植物生态学报 ›› 2021, Vol. 45 ›› Issue (6): 594-605.DOI: 10.17521/cjpe.2020.0372
所属专题: 凋落物
收稿日期:
2020-11-11
接受日期:
2021-03-19
出版日期:
2021-06-20
发布日期:
2021-09-09
通讯作者:
ORCID: *王襄平: 0000-0001-8158-560X(wangxiangping@bjfu.edu.cn)
作者简介:
*(wangxiangping@bjfu.edu.cn)
基金资助:
SUN Hao-Zhe, WANG Xiang-Ping*(), ZHANG Shu-Bin, WU Peng, YANG Lei
Received:
2020-11-11
Accepted:
2021-03-19
Online:
2021-06-20
Published:
2021-09-09
Contact:
WANG Xiang-Ping
Supported by:
摘要:
凋落物产量是生态系统净初级生产力的重要组分, 也是连接地下与地上生态过程的关键环节。但在森林演替进程中, 生物多样性、林分因子、功能性状如何共同影响凋落物产量及其时间稳定性, 其机理有待进一步研究。该文在阔叶红松(Pinus koraiensis)林分布的北界黑龙江胜山保护区, 选择从演替早期到红松原始林的4个演替(或发育)阶段, 连续3年测定凋落物产量, 以3年凋落物产量的变异系数的倒数(1/CV)反映其稳定性。采用层次划分和变异分离等方法研究林分因子(最大树高、胸径、胸高断面积、林冠空隙度)、群落水平功能性状(叶碳、氮含量及比叶面积)和乔木多样性(物种、功能、谱系多样性)对凋落物产量及其稳定性的相对作用大小。结果表明, 演替早期凋落物产量显著低于后3个演替阶段, 从演替中期至演替晚期凋落物产量无显著差异。凋落物产量的稳定性随演替进展显著提高。对变量重要性的评价表明, 凋落物产量主要受林分因子(最大树高、胸高断面积、林冠空隙度)和性状(叶碳含量)的影响, 物种丰富度也起一定作用; 而功能多样性对于凋落物稳定性的作用最大, 其次是林分因子(如最大胸径)。生物多样性对凋落物产量的独立解释力仅为0.41%, 而对其稳定性的独立解释力为33.12%, 说明多样性对凋落物稳定性有着独立于林分因子、性状之外的重要作用。同时, 林分因子、生物多样性、性状之间存在较强的协同作用(最高达53.8%), 说明这3种因素共同作用于凋落物产量及其稳定性。研究结果表明, 森林的恢复演替不仅能提高森林生产力, 还可有效提高生态系统稳定性, 因此, 保护原始林及促进森林恢复演替是提高生态系统功能的有效手段。
孙浩哲, 王襄平, 张树斌, 吴鹏, 杨蕾. 阔叶红松林不同演替阶段凋落物产量及其稳定性的影响因素. 植物生态学报, 2021, 45(6): 594-605. DOI: 10.17521/cjpe.2020.0372
SUN Hao-Zhe, WANG Xiang-Ping, ZHANG Shu-Bin, WU Peng, YANG Lei. Abiotic and biotic modulators of litterfall production and its temporal stability during the succession of broad-leaf and Korean pine mixed forest. Chinese Journal of Plant Ecology, 2021, 45(6): 594-605. DOI: 10.17521/cjpe.2020.0372
演替阶段 Succession stage | 平均树高 Mean tree height (m) | 平均胸径 Mean DBH (cm) | 最大树高 Hmax (m) | 最大胸径 DBHmax (cm) | 林分密度 Stem density (tree·hm-2) | 林冠空隙度 Gap fraction (%) | 胸高断面积 TBA (m2·hm-2) |
---|---|---|---|---|---|---|---|
早期 Early stage | 13.3 | 13.2 | 22.6 | 29.8 | 853 | 32.1 | 14.8 |
中期 Middle stage | 8.9 | 11.1 | 24.3 | 43.8 | 1 577 | 13.1 | 30.9 |
中晚期 Mid-late stage | 12.0 | 11.9 | 28.9 | 51.8 | 1 723 | 15.9 | 21.4 |
晚期 Late stage | 13.1 | 16.6 | 28.6 | 67.7 | 1 180 | 6.6 | 42.4 |
表1 黑龙江胜山保护区阔叶红松林各演替阶段样地的林分特征
Table 1 Stand characteristics for plots of different succession stages of broadleaf Korean pine forest in the Shengshan Nature Reserve, Heilongjiang Province of China
演替阶段 Succession stage | 平均树高 Mean tree height (m) | 平均胸径 Mean DBH (cm) | 最大树高 Hmax (m) | 最大胸径 DBHmax (cm) | 林分密度 Stem density (tree·hm-2) | 林冠空隙度 Gap fraction (%) | 胸高断面积 TBA (m2·hm-2) |
---|---|---|---|---|---|---|---|
早期 Early stage | 13.3 | 13.2 | 22.6 | 29.8 | 853 | 32.1 | 14.8 |
中期 Middle stage | 8.9 | 11.1 | 24.3 | 43.8 | 1 577 | 13.1 | 30.9 |
中晚期 Mid-late stage | 12.0 | 11.9 | 28.9 | 51.8 | 1 723 | 15.9 | 21.4 |
晚期 Late stage | 13.1 | 16.6 | 28.6 | 67.7 | 1 180 | 6.6 | 42.4 |
图1 阔叶红松林不同演替阶段凋落物产量及其稳定性的差异。不同小写字母表示在p < 0.05水平上差异显著。
Fig. 1 Difference in annual litterfall production and its temporal stability among successional stages of Korean pine forest. Different lowercase letters indicate significant differences at p < 0.05 level.
变量 Variable | 凋落物产量 Annual litterfall production | 凋落物产量稳定性 Stability of litterfall production | |
---|---|---|---|
林分因子 Stand factor | 最大树高 Hmax | 0.57** | 0.39* |
最大胸径 DBHmax | 0.45* | 0.55** | |
胸高断面积 TBA | 0.43* | 0.57** | |
林冠空隙度 Gap fraction | -0.68*** | -0.53** | |
功能性状 Functional trait | 叶片碳含量 CWMLC | -0.26 | 0.00 |
叶片氮含量 CWMLN | 0.05 | 0.05 | |
比叶面积 CWMSLA | -0.11 | -0.54** | |
生物多样性 Biodiversity | 物种丰富度 Richness | 0.65** | 0.42* |
物种均匀度 Evenness | 0.59** | 0.28 | |
功能多样性 Rao’s Q | 0.45** | 0.16 | |
系统发育多样性 PD | 0.32 | 0.24 |
表2 阔叶红松林不同演替阶段凋落物产量及其稳定性与各解释变量的决定系数(R2)
Table 2 Coefficients of determination (R2) for different factors in explaining annual litterfall production and its temporal stability across succesional stages of Korean pine forest
变量 Variable | 凋落物产量 Annual litterfall production | 凋落物产量稳定性 Stability of litterfall production | |
---|---|---|---|
林分因子 Stand factor | 最大树高 Hmax | 0.57** | 0.39* |
最大胸径 DBHmax | 0.45* | 0.55** | |
胸高断面积 TBA | 0.43* | 0.57** | |
林冠空隙度 Gap fraction | -0.68*** | -0.53** | |
功能性状 Functional trait | 叶片碳含量 CWMLC | -0.26 | 0.00 |
叶片氮含量 CWMLN | 0.05 | 0.05 | |
比叶面积 CWMSLA | -0.11 | -0.54** | |
生物多样性 Biodiversity | 物种丰富度 Richness | 0.65** | 0.42* |
物种均匀度 Evenness | 0.59** | 0.28 | |
功能多样性 Rao’s Q | 0.45** | 0.16 | |
系统发育多样性 PD | 0.32 | 0.24 |
图2 最终多元模型中保留的各变量对于凋落物产量(A)和凋落物产量稳定性(B)的相对重要性的层次划分分析。CWMLC, 叶片碳含量; CWMLN, 叶片氮含量; CWMSLA, 比叶面积; DBHmax, 最大胸径; Hmax, 最大树高; PD, 系统发育多样性; Rao’s Q, Rao二次熵; Richness, 物种丰富度; TBA, 胸高断面积。
Fig. 2 Relative importance of variables retained in the models explaining litterfall production (A) and temporal stability of litterfall (B), as obtained by the hierarchical partitioning analyses. CWMLC and CWMLN, community weighted mean of leaf carbon and nitrogen content, respectively; CWMSLA, community weighted mean of specific leaf area; DBHmax, maximum diameter at breast height; Hmax, maximum tree height; PD, phylogenetic diversity; Rao’s Q, Rao’s quadratic entropy; TBA, total basal area.
图3 最终多元模型中保留的林分因子、功能性状和生物多样性变量对凋落物产量(A)和凋落物产量稳定性(B)影响的变异分离图。a, b, c, 3种因素各自的独立作用; d, e, f, 两因素之间的协同作用; g, 3种因素之间的协同作用。
Fig. 3 Variance partitioning for the effects of stand factors, functional traits and biodiversity factors retained in the models on litterfall production (A) and temporal stability of litterfall (B). a, b, c, the independent effects by each of the three factors; d, e, f, the joint effects between two factors; g, the joint effect among three factors.
[1] | Aerts R, Chapin III FS (1999). The mineral nutrition of wild plants revisited: a re-evaluation of processes and patterns. Advances in Ecological Research, 30, 1-67. |
[2] |
Albrektson A (1988). Needle litterfall in stands of Pinus sylvestris L. in Sweden, in relation to site quality, stand age and latitude. Scandinavian Journal of Forest Research, 3, 333-342.
DOI URL |
[3] |
Ali A, Lin SL, He JK, Kong FM, Yu JH, Jiang HS (2019). Big-sized trees overrule remaining treesʼ attributes and species richness as determinants of aboveground biomass in tropical forests. Global Change Biology, 25, 2810-2824.
DOI URL |
[4] |
Anderson KJ (2007). Temporal patterns in rates of community change during succession. The American Naturalist, 169, 780-793.
DOI URL |
[5] | Atkins JW, Fahey RT, Hardiman BS, Gough CM (2018). Forest canopy structural complexity and light absorption relationships at the subcontinental scale. Journal of Geophysical Research, 123, 1387-1405. |
[6] |
Cadotte MW, Cavender-Bares J, Tilman D, Oakley TH (2009). Using phylogenetic, functional and trait diversity to understand patterns of plant community productivity. PLOS ONE, 4, e5695. DOI: 10.1371/journal.pone.0005695.
DOI URL |
[7] |
Caldeira MC, Hector A, Loreau M, Pereira JS (2005). Species richness, temporal variability and resistance of biomass production in a Mediterranean grassland. Oikos, 110, 115-123.
DOI URL |
[8] |
Cardinale BJ, Duffy JE, Gonzalez A, Hooper DU, Perrings C, Venail P, Narwani A, Mace GM, Tilman D, Wardle DA, Kinzig AP, Daily GC, Loreau M, Grace JB, Larigauderie A, Srivastava DS, Naeem S (2012). Biodiversity loss and its impact on humanity. Nature, 486, 59-67.
DOI URL |
[9] |
Cavanaugh KC, Gosnell JS, Davis SL, Ahumada J, Boundja P, Clark DB, Mugerwa B, Jansen PA, O’Brien TG, Rovero F, Sheil D, Vasquez R, Andelman S (2014). Carbon storage in tropical forests correlates with taxonomic diversity and functional dominance on a global scale. Global Ecology and Biogeography, 23, 563-573.
DOI URL |
[10] |
Clark DA, Brown S, Kicklighter DW, Chambers JQ, Thomlinson JR, Ni J (2001). Measuring net primary production in forests: concepts and field methods. Ecological Applications, 11, 356-370.
DOI URL |
[11] | Cleland EE (2011). Biodiversity and ecosystem stability. Nature Education Knowledge, 3, 10-14. |
[12] | Crawley MJ (2007). The R Book. Wiley, Hoboken,USA. |
[13] |
Faith DP (1992). Conservation evaluation and phylogenetic diversity. Biological Conservation, 61, 1-10.
DOI URL |
[14] |
Fang JY, Wang XP, Shen ZH, Tang ZY, He JS, Yu D, Jiang Y, Wang ZH, Zheng CY, Zhu JL, Guo ZD(2009). Methods and protocols for plant community inventory. Biodiversity Science, 17, 533-548.
DOI URL |
[ 方精云, 王襄平, 沈泽昊, 唐志尧, 贺金生, 于丹, 江源, 王志恒, 郑成洋, 朱江玲, 郭兆迪(2009). 植物群落清查的主要内容、方法和技术规范. 生物多样性, 17, 533-548.] | |
[15] |
Finegan B, Peña-Claros M, de Oliveira A, Ascarrunz N, Bret-Harte MS, Carreño-Rocabado G, Casanoves F, Díaz S, Eguiguren Velepucha P, Fernandez F, Licona JC, Lorenzo L, Salgado Negret B, Vaz M, Poorter L, Canham C (2015). Does functional trait diversity predict above- ground biomass and productivity of tropical forests? Testing three alternative hypotheses. Journal of Ecology, 103, 191-201.
DOI URL |
[16] |
Forrester DI (2014). The spatial and temporal dynamics of species interactions in mixed-species forests: from pattern to process. Forest Ecology and Management, 312, 282-292.
DOI URL |
[17] |
Fotis AT, Murphy SJ, Ricart RD, Krishnadas M, Whitacre J, Wenzel JW, Queenborough SA, Comita LS (2018). Above-ground biomass is driven by mass-ratio effects and stand structural attributes in a temperate deciduous forest. Journal of Ecology, 106, 561-570.
DOI URL |
[18] |
Garnier E, Cortez J, Billès G, Navas ML, Roumet C, Debussche M, Laurent G, Blanchard A, Aubry D, Bellmann A, Neill C, Toussaint JP (2004). Plant functional markers capture ecosystem properties during secondary succession. Ecology, 85, 2630-2637.
DOI URL |
[19] |
Grime JP (1998). Benefits of plant diversity to ecosystems: immediate, filter and founder effects. Journal of Ecology, 86, 902-910.
DOI URL |
[20] |
Guo Y, Chen HYH, Mallik AU, Wang B, Li D, Xiang W, Li X (2019). Predominance of abiotic drivers in the relationship between species diversity and litterfall production in a tropical karst seasonal rainforest. Forest Ecology and Management, 449, 117452. DOI: 10.1016/j.foreco.2019.117452.
DOI URL |
[21] |
Harpole WS, Tilman D (2007). Grassland species loss resulting from reduced niche dimension. Nature, 446, 791-793.
DOI URL |
[22] |
He JS, Fang J, Wang Z, Guo D, Flynn DFB, Geng Z (2006). Stoichiometry and large-scale patterns of leaf carbon and nitrogen in the grassland biomes of China. Oecologia, 149, 115-122.
DOI URL |
[23] |
Huang Y, Ma Y, Zhao K, Niklaus PA, Schmid B, He JS (2017). Positive effects of tree species diversity on litterfall quantity and quality along a secondary successional chronosequence in a subtropical forest. Journal of Plant Ecology, 10, 28-35.
DOI URL |
[24] |
Isbell FI, Polley HW, Wilsey BJ (2009). Biodiversity, productivity and the temporal stability of productivity: patterns and processes. Ecology Letters, 12, 443-451.
DOI URL |
[25] |
Jia BR, Zhou GS, Liu YZ, Jiang YL(2016). Spatial pattern and environmental controls of annual litterfall production in natural forest ecosystems in China. Scientia Sinica Vitae, 46, 1304-1311.
DOI URL |
[ 贾丙瑞, 周广胜, 刘永志, 蒋延玲(2016). 中国天然林凋落物量的空间分布及其影响因子分析. 中国科学: 生命科学, 46, 1304-1311.] | |
[26] |
Johnson JB, Omland KS (2004). Model selection in ecology and evolution. Trends in Ecology & Evolution, 19, 101-108.
DOI URL |
[27] |
King DA, Davies SJ, Noor NSM (2006). Growth and mortality are related to adult tree size in a Malaysian mixed dipterocarp forest. Forest Ecology and Management, 223, 152-158.
DOI URL |
[28] |
Klein D, Humpenӧder F, Bauer N, Dietrich JP, Popp A, Bodirsky BL, Bonsch M, Lotze-Campen H (2014). The global economic long-term potential of modern biomass in a climate-constrained world. Environmental Research Letters, 9, 074017. DOI: 10.1088/1748-9326/9/7/074017.
DOI URL |
[29] |
Laliberté E, Legendre P (2010). A distance-based framework for measuring functional diversity from multiple traits. Ecology, 91, 299-305.
PMID |
[30] |
Lasky JR, Uriarte M, Boukili VK, Erickson DL, John Kress W, Chazdon RL (2014). The relationship between tree biodiversity and biomass dynamics changes with tropical forest succession. Ecology Letters, 17, 1158-1167.
DOI URL |
[31] | Letcher SG, Chazdon RL (2009). Rapid recovery of biomass, species richness, and species composition in a forest chronosequence in northeastern Costa rica. Biotropica, 41, 608-617. |
[32] |
Liang J, Crowther TW, Picard N, Wiser S, Zhou M, Alberti G, Schulze ED, McGuire AD, Bozzato F, Pretzsch H, de Miguel S, Paquette A, Hérault B, Scherer-Lorenzen M, Barrett CB, et al. (2016). Positive biodiversity-productivity relationship predominant in global forests. Science, 354, aaf8957. DOI: 10.1126/science.aaf8957.
DOI |
[33] |
Liang PH, Wang XP, WU YL, Xu K, Wu P, Guo X(2016). Growth responses of broad-leaf and Korean pine mixed forests at different successional stages to climate change in the Shengshan Nature Reserve of Heilongjiang Province, China. Chinese Journal of Plant Ecology, 40, 425-435.
DOI URL |
[ 梁鹏鸿, 王襄平, 吴玉莲, 徐凯, 吴鹏, 郭鑫(2016). 黑龙江胜山保护区阔叶红松林不同演替阶段径向生长与气候变化的关系. 植物生态学报, 40, 425-435.] | |
[34] |
Lohbeck M, Poorter L, Martínez-Ramos M, Bongers F (2015). Biomass is the main driver of changes in ecosystem process rates during tropical forest succession. Ecology, 96, 1242-1252.
DOI URL |
[35] |
Loreau M, de Mazancourt C (2013). Biodiversity and ecosystem stability: a synthesis of underlying mechanisms. Ecology Letters, 16, 106-115.
DOI URL |
[36] | Martin TA, Brown KJ, Kučera J, Meinzer FC, Sprugel DG, Hinckley TM (2001). Control of transpiration in a 220- year-old Abies amabilis forest. Forest Ecology and Management, 152, 211-224. |
[37] |
Mazzochini GG, Fonseca CR, Costa GC, Santos RM, Oliveira- Filho AT, Ganade G (2019). Plant phylogenetic diversity stabilizes large scale ecosystem productivity. Global Ecology and Biogeography, 28, 1430-1439.
DOI |
[38] |
Mori AS, Furukawa T, Sasaki T (2013). Response diversity determines the resilience of ecosystems to environmental change. Biological Reviews, 88, 349-364.
DOI URL |
[39] |
Morin X, Fahse L, de Mazancourt C, Scherer-Lorenzen M, Bugmann H (2014). Temporal stability in forest productivity increases with tree diversity due to asynchrony in species dynamics. Ecology Letters, 17, 1526-1535.
DOI URL |
[40] |
Naeem S, Li S (1997). Biodiversity enhances ecosystem reliability. Nature, 390, 507-509.
DOI URL |
[41] |
Needham J, Merow C, Butt N, Malhi Y, Marthews TR, Morecroft M, McMahon SM (2016). Forest community response to invasive pathogens: the case of ash dieback in a British woodland. Journal of Ecology, 104, 315-330.
DOI URL |
[42] |
Niinemets Ü, Hauff K, Bertin N, Tenhunen JD, Steinbrecher R, Seufert G (2002). Monoterpene emissions in relation to foliar photosynthetic and structural variables in Mediterranean evergreen Quercus species. New Phytologist, 153, 243-256.
DOI URL |
[43] |
Ouyang S, Xiang W, Wang XP, Xiao W, Chen L, Li S, Sun H, Deng X, Forrester DI, Zeng L, Lei P, Lei X, Gou X, Peng C (2019). Effects of stand age, richness and density on productivity in subtropical forests in China. Journal of Ecology, 107, 2266-2277.
DOI |
[44] |
Peppe DJ, Royer DL, Cariglino B, Oliver SY, Newman S, Leight E, Enikolopov G, Fernandez-Burgos M, Herrera F, Adams JM, Correa E, Currano ED, Erickson JM, Hinojosa LF, Hoganson JW, et al. (2011). Sensitivity of leaf size and shape to climate: global patterns and paleoclimatic applications. New Phytologist, 190, 724-739.
DOI URL |
[45] |
Pérez-Harguindeguy N, Díaz S, Garnier E, Lavorel S, Poorter H, Jaureguiberry P, Bret-Harte MS, Cornwell WK, Craine JM, Gurvich DE, Urcelay C, Veneklaas EJ, Reich PB, Poorter L, Wright IJ, et al. (2013). New handbook for standardised measurement of plant functional traits worldwide. Australian Journal of Botany, 61, 167-234.
DOI URL |
[46] |
Piao S, Fang J, Zhou L, Ciais P, Zhu B (2006). Variations in satellite-derived phenology in China’s temperate vegetation. Global Change Biology, 12, 672-685.
DOI URL |
[47] |
Poorter H, De Jong R (1999). A comparison of specific leaf area, chemical composition and leaf construction costs of field plants from 15 habitats differing in productivity. New Phytologist, 143, 163-176.
DOI URL |
[48] |
Scoffoni C, Rawls M, McKown A, Cochard H, Sack L (2011). Decline of leaf hydraulic conductance with dehydration: relationship to leaf size and venation architecture. Plant Physiology, 156, 832-843.
DOI URL |
[49] |
Souza MC, Rossatto DR, Cook GD, Fujinuma R, Menzies NW, Morellato LPC, Habermann G (2016). Mineral nutrition and specific leaf area of plants under contrasting long-term fire frequencies: a case study in a mesic savanna in Australia. Trees, 30, 329-335.
DOI URL |
[50] |
Sterck F, Markesteijn L, Schieving F, Poorter L (2011). Functional traits determine trade-offs and niches in a tropical forest community. Proceedings of the National Academy of Sciences of the United States of America, 108, 20627-20632.
DOI PMID |
[51] |
Sun H, Wang XP, Wu P, Han W, Xu K, Liang PH, Liu C, Yin WL, Xia XL (2017). What causes greater deviations from predictions of metabolic scaling theory in earlier successional forests? Forest Ecology and Management, 405, 101-111.
DOI URL |
[52] |
Tilman D (2000). Causes, consequences and ethics of biodiversity. Nature, 405, 208-211.
DOI URL |
[53] |
Tilman D, Knops J, Wedin D, Reich P, Ritchie M, Siemann E (1997). The influence of functional diversity and composition on ecosystem processes. Science, 277, 1300-1302.
DOI URL |
[54] | Vogt KA, Grier CC, Vogt DJ (1986). Production, turnover, and nutrient dynamics of above- and belowground detritus of world forests. Advances in Ecological Research, 15, 303-377. |
[55] | Walsh C, Nally RM (2013). hier. part: Hierarchical partitioning. [2021-04-06]. https://cran.rproject.org/web/packages/hier.part/index.html. |
[56] |
Wan SQ, Norby RJ, Ledford J, Weltzin JF (2007). Responses of soil respiration to elevated CO2, air warming, and changing soil water availability in a model old-field grassland. Global Change Biology, 13, 2411-2424.
DOI URL |
[57] |
Wang XP, Fang JY, Zhu B (2008). Forest biomass and root-shoot allocation in northeast China. Forest Ecology and Management, 255, 4007-4020.
DOI URL |
[58] |
Wen XS, Chen BH, Zhang SB, Xu K, Ye XY, Ni WJ, Wang XP(2019). Relationships of radial growth with climate change in larch plantations of different stand ages and species. Chinese Journal of Plant Ecology, 43, 27-36.
DOI URL |
[ 温晓示, 陈彬杭, 张树斌, 徐凯, 叶新宇, 倪伟杰, 王襄平(2019). 不同林龄、树种落叶松人工林径向生长与气候变化的关系. 植物生态学报, 43, 27-36.] | |
[59] |
Wu X, Wang XP, Tang ZY, Shen ZH, Zheng CY, Xia XL, Fang JY (2015). The relationship between species richness and biomass changes from boreal to subtropical forests in China. Ecography, 38, 602-613.
DOI URL |
[60] |
Xu K, Wang XP, Liang PH, Wu YL, An HL, Sun H, Wu P, Wu X, Li QY, Guo X, Wen XS, Han W, Liu C, Fan DY (2019). A new tree-ring sampling method to estimate forest productivity and its temporal variation accurately in natural forests. Forest Ecology and Management, 433, 217-227.
DOI URL |
[61] |
Zanne AE, Tank DC, Cornwell WK, Eastman JM, Smith SA, Fitzjohn RG, McGlinn DJ, O’Meara BC, Moles AT, Reich PB, Royer DL, Soltis DE, Stevens PF, Westoby M, Wright IJ, et al. (2014). Three keys to the radiation of angiosperms into freezing environments. Nature, 506, 89-92.
DOI URL |
[62] |
Zhang QG, Zhang DY (2006). Species richness destabilizes ecosystem functioning in experimental aquatic microcosms. Oikos, 112, 218-226.
DOI URL |
[63] | Zhang XP, Wang XP, Zhu B, Zong ZJ, Peng CH, Fang JY(2008). Litter fall production in relation to environmental factors in northeast China’s forests. Chinese Journal of Plant Ecology, 32, 1031-1040. |
[ 张新平, 王襄平, 朱彪, 宗占江, 彭长辉, 方精云(2008). 我国东北主要森林类型的凋落物产量及其影响因素. 植物生态学报, 32, 1031-1040.] | |
[64] |
Zhang Y, Chen HYH (2015). Individual size inequality links forest diversity and above-ground biomass. Journal of Ecology, 103, 1245-1252.
DOI URL |
[65] |
Zheng LT, Chen HYH, Yan ER (2019). Tree species diversity promotes litterfall productivity through crown complementarity in subtropical forests. Journal of Ecology, 107, 1852-1861.
DOI URL |
[66] |
Zhou GY, Guan LL, Wei XH, Zhang DQ, Zhang QM, Yan JH, Wen DZ, Liu JX, Liu SG, Huang ZL, Kong GH, Mo JM, Yu QF (2007). Litterfall production along successional and altitudinal gradients of subtropical monsoon evergreen broadleaved forests in Guangdong, China. Plant Ecology, 188, 77-89.
DOI URL |
[1] | 刘瑶 钟全林 徐朝斌 程栋梁 郑跃芳 邹宇星 张雪 郑新杰 周云若. 不同大小刨花楠细根功能性状与根际微环境关系[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[2] | 徐子怡 金光泽. 阔叶红松林不同菌根类型幼苗细根功能性状的变异与权衡[J]. 植物生态学报, 2024, 48(5): 612-622. |
[3] | 常晨晖 朱彪 朱江玲 吉成均 杨万勤. 森林粗木质残体分解研究进展[J]. 植物生态学报, 2024, 48(5): 541-560. |
[4] | 付粱晨, 丁宗巨, 唐茂, 曾辉, 朱彪. 北京东灵山白桦和蒙古栎的根际效应及其季节动态[J]. 植物生态学报, 2024, 48(4): 508-522. |
[5] | 秦文宽, 张秋芳, 敖古凯麟, 朱彪. 土壤有机碳动态对增温的响应及机制研究进展[J]. 植物生态学报, 2024, 48(4): 403-415. |
[6] | 杨安娜, 李曾燕, 牟凌, 杨柏钰, 赛碧乐, 张立, 张增可, 王万胜, 杜运才, 由文辉, 阎恩荣. 上海大金山岛不同植被类型土壤细菌群落的变异[J]. 植物生态学报, 2024, 48(3): 377-389. |
[7] | 牛一迪, 蔡体久. 大兴安岭北部次生林演替过程中物种多样性的变化及其影响因子[J]. 植物生态学报, 2024, 48(3): 349-363. |
[8] | 范宏坤, 曾涛, 金光泽, 刘志理. 小兴安岭不同生长型阔叶植物叶性状变异及权衡[J]. 植物生态学报, 2024, 48(3): 364-376. |
[9] | 刘聪聪, 何念鹏, 李颖, 张佳慧, 闫镤, 王若梦, 王瑞丽. 宏观生态学中的植物功能性状研究: 历史与发展趋势[J]. 植物生态学报, 2024, 48(1): 21-40. |
[10] | 陈昭铨, 王明慧, 胡子涵, 郎学东, 何云琼, 刘万德. 云南普洱季风常绿阔叶林幼苗的群落构建机制[J]. 植物生态学报, 2024, 48(1): 68-79. |
[11] | 袁雅妮, 周哲, 陈彬洲, 郭垚鑫, 岳明. 基于功能性状的锐齿槲栎林共存树种生态策略差异[J]. 植物生态学报, 2023, 47(9): 1270-1277. |
[12] | 孙佳慧, 史海兰, 陈科宇, 纪宝明, 张静. 植物细根功能性状的权衡关系研究进展[J]. 植物生态学报, 2023, 47(8): 1055-1070. |
[13] | 赵孟娟, 金光泽, 刘志理. 阔叶红松林3种典型蕨类叶功能性状的垂直变异[J]. 植物生态学报, 2023, 47(8): 1131-1143. |
[14] | 代景忠, 白玉婷, 卫智军, 张楚, 辛晓平, 闫玉春, 闫瑞瑞. 羊草功能性状对施肥的动态响应[J]. 植物生态学报, 2023, 47(7): 943-953. |
[15] | 张中扬, 宋希强, 任明迅, 张哲. 附生维管植物生境营建作用的生态学功能[J]. 植物生态学报, 2023, 47(7): 895-911. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19