植物生态学报 ›› 2022, Vol. 46 ›› Issue (5): 529-538.DOI: 10.17521/cjpe.2022.0047
所属专题: 植被生态学
收稿日期:
2022-01-29
接受日期:
2022-04-10
出版日期:
2022-05-20
发布日期:
2022-04-15
通讯作者:
沈国春
作者简介:
* (gcshen@des.ecnu.edu.cn)基金资助:
YU Qiu-Wu1,2, YANG Jing1,2, SHEN Guo-Chun1,2,3,*()
Received:
2022-01-29
Accepted:
2022-04-10
Online:
2022-05-20
Published:
2022-04-15
Contact:
SHEN Guo-Chun
Supported by:
摘要:
森林林冠结构能改变林下微气候条件, 可能会形成独立于地面生境的空间结构, 进而影响群落物种组成差异。该研究利用机载激光雷达获取浙江天童20 hm2常绿阔叶林样地的高精度林冠结构信息, 初步探讨了林冠结构与群落物种组成差异的关系, 结果表明: (1)未考虑林冠结构时, 独立于地面生境的空间结构是天童样地群落物种组成差异的重要影响因子, 在100 m2、400 m2、2 500 m2样方尺度上, 其对群落物种组成差异的解释率分别为25.2%、28.1%、8.0%。(2)考虑林冠结构后, 林冠结构使独立于地面生境的空间结构对群落物种组成差异的解释率降低了约1/3 (26.2%-36.0%)。(3)林冠结构因子中, 林冠高度对群落物种组成差异影响最大, 其次为林冠内部结构; 随样方尺度增大, 林冠高度对群落物种组成差异的影响降低, 林冠内部结构的影响逐渐增加。该研究结果证明了林冠结构是独立于地面生境的空间结构的主要驱动因子, 对天童植物群落物种组成差异具有不可忽视的重要作用。这些结果明晰了林冠结构因子中林冠高度和内部结构的重要性。
余秋伍, 杨菁, 沈国春. 浙江天童常绿阔叶林林冠结构与群落物种组成的关系. 植物生态学报, 2022, 46(5): 529-538. DOI: 10.17521/cjpe.2022.0047
YU Qiu-Wu, YANG Jing, SHEN Guo-Chun. Relationship between canopy structure and species composition of an evergreen broadleaf forest in Tiantong region, Zhejiang, China. Chinese Journal of Plant Ecology, 2022, 46(5): 529-538. DOI: 10.17521/cjpe.2022.0047
图1 浙江天童常绿阔叶林林冠结构示意图。由激光雷达获取的森林三维点云数据, 分别划分为高度结构和内部结构类型(详见表1)。
Fig. 1 Schematic illustration of canopy structure of evergreen broadleaf forest in Tiantong, Zhejiang Province. The 3D point cloud data of the forest acquired by LiDAR was classified as the height structure and internal structure (see Table 1 for details).
结构类别 Structure type | 冠层结构指数 Canopy structure index | 描述 Description | 文献 Reference |
---|---|---|---|
高度结构 Height structure | 最大树高 Maximum tree height | 群落中树冠高度的最大值 The maximum value of canopy height in a community | Cazzolla-Gatti et al., 2017 |
95%分位数高度 95% quantile height | 近似于森林冠层峰值高度, 由首次回波统计获得 Approximates the peak height of the forest canopy, obtained from the point cloud of the first echo | Riaño et al., | |
标准差(首次回波) Standard deviation (first echo) | 反映单木树高的离散程度 Describe the dispersion of each individual tree | Nelson et al., | |
内部结构 Internal structure | 叶高度多样性 Foliage height diversity | 描述植被剖面的叶密度和高度分布 Describe the density and height distribution of foliage in a vegetation profile | Clawges et al., |
植被穿透率 Vegetation permeability | 植被首次回波在二次回波中的比例, 由首次回波和所有二次回波计算所得 Ratio of the first echo of vegetation to the second echo, calculated from the first echo and all the second echoes | Moffiet et al., | |
偏度(首次回波) Skewness (first echo) | 与峰态(首次回波)高度相关 Highly correlated with kurtosis (first echo) | Antonarakis et al., | |
郁闭度 Closure | 冠层的郁闭度 Closure of the canopy | Korhonen et al., |
表1 基于激光雷达提取的浙江天童常绿阔叶林林冠层结构参数
Table 1 Forest canopy structure parameters of LiDAR-derived in Tiantong evergreen broadleaf forest, Zhejiang Province
结构类别 Structure type | 冠层结构指数 Canopy structure index | 描述 Description | 文献 Reference |
---|---|---|---|
高度结构 Height structure | 最大树高 Maximum tree height | 群落中树冠高度的最大值 The maximum value of canopy height in a community | Cazzolla-Gatti et al., 2017 |
95%分位数高度 95% quantile height | 近似于森林冠层峰值高度, 由首次回波统计获得 Approximates the peak height of the forest canopy, obtained from the point cloud of the first echo | Riaño et al., | |
标准差(首次回波) Standard deviation (first echo) | 反映单木树高的离散程度 Describe the dispersion of each individual tree | Nelson et al., | |
内部结构 Internal structure | 叶高度多样性 Foliage height diversity | 描述植被剖面的叶密度和高度分布 Describe the density and height distribution of foliage in a vegetation profile | Clawges et al., |
植被穿透率 Vegetation permeability | 植被首次回波在二次回波中的比例, 由首次回波和所有二次回波计算所得 Ratio of the first echo of vegetation to the second echo, calculated from the first echo and all the second echoes | Moffiet et al., | |
偏度(首次回波) Skewness (first echo) | 与峰态(首次回波)高度相关 Highly correlated with kurtosis (first echo) | Antonarakis et al., | |
郁闭度 Closure | 冠层的郁闭度 Closure of the canopy | Korhonen et al., |
图3 天童森林群落林冠结构总解释率中各结构类型占比(平均值±标准误)。高度结构: 最大树高、95%分位数高度、标准差(首次回波)。内部结构: 叶高度多样性、植被穿透率、偏度(首次回波)、郁闭度(各结构类型的定义参见表1)。
Fig. 3 Contribution of each structure type in the total explanation of canopy structure in Tiantong forest communities (mean ± SE). Height structure included maximum tree height, 95% quantile height and standard deviation (first echo). Internal structure included foliage height diversity, vegetation permeability, skewness (first echo) and closure (see Table 1 for the definition of each structural type).
图2 不同样方尺度上各变量对天童森林群落物种组成差异的解释率。A, 基于地面生境的方差分解分析, 生境和空间结构对群落物种组成的解释率。B, 加入林冠结构后, 不同样方尺度上, 生境和空间结构对群落物种组成的解释率。C, 加入林冠结构后, 不同样方尺度上, 空间结构中由林冠结构解释的比例。R2adj, 调整后的R2。
Fig. 2 Adjusted R2 (R2adj) of different explanatory variables for species compositional differences in Tiantong forest communities. A, R2adj of habitat and spatial structure on species composition based on the ground-level habitat variance partitioning analysis. B, R2adj of habitat and spatial structure on species composition with the addition of canopy structure. C, Proportion of spatial structure explained by canopy structure at different plot scales with the addition of canopy structure.
[1] |
Antonarakis AS, Richards KS, Brasington J (2008). Object-based land cover classification using airborne LiDAR. Remote Sensing of Environment, 112, 2988-2998.
DOI URL |
[2] |
Augspurger CK, Cheeseman JM, Salk CF (2005). Light gains and physiological capacity of understorey woody plants during phenological avoidance of canopy shade. Functional Ecology, 19, 537-546.
DOI URL |
[3] | Bi HX, Tan XY, Li XY (2005). Digital terrain analysis based on DEM. Journal of Beijing Forestry University, 27(2), 49-53. |
[ 毕华兴, 谭秀英, 李笑吟 (2005). 基于DEM的数字地形分析. 北京林业大学学报, 27(2), 49-53.] | |
[4] |
Borcard D, Legendre P (1994). Environmental control and spatial structure in ecological communities: an example using oribatid mites (Acari, Oribatei). Environmental and Ecological Statistics, 1, 37-61.
DOI URL |
[5] |
Borcard D, Legendre P, Avois-Jacquet C, Tuomisto H (2004). Dissecting the spatial structure of ecological data at multiple scales. Ecology, 85, 1826-1832.
DOI URL |
[6] |
Cazzolla-Gatti R, Di-Paola A, Bombelli A, Noce S, Valentini R (2017). Exploring the relationship between canopy height and terrestrial plant diversity. Plant Ecology, 218, 899-908.
DOI URL |
[7] |
Chambers JQ, Robertson AL, Carneiro VMC, Lima AJN, Smith ML, Plourde LC, Higuchi N (2009). Hyperspectral remote detection of niche partitioning among canopy trees driven by blowdown gap disturbances in the Central Amazon. Oecologia, 160, 107-117.
DOI PMID |
[8] |
Chang LW, Zelený D, Li CF, Chiu ST, Hsieh CF (2013). Better environmental data may reverse conclusions about niche- and dispersal-based processes in community assembly. Ecology, 94, 2145-2151.
PMID |
[9] |
Chen XW, Niu JZ (2020). Relationships between tree height and tree species richness at small scales. Acta Oecologica, 109, 103668. DOI: 10.1016/j.actao.2020.103668.
DOI URL |
[10] |
Clawges R, Vierling K, Vierling L, Rowell E (2008). The use of airborne lidar to assess avian species diversity, density, and occurrence in a pine/aspen forest. Remote Sensing of Environment, 112, 2064-2073.
DOI URL |
[11] |
Conti L, de Bello F, Lepš J, Acosta ATR, Carboni M (2017). Environmental gradients and micro-heterogeneity shape fine-scale plant community assembly on coastal dunes. Journal of Vegetation Science, 28, 762-773.
DOI URL |
[12] |
de Frenne P, Lenoir J, Luoto M, Scheffers BR, Zellweger F, Aalto J, Ashcroft MB, Christiansen DM, Decocq G, de Pauw K, Govaert S, Greiser C, Gril E, Hampe A, Jucker T, et al. (2021). Forest microclimates and climate change: importance, drivers and future research agenda. Global Change Biology, 27, 2279-2297.
DOI URL |
[13] |
Diggle PJ, Tawn JA, Moyeed RA (1998). Model-based geostatistics. Journal of the Royal Statistical Society: Series C (Applied Statistics), 47, 299-350.
DOI URL |
[14] |
Douda J, Doudová-Kochánková J, Boublík K, Drašnarová A (2012). Plant species coexistence at local scale in temperate swamp forest: test of habitat heterogeneity hypothesis. Oecologia, 169, 523-534.
DOI PMID |
[15] |
Fang JY, Shen ZH, Cui HT (2004). Ecological characteristics of mountains and research issues of mountain ecology. Biodiversity Science, 12, 10-19.
DOI URL |
[ 方精云, 沈泽昊, 崔海亭 (2004). 试论山地的生态特征及山地生态学的研究内容. 生物多样性, 12, 10-19.]
DOI |
|
[16] | Finzi AC, Canham CD, van Breemen N (1998). Canopy tree- soil interactions within temperate forests: species effects on pH and cations. Ecological Applications, 8, 447-454. |
[17] |
Grinnell J (1917). The niche-relationships of the California thrasher. The Auk, 34, 427-433.
DOI URL |
[18] |
Gross N le Bagousse-Pinguet Y, Liancourt P, Saiz H, Violle C, Munoz F, (2021). Unveiling ecological assembly rules from commonalities in trait distributions. Ecology Letters, 24, 1668-1680.
DOI URL |
[19] |
Hewitt JE, Thrush SF, Halliday J, Duffy C (2005). The importance of small-scale habitat structure for maintaining beta diversity. Ecology, 86, 1619-1626.
DOI URL |
[20] |
Huang JX, Ye WH, Lian JY, Cao HL (2014). Detecting the influence of phylogenetic structure, environmental factors and PCNM factors in population dynamics in a subtropical forest community in Guangdong, China. Chinese Science Bulletin, 59, 3471-3478.
DOI URL |
[ 黄建雄, 叶万辉, 练琚愉, 曹洪麟 (2014). 谱系结构、环境因子及空间因子对群落动态变化的影响. 科学通报, 59, 3471-3478.] | |
[21] |
Jin Y, Qian H, Yu MJ (2015). Phylogenetic structure of tree species across different life stages from seedlings to canopy trees in a subtropical evergreen broad-leaved forest. PLOS ONE, 10, e0131162. DOI: 10.1371/journal.pone.0131162.
DOI |
[22] | John R, Dalling JW, Harms KE, Yavitt JB, Stallard RF, Mirabello M, Hubbell SP, Valencia R, Navarrete H, Vallejo M, Foster RB (2007). Soil nutrients influence spatial distributions of tropical tree species. Proceedings of the National Academy of Sciences of the United States of America, 104, 864-869. |
[23] |
Korhonen L, Korpela I, Heiskanen J, Maltamo M (2011). Airborne discrete-return LiDAR data in the estimation of vertical canopy cover, angular canopy closure and leaf area index. Remote Sensing of Environment, 115, 1065- 1080.
DOI URL |
[24] |
Kraft NJB, Adler PB, Godoy O, James EC, Fuller S, Levine JM (2015). Community assembly, coexistence and the environmental filtering metaphor. Functional Ecology, 29, 592-599.
DOI URL |
[25] |
Lai JS, Zou Y, Zhang JL, Peres-Neto PR (2022). Generalizing hierarchical and variation partitioning in multiple regression and canonical analyses using the rdacca.hp R package. Methods in Ecology and Evolution, 13, 782-788.
DOI URL |
[26] |
Legendre P, Borcard D, Peres-Neto PR (2005). Analyzing beta diversity: partitioning the spatial variation of community composition data. Ecological Monographs, 75, 435-450.
DOI URL |
[27] |
Legendre P, Fortin MJ (1989). Spatial pattern and ecological analysis. Vegetatio, 80, 107-138.
DOI URL |
[28] |
Legendre P, Mi XC, Ren HB, Ma KP, Yu MJ, Sun IF, He FL (2009). Partitioning beta diversity in a subtropical broad-leaved forest of China. Ecology, 90, 663-674.
PMID |
[29] |
Lowman MD, Moffett M (1993). The ecology of tropical rain forest canopies. Trends in Ecology & Evolution, 8, 104-107.
DOI URL |
[30] |
Makoto K, Wilson SD (2019). When and where does dispersal limitation matter in primary succession? Journal of Ecology, 107, 559-565.
DOI URL |
[31] |
Moffiet T, Mengersen K, Witte C, King R, Denham R (2005). Airborne laser scanning: exploratory data analysis indicates potential variables for classification of individual trees or forest stands according to species. ISPRS Journal of Photogrammetry and Remote Sensing, 59, 289-309.
DOI URL |
[32] |
Mori AS, Isbell F, Seidl R (2018). β-diversity, community assembly, and ecosystem functioning. Trends in Ecology & Evolution, 33, 549-564.
DOI URL |
[33] |
Myers JA, Chase JM, Jiménez I, Jørgensen PM, Araujo- Murakami A, Paniagua-Zambrana N, Seidel R (2013). Beta-diversity in temperate and tropical forests reflects dissimilar mechanisms of community assembly. Ecology Letters, 16, 151-157.
DOI URL |
[34] | Nakamura A, Kitching RL, Cao M, Creedy TJ, Fayle TM, Freiberg M, Hewitt CN, Itioka T, Koh LP, Ma KP, Malhi Y, Mitchell A, Novotny V, Ozanne CMP, Song L, Wang H, Ashton LA (2017). Forests and their canopies: achievements and horizons in canopy science. Trends in Ecology & Evolution, 32, 438-451. |
[35] |
Nelson R, Krabill W, Tonelli J (1988). Estimating forest biomass and volume using airborne laser data. Remote Sensing of Environment, 24, 247-267.
DOI URL |
[36] | Opedal ØH, Armbruster WS, Graae BJ (2015). Linking small-scale topography with microclimate, plant species diversity and intra-specific trait variation in an alpine landscape. Plant Ecology & Diversity, 8, 305-315. |
[37] |
Riaño D, Valladares F, Condés S, Chuvieco E (2004). Estimation of leaf area index and covered ground from airborne laser scanner (Lidar) in two contrasting forests. Agricultural and Forest Meteorology, 124, 269-275.
DOI URL |
[38] |
Rüger N, Huth A, Hubbell SP, Condit R (2009). Response of recruitment to light availability across a tropical lowland rain forest community. Journal of Ecology, 97, 1360-1368.
DOI URL |
[39] |
Scheffers BR, Evans TA, Williams SE, Edwards DP (2014). Microhabitats in the tropics buffer temperature in a globally coherent manner. Biology Letters, 10, 20140819. DOI: 10.1098/rsbl.2014.0819.
DOI |
[40] |
Shi H, Xie FL, Zhou Q, Shu X, Zhang KR, Dang CQ, Feng SY, Zhang QF, Dang HS (2019). Effects of topography on tree community structure in a deciduous broad-leaved forest in north-central China. Forests, 10, 53. DOI: 10.3390/f10010053.
DOI URL |
[41] |
Tang H, Dubayah R (2017). Light-driven growth in Amazon evergreen forests explained by seasonal variations of vertical canopy structure. Proceedings of the National Academy of Sciences of the United States of America, 114, 2640-2644.
DOI PMID |
[42] |
Torresani M, Rocchini D, Sonnenschein R, Zebisch M, Hauffe HC, Heym M, Pretzsch H, Tonon G (2020). Height variation hypothesis: a new approach for estimating forest species diversity with CHM LiDAR data. Ecological Indicators, 117, 106520. DOI: 10.1016/j.ecolind.2020.106520.
DOI URL |
[43] |
Whittaker RH (1972). Evolution and measurement of species diversity. TAXON, 21, 213-251.
DOI URL |
[44] |
Yang QS, Ma ZP, Xie YB, Zhang ZG, Wang ZH, Liu HM, Li P, Zhang N, Wang DL, Yang HB, Fang XF, Yan ER, Wang XH (2011). Community structure and species composition of an evergreen broad-leaved forest in Tiantong’s 20 ha dynamic plot, Zhejiang Province, Eastern China. Biodiversity Science, 19, 215-223.
DOI URL |
[ 杨庆松, 马遵平, 谢玉彬, 张志国, 王樟华, 刘何铭, 李萍, 张娜, 王达力, 杨海波, 方晓峰, 阎恩荣, 王希华 (2011). 浙江天童20 ha常绿阔叶林动态监测样地的群落特征. 生物多样性, 19, 215-223.]
DOI |
|
[45] |
Yang QS, Shen GC, Liu HM, Wang ZH, Ma ZP, Fang XF, Zhang J, Wang XH (2016). Detangling the effects of environmental filtering and dispersal limitation on aggregated distributions of tree and shrub species: life stage matters. PLOS ONE, 11, e0156326. DOI: 10.1371/journal.pone.0156326.
DOI |
[46] |
Yu CT, Fan CY, Zhang CY, Zhao XH, van Gadow K (2021). Decomposing spatial β-diversity in the temperate forests of Northeastern China. Ecology and Evolution, 11, 11362- 11372.
DOI URL |
[47] |
Zellweger F, Baltensweiler A, Schleppi P, Huber M, Küchler M, Ginzler C, Jonas T (2019). Estimating below-canopy light regimes using airborne laser scanning: an application to plant community analysis. Ecology and Evolution, 9, 9149-9159.
DOI |
[48] |
Zhang N, Wang XH, Zheng ZM, Ma ZP, Yang QS, Fang XF, Xie YB (2012). Spatial heterogeneity of soil properties and its relationships with terrain factors in broadleaved forest in Tiantong of Zhejiang Province, East China. Chinese Journal of Applied Ecology, 23, 2361-2369.
PMID |
[ 张娜, 王希华, 郑泽梅, 马遵平, 杨庆松, 方晓峰, 谢玉彬 (2012). 浙江天童常绿阔叶林土壤的空间异质性及其与地形的关系. 应用生态学报, 23, 2361-2369.]
PMID |
|
[49] |
Zhao XQ, Guo QH, Su YJ, Xue BL (2016). Improved progressive TIN densification filtering algorithm for airborne LiDAR data in forested areas. ISPRS Journal of Photogrammetry and Remote Sensing, 117, 79-91.
DOI URL |
[50] |
Zhou CY, Wang B, Deng Y, Wu JJ, Cao M, Lin LX (2020). Canopy structure is an important factor driving local-scale woody plant functional beta diversity. Biodiversity Science, 28, 1546-1557.
DOI URL |
[ 周昌艳, 王彬, 邓云, 乌俊杰, 曹敏, 林露湘 (2020). 林冠结构是局域尺度木本植物功能性状beta多样性形成的重要驱动力. 生物多样性, 28, 1546-1557.]
DOI |
[1] | 王进, 朱江, 艾训儒, 姚兰, 黄小, 吴漫玲, 朱强, 洪建峰. 湖北星斗山地形变化对不同生活型植物叶功能性状的影响[J]. 植物生态学报, 2019, 43(5): 447-457. |
[2] | Pierre Legendre. β-多样性的研究:应用多元回归和典范分析研究生态方差的分解[J]. 植物生态学报, 2007, 31(5): 976-981. |
[3] | 刘振国, 李镇清. 植物群落中物种小尺度空间结构研究[J]. 植物生态学报, 2005, 29(6): 1020-1028. |
[4] | 孙雪峰, 张振万, 雍世鹏. 内蒙古锡林郭勒草原植被结构的遥感图象分析[J]. 植物生态学报, 1990, 14(3): 247-257. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19