植物生态学报 ›› 2007, Vol. 31 ›› Issue (5): 976-981.DOI: 10.17521/cjpe.2007.0124
所属专题: 生物多样性
收稿日期:
2006-08-04
接受日期:
2006-09-19
出版日期:
2007-09-30
发布日期:
2007-09-30
作者简介:
E-mail: Pierre.Legendre@umontreal.ca
Received:
2006-08-04
Accepted:
2006-09-19
Online:
2007-09-30
Published:
2007-09-30
摘要:
β-多样性刻画了地理区域中不同地点物种组成的变化,是理解生态系统功能、生物多样性保护和生态系统管理的一个重要概念。该文介绍了如何从群落组成,相关环境和空间数据角度去分析β-多样性。β-多样性可以通过计算每个地点的多样性指数,进而对可能解释点之间差异的因子所作的假设进行检验来研究。也可以将涵盖所有点的群落组成数据表看作是一系列环境和空间变量的函数,进行直接分析。这种分析应用统计方法将多样性指数或群落组成数据表的方差进行关于环境和空间变量的分解。该文对方差分解进行阐述。方差分解是利用环境和空间变量来解释β-多样性的一种方法。β-多样性是生态学家用来比较不同地点或同一地点不同生态群落的一种手段。方差分解就是将群落组成数据表的总方差无偏分解成由各个解释变量所决定的子方差。调整的决定系数提供了针对多元回归和典范冗余分析的无偏估计。方差分解后,可以对感兴趣的方差解释部分进行显著性检验,同时绘出基于这部分方差解释的预测图。
Pierre Legendre. β-多样性的研究:应用多元回归和典范分析研究生态方差的分解. 植物生态学报, 2007, 31(5): 976-981. DOI: 10.17521/cjpe.2007.0124
Pierre Legendre. STUDYING BETA DIVERSITY: ECOLOGICAL VARIATION PARTITIONING BY MULTIPLE REGRESSION AND CANONICAL ANALYSIS. Chinese Journal of Plant Ecology, 2007, 31(5): 976-981. DOI: 10.17521/cjpe.2007.0124
图1 表示将对应变量y或应变量矩阵Y的方差分解成自变量矩阵X和W的Venn图(Legendre, 1993) 长方形代表100% y或Y的方差。[b]是由线性模型X和线性模型W所解释方差的交集(不是交互作用)。改自 Legendre (1993)
Fig.1 Venn diagram representing the partition of the variation of a response variable Y or a response matrix Y between two sets of explanatory variables X and W (Legendre, 1993) The rectangle represents 100% of the variation in y or Y. Fraction [b] is the intersection (not the interaction) of the amounts of variation explained by linear models of X and W
典范分析 Canonical analyses | 计算R2 Compute R2 (eq. 5) | 计算 Compute | 显著性检验可行性 Tested for significance |
---|---|---|---|
Y~X | R2 of Y~X | [a+b]= | 可行Yes |
Y~W | R2 of Y~W | [b+c]= | 可行Yes |
Y~(X,W) | R2 of Y~(X,W) | [a+b+c]= | 可行Yes |
[a]=[a+b]-[b] | 可行Yes | ||
[b]=[a+b]+[b+c]-[a+b+c] | 不可行No | ||
[c]=[b+c]-[b] | 可行Yes | ||
Residuals=[d]=1-[a+b+c] | 不可行No |
表1 计算图1所示调整的方差组分[a] 到 [d]的方法(需使用3个多元回归或典范分析)
Table 1 Method for calculating the adjusted fractions of variation [a] to [d] depicted inFig. 1 (Three multiple regressions or canonical analyses are required)
典范分析 Canonical analyses | 计算R2 Compute R2 (eq. 5) | 计算 Compute | 显著性检验可行性 Tested for significance |
---|---|---|---|
Y~X | R2 of Y~X | [a+b]= | 可行Yes |
Y~W | R2 of Y~W | [b+c]= | 可行Yes |
Y~(X,W) | R2 of Y~(X,W) | [a+b+c]= | 可行Yes |
[a]=[a+b]-[b] | 可行Yes | ||
[b]=[a+b]+[b+c]-[a+b+c] | 不可行No | ||
[c]=[b+c]-[b] | 可行Yes | ||
Residuals=[d]=1-[a+b+c] | 不可行No |
[1] | Anderson MJ, Legendre P (1999). An empirical comparison of permutation methods for tests of partial regression coefficients in a linear model. Journal of Statistical Computation and Simulation, 62,271-303. |
[2] |
Bell G (2001). Neutral macroecology. Science, 293,2413-2418.
DOI URL PMID |
[3] | Borcard D, Legendre P (1994). Environmental control and spatial structure in ecological communities: an example using oribatid mites (Acari, Oribatei). Environmental and Ecological Statistics, 1,37-53. |
[4] | Borcard D, Legendre P (2002). All-scale spatial analysis of ecological data by means of principal coordinates of neighbour matrices. Ecological Modelling, 153,51-68. |
[5] | Borcard D, Legendre P, Avois-Jacquet C, Tuomisto H (2004). Dissecting the spatial structure of ecological data at multiple scales. Ecology, 85,1826-1832. |
[6] | Borcard D, Legendre P, Drapeau P (1992). Partialling out the spatial component of ecological variation. Ecology, 73,1045-1055. |
[7] | Dray S, Legendre P, Peres-Neto PR (2006). Spatial modelling: a comprehensive framework for principal coordinate analysis of neighbour matrices (PCNM). Ecological Modelling, 196,483-493. |
[8] | Ezekiel M (1930). Methods of Correlation Analysis. John Wiley and Sons, New York. |
[9] | He F (2005). Deriving a neutral model of species abundance from fundamental mechanisms of population dynamics. Functional Ecology, 19,187-193. |
[10] | Hubbell SP (2001). The Unified Neutral Theory of Biodiversity and Biogeography. Princeton University Press, Princeton , New Jersey. |
[11] | Legendre P (1990). Quantitative methods and biogeographic analysis. In: Garbary DJ, South RGeds. Evolutionary Biogeography of the Marine Algae of the North Atlantic. NATO ASI Series, Vol. G 22. Springer-Verlag, Berlin,9-34. |
[12] | Legendre P (1993). Spatial autocorrelation: trouble or new paradigm? Ecology, 74,1659-1673. |
[13] | Legendre P, Borcard D, Peres-Neto PR (2005). Analyzing beta diversity: partitioning the spatial variation of community composition data. Ecological Monographs, 75,435-450. |
[14] |
Legendre P, Gallagher ED (2001). Ecologically meaningful transformations for ordination of species data. Oecologia, 129,271-280.
DOI URL PMID |
[15] | Legendre P, Legendre L (1998). Numerical Ecology 2nd English edn. Elsevier Science BV, Amsterdam. |
[16] | Manly BJF (1997). Randomization, Bootstrap and Monte Carlo methods in biology 2nd edn. Chapman and Hall, London. |
[17] | Miller JK (1975). The sampling distribution and a test for the significance of the bimultivariate redundancy statistic: a Monte Carlo study. Multivariate Behavioral Research, 10,233-244. |
[18] | Miller JK, Farr SD (1971). Bimultivariate redundancy: a comprehensive measure of interbattery relationship. Multivariate Behavioral Research, 6,313-324. |
[19] | Ohtani K (2000). Bootstrapping R 2 and adjusted R 2 in regression analysis. Economic Modelling, 17,473-483. |
[20] | Oksanen J, Kindt R, Legendre P, O'Hara RB (2007). Vegan: community ecology package version 1.8-5. URL http://cran.r-project.org/. |
[21] |
Peres-Neto PR, Legendre P, Dray S, Borcard D (2006). Variation partitioning of species data matrices: estimation and comparison of fractions. Ecology, 87,2614-2625.
URL PMID |
[22] | Rao CR (1964). The use and interpretation of principal component analysis in applied research. Sankhyaá, Series A, Indian Journal of Statistics, 26,329-358. |
[23] | R Development Core Team (2007). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. URL http://www.R-project.org. |
[24] | ter Braak CJF (1986). Canonical correspondence analysis: a new eigenvector technique for multivariate direct gradient analysis. Ecology, 67,1167-1179. |
[25] | ter Braak CJF (1987a). The analysis of vegetation-environment relationships by canonical correspondence analysis. Vegetatio, 69,69-77. |
[26] | ter Braak CJF (1987b). Ordination. In: Jongman RHG, ter Braak CJF, van Tongeren OFReds. Data Analysis in Community and Landscape Ecology. Pudoc, Wageningen (reissued in 1995 by Cambridge University Press, Cambridge),91-173. |
[27] | ter Braak CJF (1988). CANOCO — a FORTRAN program for Canonical Community Ordination by [partial] [detrended] [canonical] Correspondence Analysis, Principal Component Analysis and Redundancy Analysis (version 2.1). Agricultural Mathematics Group, Ministry of Agriculture and Fisheries, Wageningen. |
[28] | ter Braak CJF, Smilauer P (2002). Canoco Reference Manual and CanoDraw for Windows User's Guide: Software for Canonical Community Ordination (version 4.5). Microcomputer Power, Ithaca, New York. |
[29] | Whittaker RH (1960). Vegetation of the Siskiyou mountains, Oregon and California. Ecological Monographs, 30,279-338. |
[30] | Whittaker RH (1972). Evolution and measurement of species diversity. Taxon, 21,213-251. |
[1] | 陈科宇 邢森 唐玉 孙佳慧 任世杰 张静 纪宝明. 不同草地型土壤丛枝菌根真菌群落特征及其驱动因素[J]. 植物生态学报, 2024, 48(5): 660-674. |
[2] | 张中扬, 宋希强, 任明迅, 张哲. 附生维管植物生境营建作用的生态学功能[J]. 植物生态学报, 2023, 47(7): 895-911. |
[3] | 杨佳绒, 戴冬, 陈俊芳, 吴宪, 刘啸林, 刘宇. 丛枝菌根真菌多样性对植物群落构建和稀有种维持的研究进展[J]. 植物生态学报, 2023, 47(6): 745-755. |
[4] | 张琦, 冯可, 常智慧, 何双辉, 徐维启. 灌丛化对林草交错带植物和土壤微生物的影响[J]. 植物生态学报, 2023, 47(6): 770-781. |
[5] | 冯可, 刘冬梅, 张琦, 安菁, 何双辉. 旅游干扰对松山油松林土壤微生物多样性及群落结构的影响[J]. 植物生态学报, 2023, 47(4): 584-596. |
[6] | 李耀琪, 王志恒. 植物功能生物地理学的研究进展与展望[J]. 植物生态学报, 2023, 47(2): 145-169. |
[7] | 刘尧, 于馨, 于洋, 胡文浩, 赖江山. R程序包“rdacca.hp”在生态学数据分析中的应用: 案例与进展[J]. 植物生态学报, 2023, 47(1): 134-144. |
[8] | 余秋伍, 杨菁, 沈国春. 浙江天童常绿阔叶林林冠结构与群落物种组成的关系[J]. 植物生态学报, 2022, 46(5): 529-538. |
[9] | 马和平, 王瑞红, 屈兴乐, 袁敏, 慕金勇, 李金航. 不同生境对藏东南地面生苔藓多样性和生物量的影响[J]. 植物生态学报, 2022, 46(5): 552-560. |
[10] | 田佳玉, 王彬, 张志明, 林露湘. 光谱多样性在植物多样性监测与评估中的应用[J]. 植物生态学报, 2022, 46(10): 1129-1150. |
[11] | 李孝龙, 周俊, 彭飞, 钟宏韬, Hans LAMBERS. 植物养分捕获策略随成土年龄的变化及生态学意义[J]. 植物生态学报, 2021, 45(7): 714-727. |
[12] | 孙浩哲, 王襄平, 张树斌, 吴鹏, 杨蕾. 阔叶红松林不同演替阶段凋落物产量及其稳定性的影响因素[J]. 植物生态学报, 2021, 45(6): 594-605. |
[13] | 姜鑫, 牛克昌. 青藏高原禾草混播对土壤微生物多样性的影响[J]. 植物生态学报, 2021, 45(5): 539-551. |
[14] | 井新, 贺金生. 生物多样性与生态系统多功能性和多服务性的关系: 回顾与展望[J]. 植物生态学报, 2021, 45(10): 1094-1111. |
[15] | 李周园, 叶小洲, 王少鹏. 生态系统稳定性及其与生物多样性的关系[J]. 植物生态学报, 2021, 45(10): 1127-1139. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19