Chin J Plant Ecol ›› 2019, Vol. 43 ›› Issue (1): 27-36.doi: 10.17521/cjpe.2018.0155

• Research Articles • Previous Articles     Next Articles

Relationships of radial growth with climate change in larch plantations of different stand ages and species

WEN Xiao-Shi1,CHEN Bin-Hang1,ZHANG Shu-Bin1,XU Kai1,YE Xin-Yu1,NI Wei-Jie2,WANG Xiang-Ping1,*()   

  1. 1 College of Forestry, Beijing Forestry University, Beijing 100083, China
    2 Institute of Forest Management, Dandong, Liaoning 118003, China
  • Received:2018-07-05 Accepted:2019-01-04 Online:2019-04-25 Published:2019-01-20
  • Contact: WANG Xiang-Ping ORCID:0000-0001-8158-560X E-mail:wangxiangping@bjfu.edu.cn
  • Supported by:
    Supported by the National Key R&D Program of China(2016YFC0502104);Supported by the National Key R&D Program of China(2017YFC0503901);the National Natural Science Foundation of China(31870430);the National Special Program on Basic Works for Science and Technology of China(2015FY210200-8);the National Special Water Programs(2017ZX07101002)

Abstract:

Aims This study examined how climatic conditions, tree species and stand factors (i.e. stand age, stem density, and wood volume, etc.) affected the tree growth-climate relationships in larch plantations.
Methods The dendroecological method was used to determine the relative effects of climatic condition, tree species, site quality and stand factors on tree growth in larch plantations in response to climate change in Caohekou and Wandianzi of Liaoning Province, China.
Important findings The effects of potential evapotranspiration (PET) were strongest among all the variables in explaining the tree growth-climate relationships. Stand age, tree density and wood volume were also important factors influencing growth-climate relationships. Climate warming had differential effects on radial growth in plantations of different stand ages: while the growth of mid-age stands were positively correlated with temperature, the growth of mature stands had a negative response to warming, possibly due to increased susceptibility to warming-induced water stress with stand age. Tree species and site quality were weak modulators of growth- climate relationships in this study. Our finding of the negative impact of climate warming on mature larch plantations highlights the need to explore management methods in larch plantations for better adaptation to future climate change.

Key words: Larix olgensis, Larix kaempferi, plantations, climate change, growth-climate relationship, stand factors

Table 1

Basic information of the study sites and stand structural characteristics of Larix olgensis and Larix kaempferi in Caohekou (CHK) and Wandianzi (WDZ)"

样地编号
Plot ID
年平均气温
Annual mean air temperature (℃)
年降水量
Annual precipitation (mm)
树种
Tree species
林龄
Stand age
立地条件
Site quality
林分密度
Stem density (tree·hm-2)
蓄积量
Wood volume (m3·hm-2)
平均胸径
Mean DBH (cm)
CHK01 5.71 874.84 黄花落叶松 L. olgensis 77 好 Well 570 294.56 22.72
CHK02 5.57 880.13 黄花落叶松 L. olgensis 78 差 Poor 990 324.91 19.72
CHK03 5.90 867.84 日本落叶松 L. kaempferi 24 中 Good 680 105.02 15.56
CHK04 5.97 865.17 日本落叶松 L. kaempferi 25 差 Poor 880 122.57 15.23
CHK05 5.78 869.58 日本落叶松 L. kaempferi 69 中 Good 540 442.54 26.93
CHK06 5.82 868.24 日本落叶松 L. kaempferi 71 中 Good 300 373.81 33.89
CHK07 6.15 858.84 日本落叶松 L. kaempferi 21 好 Well 580 108.62 17.14
CHK08 6.08 861.56 日本落叶松 L. kaempferi 24 好 Well 520 107.55 18.05
CHK09 5.89 868.66 黄花落叶松 L. olgensis 21 好 Well 620 157.50 18.95
CHK10 5.86 869.79 黄花落叶松 L. olgensis 21 好 Well 620 111.31 17.36
WDZ01 4.19 832.08 黄花落叶松 L. olgensis 49 中 Good 520 353.52 25.97
WDZ02 3.97 839.94 黄花落叶松 L. olgensis 50 差 Poor 540 322.13 26.26
WDZ03 3.74 848.05 日本落叶松 L. kaempferi 73 好 Well 1490 761.10 23.66
WDZ04 3.73 848.42 日本落叶松 L. kaempferi 72 中 Good 1090 608.39 24.09
WDZ05 3.74 844.35 日本落叶松 L. kaempferi 23 好 Well 1030 272.70 17.58
WDZ06 3.52 852.33 日本落叶松 L. kaempferi 23 好 Well 960 263.49 18.67
WDZ07 3.91 838.52 黄花落叶松 L. olgensis 20 差 Poor 1290 169.18 15.04

Fig. 1

Trends in annual mean air temperature (A) and palmer drought severity index (B) in Caohekou (CHK) and Wandianzi (WDZ)."

"

样地
Plot
树芯/株数
Number of cores/trees
样芯长度
Length of
series (a)
用于气候分析
的年表长度
Chronology
length for climate
analysis (a)
平均敏感度
Mean
sensitivity
标准偏差
Standard deviation
R1样本间平均相关系数
Mean correlations among
all radii
一阶自相
关系数
Autocorrelation order 1
信噪比
Signal-to- noise ratio
样本总体
代表性
Express
population signal
第一主成分所占方差量
PCA1 (%)
CHK01 39/23 1950-2016 1986-2016 0.170 0.217 0.340 0.610 18.064 0.948 0.411
CHK02 63/34 1950-2016 1986-2016 0.199 0.250 0.431 0.586 38.694 0.975 0.463
CHK03 43/23 1996-2016 1996-2016 0.160 0.142 0.324 -0.054 14.382 0.935 0.396
CHK04 46/23 1996-2016 1996-2016 0.165 0.151 0.395 0.244 20.857 0.954 0.432
CHK05 38/20 1956-2016 1986-2016 0.147 0.212 0.307 0.680 13.743 0.932 0.368
CHK06 49/27 1956-2016 1986-2016 0.154 0.167 0.242 0.449 13.431 0.931 0.283
CHK07 39/20 2002-2016 2002-2016 0.213 0.217 0.475 0.409 33.504 0.971 0.524
CHK08 38/20 2000-2016 2000-2016 0.151 0.145 0.285 0.142 15.149 0.938 0.354
CHK09 46/26 1989-2016 1989-2016 0.161 0.186 0.493 0.392 36.937 0.974 0.535
CHK10 40/22 1996-2016 1996-2016 0.181 0.239 0.603 0.491 51.739 0.981 0.639
WDZ01 40/22 1968-2016 1986-2016 0.200 0.199 0.414 0.267 24.718 0.961 0.464
WDZ02 41/21 1967-2016 1986-2016 0.225 0.220 0.501 0.246 36.094 0.973 0.533
WDZ03 62/36 1944-2016 1986-2016 0.204 0.211 0.313 0.349 26.460 0.964 0.347
WDZ04 44/24 1945-2016 1986-2016 0.166 0.178 0.284 0.247 11.489 0.920 0.329
WDZ05 64/34 1994-2016 1994-2016 0.143 0.150 0.278 0.273 20.824 0.954 0.332
WDZ06 42/28 1994-2016 1994-2016 0.154 0.155 0.430 0.100 26.446 0.964 0.470
WDZ07 81/43 1971-2016 1986-2016 0.253 0.278 0.247 0.448 20.714 0.954 0.308

Fig. 2

The trends of relationships between the radial growth of larch and air temperature in different seasons with increasing age of Caohekou and Wandianzi. A, Air temperature in summer of the previous year. B, Air temperature in autumn of the previous year. C, Air temperature in summer of the current year. D, Air temperature in autumn of the current year."

Fig. 3

Principal component analysis of ring width index of larch and air temperature (T), palmer drought severity index (PDSI) of Caohekou and Wandianzi. P designates the previous year, and C the current year. Spr, Sum, Aut and Win are abbreviations for spring, summer, autumn and winter, respectively."

Table 3

Loading of seasonal climatic factors in each axis of the principal components of ring width index and air temperature, palmer drought severity index"

变量 Variable Comp. 1 Comp. 2 Comp. 3 Comp. 4
P_Sum_T -0.253 0.361 -0.318 0.233
P_Aut_T -0.115 0.507 -0.048 0.084
P_Win_T -0.330 -0.035 0.426 0.005
C_Spr_T -0.310 0.134 -0.427 0.167
C_Sum_T -0.171 0.381 0.440 -0.555
C_Aut _T 0.146 0.427 -0.353 -0.445
P_Sum_PDSI 0.219 0.405 0.212 0.475
P_Aut_PDSI 0.291 0.261 0.363 0.356
P_Win_PDSI 0.365 0.105 -0.053 -0.133
C_Spr_PDSI 0.359 0.102 0.002 -0.183
C_Sum_PDSI 0.374 -0.066 -0.052 -0.022
C_Aut_PDSI 0.364 -0.092 -0.178 0.019

Table 4

The explanatory power of environmental factors and stand structural characteristics on the scores of PCA axes 1 and 2 of ring width index and air temperature, palmer drought severity index (R2)"

变量
Variable
年降水量
Mean annual precipitation
潜在蒸发量
Potential
evapotranspiration
林龄
Stand age
林分密度
Stem density
蓄积量
Wood volume
立地条件
Site quality
树种
Tree species
PCA1 -0.522** -0.722*** 0.091 0.287* 0.512** 0.013 0.007
PCA2 -0.087 0.000 -0.660*** 0.011 -0.197 0.090 0.056

Supplement I

Multiple regression analysis of the scores for PCA axes 1 and 2 of ring width index and air temperature, palmer drought severity index with environmental factors and stand structural characteristics"

PCA1 PCA2
df % SS p df % SS p
树种 Tree species 1 0.729 0.535 1 5.567 0.167
林分密度 Stem density 1 28.043 0.004** 1 0.625 0.625
林龄 Stand age 1 8.225 0.061 1 64.605 0.000***
蓄积量 Wood volume 1 34.052 0.002** 1 4.956 0.190
潜在蒸发量Potential evapotranspiration 1 11.502 0.032* 1 1.905 0.400
年降水量 Annual precipitation 1 2.555 0.260 1 0.662 0.615
立地条件 Site quality 2 1.012 0.755 2 2.356 0.631
残差 Residuals 8 13.882 8 19.323

Table 5

Multiple regression analysis of the scores for the PCA axes 1 and 2 of ring width index and air temperature, palmer drought severity index with environmental factors and stand structural characteristics"

PCA1 PCA2
df % SS p df % SS p
潜在蒸发量
Potential evapotranspiration
1 72.170 0.000 2*** 1 0.003 0.973
年降水量
Mean annual precipitation
1 0.884 0.496 1 21.646 0.017*
立地条件 Site quality 2 1.122 0.733 2 13.291 0.123
树种 Tree species 1 0.591 0.576 1 10.129 0.075
林分密度 Stem density 1 0.212 0.736 1 1.219 0.498
林龄 Stand age 1 7.990 0.064 1 27.443 0.009**
蓄积量 Wood volume 1 3.150 0.215 1 6.945 0.128
残差 Residuals 8 13.881 8 19.323
[1] Chang JF, Wang XP, Zhang XP, Lin X ( 2009). Alpine timberline dynamics in relation to climatic variability in the northern Daxing’an Mountains. Mountain Research, 6, 703-711.
doi: 10.3969/j.issn.1008-2786.2009.06.010
[ 常锦峰, 王襄平, 张新平, 林鑫 ( 2009). 大兴安岭北部大白山高山林线动态与气候变化的关系. 山地学报, 6, 703-711.]
doi: 10.3969/j.issn.1008-2786.2009.06.010
[2] D’Amato AW, Palik BJ ( 2013). Effects of thinning on drought vulnerability and climate response in north temperate forest ecosystems. Ecological Applications, 23, 1735-1742.
doi: 10.1890/13-0677.1 pmid: 24555305
[3] Dong HD ( 2011). Vegetation and Vegetation Division of Liaoning Province. Liaoning University Press, Shenyang.
[ 董厚德 ( 2011). 辽宁植被与植被区划. 辽宁大学出版社, 沈阳.]
[4] Fang JY ( 1992). Study on the geographic elements affecting temperature distribution in China. Acta Ecologica Sinica, 12, 97-104.
[ 方精云 ( 1992). 地理要素对我国气温分布影响的数量评价. 生态学报, 12, 97-104.]
[5] Fang JY, Wang XP, Shen ZH, Tang ZY, He JS, Yu D, Jiang Y, Wang ZH, Zheng CY, Zhu JL, Guo ZD ( 2009). Methods and protocols for plant community inventory. Biodiversity Science, 17, 533-548.
doi: 10.3724/SP.J.1003.2009.09253
[ 方精云, 王襄平, 沈泽昊, 唐志尧, 贺金生, 于丹, 江源, 王志恒, 郑成洋, 朱江玲, 郭兆迪 ( 2009). 植物群落清查的主要内容、方法和技术规范. 生物多样性, 17, 533-548.]
doi: 10.3724/SP.J.1003.2009.09253
[6] Ferrero ME, Villalba R, Membiela MD, Ripalta A, Delgado S, Paolini L ( 2013). Tree-growth responses across environmental gradients in subtropical Argentinean forests. Plant Ecology, 214, 1321-1334.
doi: 10.1007/s11258-013-0254-2
[7] Fritts HC ( 1976). Tree rings and climate. Scientific American, 226, 95-99.
[8] Goldblum D, Rigg LS ( 2005). Tree growth response to climate change at the deciduous boreal forest ecotone, Ontario, Canada. Canadian Journal of Forest Research, 35, 2709-2718.
doi: 10.1139/x05-185
[9] Holmes RL ( 1983). Computer-assisted quality control in tree-ring dating and measurement. Tree-Ring Bulletin, 43, 69-75.
[10] Hu FS, Lee BY, Kaufman DS, Yoneji S, Nelson DM, Henne PD ( 2002). Response of tundra ecosystem in southwestern Alaska to Younger-Dryas climatic oscillation. Global Change Biology, 8, 1156-1163.
doi: 10.1046/j.1365-2486.2002.00550.x
[11] Huang QX, Zhao Y, He Q ( 2013). Climatic characteristics in Central Asia based on CRU data. Arid Zone Research, 30, 396-403.
[ 黄秋霞, 赵勇, 何清 ( 2013). 基于CRU资料的中亚地区气候特征. 干旱区研究, 30, 396-403.]
[12] Kramer K, Leinonen I, Loustau D ( 2000). The importance of phenology for the evaluation of impact of climate change on growth of boreal, temperate and Mediterranean forests ecosystems: An overview. International Journal of Biometeorology, 44, 67-75.
doi: 10.1007/s004840000066 pmid: 10993560
[13] Leal S, Melvin TM, Grabner M, Wimmer R, Briffa KR ( 2007). Tree-ring growth variability in the Austrian Alps: The influence of site, altitude, tree species and climate. Boreas, 36, 426-440.
doi: 10.1080/03009480701267063
[14] Lévesque M, Siegwolf R, Saurer M, Eilmann B, Rigling A ( 2014). Increased water-use efficiency does not lead to enhanced tree growth under xeric and mesic conditions. New Phytologist, 203, 94-109.
doi: 10.1111/nph.12772 pmid: 24635031
[15] Li JF ( 2000). Research and Application of Dendrohydrology. Science Press, Beijing.
[ 李江风 ( 2000). 树木年轮水文学研究与应用. 科学出版社, 北京.]
[16] Liang PH, Wang XP, Wu YL, Xu K, Wu P, Guo X ( 2016). Growth responses of broad-leaf and Korean pine mixed forests at different successional stages to climate change in the Shengshan Nature Reserve of Heilongjiang Province, China. Chinese Journal of Plant Ecology, 40, 425-435.
doi: 10.17521/cjpe.2015.0357
[ 梁鹏鸿, 王襄平, 吴玉莲, 徐凯, 吴鹏, 郭鑫 ( 2016). 黑龙江胜山保护区阔叶红松林不同演替阶段径向生长与气候变化的关系. 植物生态学报, 40, 425-435.]
doi: 10.17521/cjpe.2015.0357
[17] Liu M, Mao ZY, Li Y, Sun T, Li XH, Huang W, Liu RP, Li YH ( 2016). Response of radial growth of Pinus koraiensis in broad-leaved Korean pine forests with different latitudes to climatical factors. Chinese Journal of Applied Ecology, 27, 1341-1352.
doi: 10.13287/j.1001-9332.201605.020
[ 刘敏, 毛子军, 厉悦, 孙涛, 李兴欢, 黄唯, 刘瑞鹏, 李元昊 ( 2016). 不同纬度阔叶红松林红松径向生长对气候因子的响应. 应用生态学报, 27, 1341-1352.]
doi: 10.13287/j.1001-9332.201605.020
[18] Mérian P, Lebourgeois F ( 2011). Size-mediated climat-growth relationships in temperate forests: A multi-species analysis. Forest Ecology & Management, 261, 1382-1391.
doi: 10.1016/j.foreco.2011.01.019
[19] Mitchell TD, Jones PD ( 2005). An improved method of constructing a database of monthly climate observations and associated high-resolution grids. International Journal of Climatology, 25, 693-712.
doi: 10.1002/(ISSN)1097-0088
[20] Primicia I, Camarero JJ, Janda P, Čada V ( 2015). Age, competition, disturbance and elevation effects on tree and stand growth response of primary Picea abies forest to climate. Forest Ecology and Management, 354, 77-86.
[21] Qi Y, Wang B, Huang JB ( 2014). Application of CRU dataset to calculation of ET0 of Heilongjiang Province. Journal of Hehai University (Natural Sciences), 42, 367-371.
[ 戚颖, 王斌, 黄金柏 ( 2014). CRU数据集在黑龙江省ET0计算中的应用. 河海大学学报(自然科学版), 42, 367-371.]
[22] Rais A, Kuilen JWGV, Pretzsch H ( 2014 a). Growth reaction patterns of tree height, diameter, and volume of Douglas-?fir (Pseudotsuga menziesii( Mirb.) Franco) under acute drought stress in Southern Germany. European Journal of Forest Research, 133, 1043-1056.
[23] Rais A, Poschenrieder W, Pretzsch H, Kuilen JWGV ( 2014 b). Influence of initial plant density on sawn timber properties for Douglas-fir (Pseudotsuga menziesii( Mirb.) Franco). Annals of Forest Science, 71, 617-626.
[24] Ryan MG, Yoder BJ ( 1997). Hydraulic limits to tree height and tree growth. Bioscience, 47, 235-242.
doi: 10.2307/1313077
[25] Schuster R, Oberhuber W ( 2013). Drought sensitivity of three co-occurring conifers within a dry inner alpine environment. Trees, 27, 61-69.
doi: 10.1007/s00468-012-0768-6
[26] Stokes MA ( 1996). An Introduction to Tree-Ring Dating. University of Arizona Press, Tucson, USA.
[27] Wang XC, Zhang YD, Mcrae DJ ( 2009). Spatial and age-?dependent tree-ring growth responses of Larix gmelinii to climate in northeastern China. Trees, 23, 875-885.
[28] Wang XP, Fang JY, Tang ZY, Zhu B ( 2006). Climatic control of primary forest structure and DBH-height allometry in Northeast China. Forest Ecology & Management, 234, 264-274.
[29] Webb II T ( 2001). Past global changes and their significance for the future. Journal of Paleolimnology, 26, 227-229.
doi: 10.1023/A:1011133708229
[30] Wu XD ( 1990). Application of tree ring analysis to the study on environment variation. Quaternary Sciences, 2, 188-196.
[ 吴祥定 ( 1990). 树木年轮分析在环境变化研究中的应用. 第四纪研究, 2, 188-196.]
[31] Wu YL, Wang XP, Ouyang S, Xu K, Hawkins BA, Sun OJ ( 2017). A test of BIOME-BGC with dendrochronology for forests along the altitudinal gradient of Mt. Changbai in Northeast China. Journal of Plant Ecology, 10, 415-425.
[32] Xu K, Wang XP, Liang PH, An HL, Sun H, Han W, Li QY ( 2017). Tree-ring widths are good proxies of annual variation in forest productivity in temperate forests. Scientific Report, 7, 1945. DOI: 10.1038/s41598-017-02022-6.
doi: 10.1038/s41598-017-02022-6
[33] Yu GR, Liu YB, Wang XC, Ma KP ( 2008). Age-dependent tree-ring growth responses to climate in Qilian juniper (Sabina przewalskii Kom.). Trees, 22, 197-204.
[34] Zeng FP, Chi GY, Chen X, Shi Y ( 2016). The stoichiometric characteristics of C, N and P in soil and root of larch (Larix spp.) plantation at different stand ages in mountainous region of eastern Liaoning Province, China. Chinese Journal of Ecology, 35, 1819-1825.
[ 曾凡鹏, 迟光宇, 陈欣, 史奕 ( 2016). 辽东山区不同林龄落叶松人工林土壤-根系C:N:P生态化学计量特征. 生态学杂志, 35, 1819-1825.]
[35] Zeng LB, Wang XP, Chang JF, Lin X, Wu YL, Yin WL ( 2012). Alpine timberline ecotone tree growth in relation to climatic variability for Picea crassifolia forests in the middle Qilian Mountains, northwestern China. Journal of Beijing Forestry University, 34(5), 50-56.
[ 曾令兵, 王襄平, 常锦峰, 林鑫, 吴玉莲, 尹伟伦 ( 2012). 祁连山中段青海云杉高山林线交错区树轮宽度与气候变化的关系. 北京林业大学学报, 34(5), 50-56.]
[1] HU Wan,ZHANG Zhi-Yong,CHEN Lu-Dan,PENG Yan-Song,WANG Xu. Changes in potential geographical distribution of Tsoongiodendron odorum since the Last Glacial Maximum [J]. Chin J Plant Ecol, 2020, 44(1): 44-55.
[2] FANG Wen-Jing,CAI Qiong,ZHU Jiang-Ling,JI Cheng-Jun,YUE Ming,GUO Wei-Hua,ZHANG Feng,GAO Xian-Ming,TANG Zhi-Yao,FANG Jing-Yun. Distribution, community structures and species diversity of larch forests in North China [J]. Chin J Plant Ecol, 2019, 43(9): 742-752.
[3] Chenchen Ding,Yiming Hu,Chunwang Li,Zhigang Jiang. Distribution and habitat suitability assessment of the gaur Bos gaurus in China [J]. Biodiv Sci, 2018, 26(9): 951-961.
[4] Ya-Lin XIE, Hai-Yan WANG, Xiang-Dong LEI. Effects of climate change on net primary productivity in Larix olgensis plantations based on process modeling [J]. Chin J Plan Ecolo, 2017, 41(8): 826-839.
[5] Yao LI, Xing-Wang ZHANG, Yan-Ming FANG. Responses of the distribution pattern of Quercus chenii to climate change following the Last Glacial Maximum [J]. Chin J Plan Ecolo, 2016, 40(11): 1164-1178.
[6] YU Jian,XU Qian-Qian,LIU Wen-Hui,LUO Chun-Wang,YANG Jun-Long,LI Jun-Qing,LIU Qi-Jing. Response of radial growth to climate change for Larix olgensis along an altitudinal gradient on the eastern slope of Changbai Mountain, Northeast China [J]. Chin J Plan Ecolo, 2016, 40(1): 24-35.
[7] ZHANG Yan,ZHANG Dan-Ju,ZHANG Jian,YANG Wan-Qin,DENG Chang-Chun,LI Jian-Ping,LI Xun,TANG Shi-Shan,ZHANG Ming-Jin. Effects of forest gap size on litter recalcitrant components of two tree species in Pinus massoniana plantations [J]. Chin J Plan Ecolo, 2015, 39(8): 785-796.
[8] Huaqin Xu, Runlin Xiao, Tongqing Song, Wen Luo, Quan Ren, , Yao Huang. Effects of mulching and intercropping on the functional diversity of soil microbial communities in tea plantations [J]. Biodiv Sci, 2008, 16(2): 166-174.
[9] LEI Bo, BAO Wei-Kai, JIA Yu. GROUND BRYOPHYTE COMPOSITION AND SYNUSIA STRUCTURE UNDER SIX TYPES OF YOUNG CONIFEROUS FOREST PLANTATIONS IN THE UPPER MINJIANG RIVER [J]. Chin J Plan Ecolo, 2004, 28(5): 594-600.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Lu Zhong-shu. Plant Growth Regutators in Relation to Plant Water Status[J]. Chin Bull Bot, 1985, 3(04): 1 -6 .
[2] Li Da Jue;Han Yun-zhou and Wan Li-ping. Studies on Germplasm Collections of Carthamus tinctorius IV Screening of the characterization of Seed Domancy[J]. Chin Bull Bot, 1990, 7(02): 50 -52 .
[3] . [J]. Chin Bull Bot, 1999, 16(增刊): 45 -46 .
[4] LU Jin-Yao;LUO Ai-Ling and LIANG Zheng. Some Improvement of TD-PAGE Technology[J]. Chin Bull Bot, 1998, 15(03): 69 -72 .
[5] LI Ling-Hao and CHEN Zuo-Zhong. The Global Carbon Cycle in Grassland Ecosystems and Its Responses to Global Change I . Carbon Flow Compartment Model, Inputs and Storage[J]. Chin Bull Bot, 1998, 15(02): 14 -22 .
[6] Huanhuan Xu, Jian Kang, Mingxiang Liang. Research Advances in the Metabolism of Fructan in Plant Stress Resistance[J]. Chin Bull Bot, 2014, 49(2): 209 -220 .
[7] . [J]. Chin Bull Bot, 2013, 48(1): 4 -5 .
[8] . [J]. Chin Bull Bot, 1996, 13(专辑): 45 .
[9] SHU Qun-Fang;ZHOU Lu;LI Wen-Bin;ZHANG LI-Ming and SUN Yong-Ru. Study on Gel Electrophoresis of Protein from Plant and Our Improved Methods[J]. Chin Bull Bot, 1998, 15(06): 73 -78 .
[10] ZHANG Zhi-Dong, ZANG Run-Guo. PREDICTING POTENTIAL DISTRIBUTIONS OF DOMINANT WOODY PLANT KEYSTONE SPECIES IN A NATURAL TROPICAL FOREST LANDSCAPE OF BAWANGLING, HAINAN ISLAND, SOUTH CHINA[J]. Chin J Plan Ecolo, 2007, 31(6): 1079 -1091 .