canopies: achievements and horizons in canopy science. Trends in Ecology & Evolution, 32, 438-451. |
[72] | Nielsen WP (2011). Composición de Macroinvertebrados acuáticos en Bromelias (Catopsis spp.) de la Reserva Biológica Uyuca, Honduras. Master degree dissertation, Zamorano University, Tegucigalpa, Honduras. 26-28. |
[73] |
Ochoa MG, Lavin MC, Ayala FC, Perez AJ (1993). Arthropods associated with Bromelia hemisphaerica (Bromeliales: Bromeliaceae) in Morelos, Mexico. Florida Entomologist, 76, 616-621.
DOI URL |
[74] | Orivel J, Leroy C (2011). The diversity and ecology of ant gardens (Hymenoptera: Formicidae; Spermatophyta: Angiospermae). Myrmecological News, 14, 73-85. |
[75] |
Ortega-Solís G, Díaz I, Mellado-Mansilla D, Tello F, Moreno R, Tejo C (2017). Ecosystem engineering by Fascicularia bicolor in the canopy of the South-American temperate rainforest. Forest Ecology and Management, 400, 417-428.
DOI URL |
[76] | Ortega-Solis G, Díaz IA, Mellado-Mansilla D, Tejo C, Tello F, Craven D, Kreft H, Armesto JJ (2021). Trash-basket epiphytes as secondary foundation species: a review of their distribution and effects on biodiversity and ecosystem functions. bioRxiv, 2021-2026. |
[77] |
Ozanne CMP, Anhuf D, Boulter SL, Keller M, Kitching RL, Körner C, Meinzer FC, Mitchell AW, Nakashizuka T, Dias PLS, Stork NE, Wright SJ, Yoshimura M (2003) Biodiversity meets the atmosphere: a global view of forest canopies. Science, 301, 183-186.
DOI PMID |
[78] |
Phillips JW, Chung AYC, Edgecombe GD, Ellwood MDF (2020). Bird’s nest ferns promote resource sharing by centipedes. Biotropica, 52, 335-344.
DOI URL |
[79] |
Pittl E, Innerebner G, Wanek W, Insam H (2010). Microbial communities of arboreal and ground soils in the Esquinas rainforest, Costa Rica. Plant and Soil, 329, 65-74.
DOI URL |
[80] | Rico-Gray V, Oliveira PS (2008). The Ecology and Evolution of Ant-plant Interactions. University of Chicago Press, Chicago. |
[81] |
Rico-Gray V, Thien LB (1989). Effect of different ant species on reproductive fitness of Schomburgkia tibicinis (Orchidaceae). Oecologia, 81, 487-489.
DOI PMID |
[82] |
Rogy P, Hammill E, Srivastava DS (2019). Complex indirect effects of epiphytic bromeliads on the invertebrate food webs of their support tree. Biotropica, 51, 549-561.
DOI URL |
[83] |
Romero GQ, Nomura F, Gonçalves AZ, Dias NYN, Mercier H, Conforto EDC, Rossa-Feres DDC (2010). Nitrogen fluxes from treefrogs to tank epiphytic bromeliads: an isotopic and physiological approach. Oecologia, 162, 941-949.
DOI PMID |
[84] |
Rowe DJ (2012). Some arboreal ant-house plants of Australasia and the southwest Pacific. Cactus and Succulent Journal, 84, 60-68.
DOI URL |
[85] |
Ruano-Fajardo G, Rovito SM, Ladle RJ (2014) Bromeliad selection by two salamander species in a harsh environment. PLoS ONE, 9, e98474. DOI: 10.1371/journal.pone.0098474.
DOI URL |
[86] | Sabagh LT, Neutzling AS, Rocha CFD (2022). Phytophagous consumption by frogs inhabiting bromeliads from Atlantic Forest. Ethology Ecology & Evolution, 34, 165-179. |
[87] |
Scheffers BR, Evans TA, Williams SE, Edwards DP (2014a) Microhabitats in the tropics buffer temperature in a globally coherent manner. Biology Letters, 10, 20140819. DOI: 10.1098/rsbl.2014.0819.
DOI URL |
[88] |
Scheffers BR, Phillips BL, Shoo LP (2014b). Asplenium bird’s nest ferns in rainforest canopies are climate-contingent refuges for frogs. Global Ecology and Conservation, 2, 37-46.
DOI URL |
[89] |
Schemske DW, Mittelbach GG, Cornell HV, Sobel JM, Roy K (2009). Is there a latitudinal gradient in the importance of biotic interactions? Annual Review of Ecology, Evolution, and Systematics, 40, 245-269.
DOI URL |
[90] | Schmit-Neuerburg V, Blüthgen N (2007). Ant-garden epiphytes are protected against drought in a Venezuelan lowland rain forest. Ecotropica, 13, 93-100. |
[91] |
Spicer ME, Mellor H, Carson WP (2020). Seeing beyond the trees: a comparison of tropical and temperate plant growth forms and their vertical distribution. Ecology, 101, e02974. DOI: 10.1002/ecy.2974.
DOI URL |
[92] |
Spicer ME, Woods CL (2022). A case for studying biotic interactions in epiphyte ecology and evolution. Perspectives in Plant Ecology, Evolution and Systematics, 54, 125658. DOI: 10.1016/j.ppees.2021.125658.
DOI URL |
[93] |
Stuntz S, Ziegler C, Simon U, Zotz G (2002). Diversity and structure of the arthropod fauna within three canopy epiphyte species in central Panama. Journal of Tropical Ecology, 18, 161-176.
DOI URL |
[94] |
Taylor A, Burns K (2015). Plant composition patterns inside an endemic birds’ nest fern (Asplenium goudeyi) on Lord Howe Island: effects of fern size, fern isolation and plant dispersal abilities. Journal of Tropical Ecology, 31, 413-421.
DOI URL |
[95] |
Taylor A, Zotz G, Weigelt P, Cai LR, Karger DN, König C, Kreft H (2022). Vascular epiphytes contribute disproportionately to global centres of plant diversity. Global Ecology and Biogeography, 31, 62-74.
DOI URL |
[96] |
Thiago G, Antonio DB, Denise DCR, Gustavo QR (2010). Bromeliads as biodiversity amplifiers and habitat segregation of spider communities in a Neotropical rainforest. The Journal of Arachnology, 38, 270-279.
DOI URL |
[97] | Thomsen MS, Altieri AH, Angelini C, Bishop MJ, Gribben PE, Lear G, He Q, Schiel DR, Silliman BR, South PM, Watson DM, Wernberg T, Zotz G (2018). Secondary foundation species enhance biodiversity. Nature Ecology & Evolution, 2, 634-639. |
[98] |
Torreias SRD, Ferreira-Keppler RL, Godoy BS, Hamada N (2010). Mosquitoes (Diptera, Culicidae) inhabiting foliar tanks of Guzmania brasiliensis Ule (Bromeliaceae) in central Amazonia, Brazil. Revista Brasileira de Entomologia, 54, 618-623.
DOI URL |
[99] |
Treseder KK, Davidson DW, Ehleringer JR (1995). Absorption of ant-provided carbon dioxide and nitrogen by a tropical epiphyte. Nature, 375, 137-139.
DOI |
[100] | Turner E, Foster WA (2006). Assessing the influence of bird’s nest ferns (Asplenium spp.) on the local microclimate across a range of habitat disturbances in Sabah, Malaysia. Selbyana, 27, 195-200. |
[101] | Ule E (1901). Ameisengärten im Amazonasgebiet. Pflanzengeschichte und Pflanzengeographien, 68, 45-52. |
[102] |
Volp TM, Lach L (2019). An epiphytic ant-plant mutualism structures arboreal ant communities. Environmental Entomology, 48, 1056-1062.
DOI PMID |
[103] | Wang L, Zhang JT, Li ZB, Zhang Y (2020). Research advances in mutualistic relationship between ants and plants. Journal of Southwest Forestry University (Natural Sciences), 40(1), 181-188. |
[王亮, 张锦堂, 李宗波, 张媛 (2020). 蚂蚁与植物的互惠共生关系研究进展. 西南林业大学学报(自然科学), 40(1), 181-188.] | |
[104] |
Wang YC, Deng ZY, Zhang SX, Xiao CC, Feng G, Long WX, Liu JS (2022). Host tree selection by vascular epiphytes in tropical cloud forest of Hainan Island, China. Chinese Journal of Plant Ecology, 46, 405-415.
DOI URL |
[王艺宸, 邓芝燕, 张守信, 肖楚楚, 冯广, 龙文兴, 刘积史 (2022). 海南热带云雾林附生维管植物对宿主的选择性. 植物生态学报, 46, 405-415.]
DOI |
|
[105] |
Woods CL (2017). Primary ecological succession in vascular epiphytes: the species accumulation model. Biotropica, 49, 452-460.
DOI URL |
[106] |
Woods CL, Cardelús CL, DeWalt SJ (2015). Microhabitat associations of vascular epiphytes in a wet tropical forest canopy. Journal of Ecology, 103, 421-430.
DOI URL |
[107] |
Wu Y, Liu WY, Song L, Chen X, Lu HZ, Li S, Shi XM (2016). Advances in ecological studies of epiphytes using canopy cranes. Chinese Journal of Plant Ecology, 40, 508-522.
DOI |
[吴毅, 刘文耀, 宋亮, 陈曦, 卢华正, 李苏, 石贤萌 (2016). 基于林冠塔吊的附生植物生态学研究进展. 植物生态学报, 40, 508-522.]
DOI |
|
[108] | Xu ST (2013). Epiphytic Characteristics of Asplenium nidus L. (Aspleniaceae) Complex in Tropical Montane Rain Forest, Hainan Island. PhD dissertation, Hainan University, Haikou. |
[徐诗涛 (2013). 海南热带山地沟谷雨林鸟巢蕨附生特性研究. 博士学位论文, 海南大学, 海口.] | |
[109] |
Youngsteadt E, Baca JA, Osborne J, Schal C (2009). Species- specific seed dispersal in an obligate ant-plant mutualism. PLoS ONE, 4, e4335. DOI: 10.1371/journal.pone.0004335.
DOI URL |
[110] |
Yu DW (1994). The structural role of epiphytes in ant gardens. Biotropica, 26, 222-226.
DOI URL |
[111] | Zhang S, Zhang YX, Ma KM (2010). A review of protective ant-plant interaction and its mediation mechanism. Chinese Journal of Plant Ecology, 34, 1344-1353. |
[张霜, 张育新, 马克明 (2010). 保护性的蚂蚁-植物相互作用及其调节机制研究综述. 植物生态学报, 34, 1344-1353.]
DOI |
|
[112] |
Zona S, Christenhusz MJM (2015). Litter-trapping plants: filter-feeders of the plant kingdom. Botanical Journal of the Linnean Society, 179, 554-586.
DOI URL |
[113] | Zotz G (2016). Epiphytes and humans//Zotz G. Plants on Plants-The Biology of Vascular Epiphytes. Springer, Cham, Switzerland. |
[114] | Zotz G, Bader MY (2009). Epiphytic plants in a changing world-global: change effects on vascular and non-vascular epiphytes//Lüttge U, Beyschlag W, Büdel B, Francis D. Progress in Botany. Springer, Berlin. |
[115] |
Zotz G, Leja M, Aguilar-Cruz Y, Einzmann HJR (2020). How much water is in the tank? An allometric analysis with 205 bromeliad species. Flora, 264, 151557. DOI: 10.1016/j.flora.2020.151557.
DOI URL |
[116] |
Zotz G, Weigelt P, Kessler M, Kreft H, Taylor A (2021). EpiList 1.0: a global checklist of vascular epiphytes. Ecology, 102, e03326. DOI: 10.1002/ecy.3326.
DOI URL |
[1] | 彭仲韬 金光泽 刘志理. 小兴安岭三种槭树叶性状随植株大小和林冠条件的变异[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[2] | 胡蝶 蒋欣琪 戴志聪 陈戴一 张雨 祁珊珊 杜道林. 丛枝菌根真菌提高入侵杂草南美蟛蜞菊对除草剂的耐受性[J]. 植物生态学报, 2024, 48(5): 651-659. |
[3] | 杨佳绒, 戴冬, 陈俊芳, 吴宪, 刘啸林, 刘宇. 丛枝菌根真菌多样性对植物群落构建和稀有种维持的研究进展[J]. 植物生态学报, 2023, 47(6): 745-755. |
[4] | 张琦, 冯可, 常智慧, 何双辉, 徐维启. 灌丛化对林草交错带植物和土壤微生物的影响[J]. 植物生态学报, 2023, 47(6): 770-781. |
[5] | 李伟, 张荣. 亚高寒草甸群落结构决定群落生产力实例验证[J]. 植物生态学报, 2023, 47(5): 713-723. |
[6] | 冯可, 刘冬梅, 张琦, 安菁, 何双辉. 旅游干扰对松山油松林土壤微生物多样性及群落结构的影响[J]. 植物生态学报, 2023, 47(4): 584-596. |
[7] | 李耀琪, 王志恒. 植物功能生物地理学的研究进展与展望[J]. 植物生态学报, 2023, 47(2): 145-169. |
[8] | 张尧, 陈岚, 王洁莹, 李益, 王俊, 郭垚鑫, 任成杰, 白红英, 孙昊田, 赵发珠. 太白山不同海拔森林根际土壤微生物碳利用效率差异性及其影响因素[J]. 植物生态学报, 2023, 47(2): 275-288. |
[9] | 马和平, 王瑞红, 屈兴乐, 袁敏, 慕金勇, 李金航. 不同生境对藏东南地面生苔藓多样性和生物量的影响[J]. 植物生态学报, 2022, 46(5): 552-560. |
[10] | 余秋伍, 杨菁, 沈国春. 浙江天童常绿阔叶林林冠结构与群落物种组成的关系[J]. 植物生态学报, 2022, 46(5): 529-538. |
[11] | 王嘉童, 牛春跃, 胡天宇, 李文楷, 刘玲莉, 郭庆华, 苏艳军. 三维辐射传输模型在森林生态系统研究中的应用与展望[J]. 植物生态学报, 2022, 46(10): 1200-1218. |
[12] | 田佳玉, 王彬, 张志明, 林露湘. 光谱多样性在植物多样性监测与评估中的应用[J]. 植物生态学报, 2022, 46(10): 1129-1150. |
[13] | 李孝龙, 周俊, 彭飞, 钟宏韬, Hans LAMBERS. 植物养分捕获策略随成土年龄的变化及生态学意义[J]. 植物生态学报, 2021, 45(7): 714-727. |
[14] | 孙浩哲, 王襄平, 张树斌, 吴鹏, 杨蕾. 阔叶红松林不同演替阶段凋落物产量及其稳定性的影响因素[J]. 植物生态学报, 2021, 45(6): 594-605. |
[15] | 姜鑫, 牛克昌. 青藏高原禾草混播对土壤微生物多样性的影响[J]. 植物生态学报, 2021, 45(5): 539-551. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19