Chin J Plant Ecol ›› 2006, Vol. 30 ›› Issue (5): 771-779.DOI: 10.17521/cjpe.2006.0099
Previous Articles Next Articles
SUN Zhi-Hu(), MU Chang-Cheng(
)
Received:
2005-05-09
Accepted:
2005-11-17
Online:
2006-05-09
Published:
2006-09-30
Contact:
MU Chang-Cheng
About author:
E-mail: mccnefu@yahoo.comE-mail of the first author: szhihunefu@163.com
SUN Zhi-Hu, MU Chang-Cheng. THE ESTIMATE OF FINE ROOT BIOMASS IN UPPER SOIL LAYER OF LARIX OLGENSIS PLANTATION BY GEOSTATISTICS METHOD[J]. Chin J Plant Ecol, 2006, 30(5): 771-779.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2006.0099
林龄 Stand age (a) | 平均胸径 DBH (cm) | 林木密度 Density (stem·hm-2) | 土层厚度 Thickness of soil (cm) | 最小株距 Minimum distance (m) | |||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
样地1 Plot 1 | 14 | 7.30 | 3 033 | 57.7 | 0.22 | ||||||||||||||||||||||||
样地2 Plot 2 | 19 | 10.41 | 3 122 | 33.7 | 0.14 | ||||||||||||||||||||||||
样地3 Plot 3 | 22 | 9.50 | 1 989 | 57.7 | 0.36 | ||||||||||||||||||||||||
样地4 Plot 4 | 26 | 14.99 | 1 722 | 85.7 | 0.41 | ||||||||||||||||||||||||
样地5 Plot 5 | 32 | 13.91 | 1 100 | 38.4 | 1.03 | ||||||||||||||||||||||||
样地6 Plot 6 | 40 | 21.24 | 556 | 38.9 | 2.14 |
Table 1 Plot characteristics
林龄 Stand age (a) | 平均胸径 DBH (cm) | 林木密度 Density (stem·hm-2) | 土层厚度 Thickness of soil (cm) | 最小株距 Minimum distance (m) | |||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
样地1 Plot 1 | 14 | 7.30 | 3 033 | 57.7 | 0.22 | ||||||||||||||||||||||||
样地2 Plot 2 | 19 | 10.41 | 3 122 | 33.7 | 0.14 | ||||||||||||||||||||||||
样地3 Plot 3 | 22 | 9.50 | 1 989 | 57.7 | 0.36 | ||||||||||||||||||||||||
样地4 Plot 4 | 26 | 14.99 | 1 722 | 85.7 | 0.41 | ||||||||||||||||||||||||
样地5 Plot 5 | 32 | 13.91 | 1 100 | 38.4 | 1.03 | ||||||||||||||||||||||||
样地6 Plot 6 | 40 | 21.24 | 556 | 38.9 | 2.14 |
平均 Mean | 最小值 Minimum | 最大值 Maximum | 观测数 Number | 标准差 SD | 峰度 Kurtosis | 偏度 Skewness | 变异系数 CV(%) | K-S值 K-S value | |
---|---|---|---|---|---|---|---|---|---|
样地1 Plot 1 | 126.49 | 0 | 448.98 | 82 | 86.528 | 2.079 | 0.972 | 68.41 | 0.086 4 |
样地2 Plot 2 | 135.39 | 0 | 671.20 | 82 | 121.170 | 3.342 | 1.218 | 89.50 | 0.148 6 |
样地3 Plot 3 | 124.55 | 0 | 494.33 | 82 | 99.442 | 3.216 | 1.312 | 79.84 | 0.109 4 |
样地4 Plot 4 | 146.16 | 0 | 648.53 | 70 | 142.583 | 1.552 | 1.317 | 97.55 | 0.160 4 |
样地5 Plot 5 | 161.00 | 0 | 412.70 | 82 | 101.472 | -0.366 | 0.104 | 63.03 | 0.102 2 |
样地6 Plot 6 | 176.04 | 0 | 757.37 | 82 | 170.204 | 1.345 | 1.185 | 96.68 | 0.150 5* |
样地1 Plot 11) | 10.22 | 0 | 21.19 | 82 | 4.733 | 0.586 | -0.731 | 46.33 | 0.148 6 |
样地6 Plot 61) | 10.97 | 0 | 27.52 | 82 | 7.508 | -0.829 | -0.098 | 68.44 | 0.148 2 |
Table 2 Descriptive statistics of fine root mass in soil surface layer (0-10 cm) of larch (g·m-2)
平均 Mean | 最小值 Minimum | 最大值 Maximum | 观测数 Number | 标准差 SD | 峰度 Kurtosis | 偏度 Skewness | 变异系数 CV(%) | K-S值 K-S value | |
---|---|---|---|---|---|---|---|---|---|
样地1 Plot 1 | 126.49 | 0 | 448.98 | 82 | 86.528 | 2.079 | 0.972 | 68.41 | 0.086 4 |
样地2 Plot 2 | 135.39 | 0 | 671.20 | 82 | 121.170 | 3.342 | 1.218 | 89.50 | 0.148 6 |
样地3 Plot 3 | 124.55 | 0 | 494.33 | 82 | 99.442 | 3.216 | 1.312 | 79.84 | 0.109 4 |
样地4 Plot 4 | 146.16 | 0 | 648.53 | 70 | 142.583 | 1.552 | 1.317 | 97.55 | 0.160 4 |
样地5 Plot 5 | 161.00 | 0 | 412.70 | 82 | 101.472 | -0.366 | 0.104 | 63.03 | 0.102 2 |
样地6 Plot 6 | 176.04 | 0 | 757.37 | 82 | 170.204 | 1.345 | 1.185 | 96.68 | 0.150 5* |
样地1 Plot 11) | 10.22 | 0 | 21.19 | 82 | 4.733 | 0.586 | -0.731 | 46.33 | 0.148 6 |
样地6 Plot 61) | 10.97 | 0 | 27.52 | 82 | 7.508 | -0.829 | -0.098 | 68.44 | 0.148 2 |
模型 Model | 块金值 Nugget (C0) | 基台值 Sill (C0+C) | 范围参数 Range parameter (a0) | 结构比 Proportion (C/(C0+C)) | 决定系数 Coefficient of determination (R2) | 显著性水平 Significant level (α) | |
---|---|---|---|---|---|---|---|
样地1 Plot 1 | 球状Spherical | 11.37 | 22.75 | 1.76 | 0.500 | 0.401 | 0.077 1 |
样地2 Plot 2 | 球状Spherical | 9 390.00 | 18 790.00 | 3.40 | 0.500 | 0.204 | 0.254 4 |
样地3 Plot 3 | 球状Spherical | 30.00 | 9 830.00 | 1.02 | 0.997 | 0.395 | 0.172 2 |
样地4 Plot 4 | 球状Spherical | 15 230.00 | 30 470.00 | 4.12 | 0.500 | 0.377 | 0.150 6 |
样地5 Plot 5 | 球状Spherical | 2 780.00 | 10 070.00 | 3.37 | 0.724 | 0.561 | 0.056 1 |
样地6 Plot 6 | 球状Spherical | 19.10 | 61.99 | 5.58 | 0.692 | 0.754 | 0.007 4 |
Table 3 The results of semivariance analysis for fine root mass of larch in soil surface layer (0-10 cm)
模型 Model | 块金值 Nugget (C0) | 基台值 Sill (C0+C) | 范围参数 Range parameter (a0) | 结构比 Proportion (C/(C0+C)) | 决定系数 Coefficient of determination (R2) | 显著性水平 Significant level (α) | |
---|---|---|---|---|---|---|---|
样地1 Plot 1 | 球状Spherical | 11.37 | 22.75 | 1.76 | 0.500 | 0.401 | 0.077 1 |
样地2 Plot 2 | 球状Spherical | 9 390.00 | 18 790.00 | 3.40 | 0.500 | 0.204 | 0.254 4 |
样地3 Plot 3 | 球状Spherical | 30.00 | 9 830.00 | 1.02 | 0.997 | 0.395 | 0.172 2 |
样地4 Plot 4 | 球状Spherical | 15 230.00 | 30 470.00 | 4.12 | 0.500 | 0.377 | 0.150 6 |
样地5 Plot 5 | 球状Spherical | 2 780.00 | 10 070.00 | 3.37 | 0.724 | 0.561 | 0.056 1 |
样地6 Plot 6 | 球状Spherical | 19.10 | 61.99 | 5.58 | 0.692 | 0.754 | 0.007 4 |
实测值Real data | 估测值Estimate | 显著性水平 α | |||||
---|---|---|---|---|---|---|---|
平均Mean | 标准差 SD | 峰度Kurtosis | 偏度Skewness | 平均Mean | 标准差 SD | ||
样地1 Plot 1 | 148.56 | 93.58 | -0.121 2 | 0.365 2 | 114.76 | 93.58 | 0.188 4 |
样地2 Plot 2 | 143.22 | 217.29 | 11.802 3 | 3.170 7 | 167.76 | 22.13 | 0.066 5 |
样地3 Plot 3 | 78.94 | 69.82 | 1.263 6 | 0.878 8 | 96.80 | 10.70 | 0.188 4 |
样地4 Plot 4 | 95.24 | 82.96 | -0.397 2 | 0.603 2 | 60.67 | 4.16 | 0.089 0 |
样地5 Plot 5 | 165.77 | 86.78 | 0.818 7 | 0.917 1 | 224.51 | 45.49 | 0.063 3 |
样地6 Plot 6 | 251.64 | 158.69 | -0.656 2 | 0.123 8 | 229.31 | 10.83 | 0.510 8 |
Table 4 The comparison of original and estimated data for fine root mass in soil surface layer (0-10 cm) of larch (n=37) (g·m-2)
实测值Real data | 估测值Estimate | 显著性水平 α | |||||
---|---|---|---|---|---|---|---|
平均Mean | 标准差 SD | 峰度Kurtosis | 偏度Skewness | 平均Mean | 标准差 SD | ||
样地1 Plot 1 | 148.56 | 93.58 | -0.121 2 | 0.365 2 | 114.76 | 93.58 | 0.188 4 |
样地2 Plot 2 | 143.22 | 217.29 | 11.802 3 | 3.170 7 | 167.76 | 22.13 | 0.066 5 |
样地3 Plot 3 | 78.94 | 69.82 | 1.263 6 | 0.878 8 | 96.80 | 10.70 | 0.188 4 |
样地4 Plot 4 | 95.24 | 82.96 | -0.397 2 | 0.603 2 | 60.67 | 4.16 | 0.089 0 |
样地5 Plot 5 | 165.77 | 86.78 | 0.818 7 | 0.917 1 | 224.51 | 45.49 | 0.063 3 |
样地6 Plot 6 | 251.64 | 158.69 | -0.656 2 | 0.123 8 | 229.31 | 10.83 | 0.510 8 |
原始数据 Original data | 模型估计 Estimated data | ||||||
---|---|---|---|---|---|---|---|
平均值Mean1) (n=82) (Mg·hm-2) | 平均值Mean2) (n=119) (Mg·hm-2) | 差值 Difference | 细根生物量3) Fine root mass (Mg·hm-2) | 决定系数3) Determination coefficient (R2) | F值3) F value | ||
样地1 Plot 1 | 1.264 9 | 1.333 5 | 0.068 6 | 1.097 3 | 0.833 2 | 499.1 | |
样地2 Plot 2 | 1.353 9 | 1.378 3 | 0.024 4 | 1.434 0 | 0.867 9 | 656.7 | |
样地3 Plot 3 | 1.245 5 | 1.103 7 | -0.141 8 | 1.185 4 | 0.763 2 | 322.1 | |
样地4 Plot 4 | 1.461 6 | 1.285 5 | -0.176 1 | 0.974 3 | 0.946 2 | 1 318.0 | |
样地5 Plot 5 | 1.610 0 | 1.624 8 | 0.014 8 | 1.682 6 | 0.845 0 | 544.7 | |
样地6 Plot 6 | 1.760 4 | 1.995 5 | 0.235 1 | 1.255 6 | 0.952 1 | 1 986.1 |
Table 5 The estimated data of fine root mass in soil surface layer (0-10 cm) of larch
原始数据 Original data | 模型估计 Estimated data | ||||||
---|---|---|---|---|---|---|---|
平均值Mean1) (n=82) (Mg·hm-2) | 平均值Mean2) (n=119) (Mg·hm-2) | 差值 Difference | 细根生物量3) Fine root mass (Mg·hm-2) | 决定系数3) Determination coefficient (R2) | F值3) F value | ||
样地1 Plot 1 | 1.264 9 | 1.333 5 | 0.068 6 | 1.097 3 | 0.833 2 | 499.1 | |
样地2 Plot 2 | 1.353 9 | 1.378 3 | 0.024 4 | 1.434 0 | 0.867 9 | 656.7 | |
样地3 Plot 3 | 1.245 5 | 1.103 7 | -0.141 8 | 1.185 4 | 0.763 2 | 322.1 | |
样地4 Plot 4 | 1.461 6 | 1.285 5 | -0.176 1 | 0.974 3 | 0.946 2 | 1 318.0 | |
样地5 Plot 5 | 1.610 0 | 1.624 8 | 0.014 8 | 1.682 6 | 0.845 0 | 544.7 | |
样地6 Plot 6 | 1.760 4 | 1.995 5 | 0.235 1 | 1.255 6 | 0.952 1 | 1 986.1 |
[1] | Bigwood DW, Inouye DW (1988). Spatial pattern analysis of seed banks: an improved method and optimized sampling. Ecology, 69,497-507. |
[2] | Burker MK, Raynal DJ (1994). Fine root growth, phenology, production, and turnover in a northern hardwood forest ecosystem. Plant and Soil, 162,135-146. |
[3] | Buttner V, Leuschner C (1994). Spatial and temporal patterns of fine root abundance in a mixed oak-beech forest. Forest Ecology and Management, 70,11-21. |
[4] | Catchpole WR, Wheeler CJ (1992). Estimating plant biomass: a review of techniques. Australian Journal of Ecology, 17,121-131. |
[5] | Christien HE, Ettema DA (2002). Spatial soil ecology. Trends in Ecology & Evolution, 17,177-183. |
[6] | Du XJ (杜晓军), Liu CF (刘常富), Jin G (金罡), Shi XN (石小宁) (1998). Root biomass of main forest ecosystem in Changbai Mountain. Journal of Shenyang Agricultural University(沈阳农业大学学报), 29,229-232. (in Chinese with English abstract) |
[7] | Fang JY (方精云), Chen AP (陈安平), Zhao SQ (赵淑清), Ci LJ(慈龙骏) (2002). Estimating biomass carbon of China's forests: supplementary notes on report published in Science (291,2320-2322) by Fang et al. Acta Phytoecologica Sinica (植物生态学报), 26,243-249. (in Chinese with English abstract) |
[8] | Goovaerts P (1997). Geostatistics for Natural Resources Evaluation. Oxford University Press , New York. |
[9] | Hahn G, Marschner H (1998). Cation concentrations of short roots of Norway spruce as affected by acid irrigation and liming. Plant and Soil, 199,23-27. |
[10] | Huang JH (黄建辉), Han XG (韩兴国), Chen LZ(陈灵芝) (1999). Advances in the research of (fine) root biomass in forest ecosystems. Acta Ecologica Sinica (生态学报), 19,270-277. (in Chinese with English abstract) |
[11] | Kurz WA, Apps MJ (1999). A 70-year retrospective analysis of carbon fluxes in the Canadian forest sector. Ecological Applications, 9,526-547. |
[12] | Li H, Reynolds JF (1995). On definition and quantification of heterogeneity. Oikos, 73,280-284. |
[13] | Li LH (李凌浩), Lin P (林鹏), Xing XR (邢雪荣) (1998). Fine root biomass and production of Castanopsis eyrei forests in Wuyi Mountains . Chinese Journal of Applied Ecology(应用生态学报), 9,337-340. (in Chinese with English abstract) |
[14] | Liao LP (廖利平), Chen CY (陈楚莹), Zhang JW (张家武), Gao H (高洪) (1995). Turnover of fine roots in pure and mixed Cunninghamia lanceolata and Michelia macclurei forests . Chinese Journal of Applied Ecology (应用生态学报), 6,7-10. (in Chinese with English abstract) |
[15] | Liao LP (廖利平), Deng SJ (邓仕坚), Yu XJ (于小军), Han SJ (韩士杰) (2001). Growth, distribution and exudation of fine roots of Chinese fir trees grown in continuously cropped plantations. Acta Ecologica Sinica (生态学报), 21,569-573. (in Chinese with English abstract) |
[16] | Liao LY (廖兰玉), Ding MM (丁明懋), Zhang ZP (张祝平), Yi WM(蚁伟民), Guo GZ (郭贵仲), Huang ZL (黄忠良) (1993). Root biomass and its nitrogen dynamic of some communities in Dinghushan. Acta Phytoecologica et Geobotanica Sinica (植物生态学与地植物学学报), 17,56-60. (in Chinese with English abstract) |
[17] |
Liu X, Tyree MT (1997). Root carbohydrate reserves, mineral nutrient concentrations and biomass in a healthy and a declining sugar maple ( Acer saccharum) stand . Tree Physiology, 17,179-185.
URL PMID |
[18] |
Michael AC, Sandra B, Eileen HH (1997). Root biomass allocation in the world's upland forests. Oecologia, 111,1-11.
DOI URL PMID |
[19] | Mou P, Michell RJ, Jones RH (1997). Root distribution of two tree species under a heterogeneous nutrient environment. Journal of Applied Ecology, 34,645-656. |
[20] | Person H (1990). Methods of studying root dynamics in relation to nutrient cycling. In: Harrison AF, Ineson P, Heal OW eds. Nutrient Cycling in Terrestrial Ecosystems: Field Methods, Application and Interpretation. Elsevier Applied Science, London, New York. |
[21] | Rose MR (2001). Biomass production and allocation, including fine-root turnover, and annual N uptake in lysimeter-grown basket willows. Forest Ecology and Management, 140,177-192. |
[22] | Sanford RLJ, Cuevas E (1996). Root growth and rhizosphere interactions in tropical forests. In: Mulkey SS, Chazdon RL, Smith AP eds. Tropical Forest Plant Ecophysiology. Chapman and Hall, New York, 268-300. |
[23] | Shan JP (单建平), Tao DL (陶大立), Wang M (王淼), Zhao SD (赵士洞) (1993). Fine roots turnover in a broad-leaved Korean pine forest of Changbai Mountain. Chinese Journal of Applied Ecology (应用生态学报), 4,241-245. (in Chinese with English abstract) |
[24] | Shan JP (单建平), Tao DL (陶大立) (1992). Overseas researches on tree fine root. Chinese Journal of Ecology (生态学杂志), 11(4),46-49. (in Chinese with English abstract) |
[25] |
Steele SJ, Gower ST, Vogel JG (1997). Root mass, net primary production and turnover in aspen, jack pine and black spruce forests in Saskatchewan and Manitoba,Canada. Tree Physiology, 17,577-587.
URL PMID |
[26] | Sun LA (孙力安), Liu GB (刘国彬), Liang YM (梁一民) (1994). Studies on determining methods of underground biomass with different diameter coring. Grassland of China (中国草地), (2),32-35. (in Chinese with English abstract) |
[27] | Wang JR, Zhong AL, Kimmins JP (2002). Biomass estimation errors associated with the use of published regression equations of paper birch and trembling aspen. Northern Journal of Applied Forestry, 19,128-136. |
[28] | Wang ZQ (王政权) (1999). Geostatistics and Its Application in Ecology (地统计学及在生态学中的应用). Science Press, Beijing. (in Chinese) |
[29] | Wang Z (王战) (1992). Larch Forest of China (中国落叶松林). China Forestry Publishing House, Beijing. (in Chinese) |
[30] | Yang YS (杨玉盛), Chen GS (陈光水), He ZM (何宗明), Chen YX (陈银秀), Huang RZ (黄荣珍) (2002). Distribution of fine roots in a mixed Cunninghamia lanceolata- Tsoongiodendron odorum plantation . Journal of Tropical and Subtropical Botany (热带亚热带植物学报), 10,111-117. (in Chinese with English abstract) |
[31] | Yu WT (宇万太), Yu YQ (于永强) (2001). Advances in the research of underground biomass. Chinese Journal of Applied Ecology (应用生态学报), 12,927-932. (in Chinese with English abstract) |
[32] | Zhang XQ (张小全), Wu KH (吴可红), Dieter M (2000). A review of methods for fine-root production and turnover of trees. Acta Ecologica Sinica (生态学报), 20,875-883. (in Chinese with English abstract) |
[1] | BAI Yue, LIU Chen, HUANG Yue, DONG Ya-Nan, WANG Lu. Response of spatial heterogeneity of plant community height to different herbivore assemblages in Horqin sandy grassland [J]. Chin J Plant Ecol, 2022, 46(4): 394-404. |
[2] | GAO Lu-Xin, LAN Tian-Yuan, ZHAO Zhi-Xia, DENG Shu-Yu, XIONG Gao-Ming, XIE Zong-Qiang, SHEN Guo-Zhen. Spatial turnover of shrubland communities and underlying factors in northern mid-subtropical China [J]. Chin J Plant Ecol, 2022, 46(11): 1411-1421. |
[3] | WEI Chun-Xue, YANG Lu, WANG Jin-Song, YANG Jia-Ming, SHI Jia-Wei, TIAN Da-Shuan, ZHOU Qing-Ping, NIU Shu-Li. Effects of experimental warming on root biomass in terrestrial ecosystems [J]. Chin J Plant Ecol, 2021, 45(11): 1203-1212. |
[4] | OU Wen-Hui, LIU Ya-Heng, LI Na, XU Zhi-Yan, PENG Qiu-Tong, YANG Yu-Jing, LI Zhong-Qiang. Testing multiple hypotheses for the richness pattern of macrophyte in the Qaidam Basin of Northwest China [J]. Chin J Plant Ecol, 2021, 45(11): 1213-1220. |
[5] | WANG Yan-Hong, LI Shuai-Feng, LANG Xue-Dong, HUANG Xiao-Bo, LIU Wan-De, XU Chong-Hua, SU Jian-Rong. Effects of topographic heterogeneity on species diversity in a monsoon evergreen broad- leaved forest in Puʼer, Yunnan, China [J]. Chin J Plant Ecol, 2020, 44(10): 1015-1027. |
[6] | YANG Huan-Ying, SONG Jian-Da, ZHOU Tao, JIN Guang-Ze, JIANG Feng, LIU Zhi-Li. Influences of stand, soil and space factors on spatial heterogeneity of leaf area index in a spruce-fir valley forest in Xiao Hinggan Ling, China [J]. Chin J Plant Ecol, 2019, 43(4): 342-351. |
[7] | WEN Xiao-Shi, CHEN Bin-Hang, ZHANG Shu-Bin, XU Kai, YE Xin-Yu, NI Wei-Jie, WANG Xiang-Ping. Relationships of radial growth with climate change in larch plantations of different stand ages and species [J]. Chin J Plant Ecol, 2019, 43(1): 27-36. |
[8] | MENG Ling-Jun, YAO Jie, QIN Jiang-Huan, FAN Chun-Yu, ZHANG Chun-Yu, ZHAO Xiu-Hai. Drivers of composition and density pattern of tree seedlings in a secondary mixed conifer and broad-leaved forest, Jiaohe, Jilin, China [J]. Chin J Plant Ecol, 2018, 42(6): 653-662. |
[9] | ZHANG Xin, XING Ya-Juan, YAN Guo-Yong, WANG Qing-Gui. Response of fine roots to precipitation change: A meta-analysis [J]. Chin J Plant Ecol, 2018, 42(2): 164-172. |
[10] | Ya-Lin XIE, Hai-Yan WANG, Xiang-Dong LEI. Effects of climate change on net primary productivity in Larix olgensis plantations based on process modeling [J]. Chin J Plan Ecolo, 2017, 41(8): 826-839. |
[11] | Guan-Tao CHEN, Yong PENG, Jun ZHENG, Shun LI, Tian-Chi PENG, Xi-Rong QIU, Li-Hua TU. Effects of short-term nitrogen addition on fine root biomass, lifespan and morphology of Castanopsis platyacantha in a subtropical secondary evergreen broad-leaved forest [J]. Chin J Plant Ecol, 2017, 41(10): 1041-1050. |
[12] | Shuai LIU, Jia-Xing LIAO, Cui XIAO, Xiu-Hua FAN. Effects of biotic neighbors and habitat heterogeneity on tree seedling survival in a secondary mixed conifer and broad-leaved forest in Changbai Mountain [J]. Chin J Plant Ecol, 2016, 40(7): 711-722. |
[13] | Hu DU, Fu-Ping ZENG, Tong-Qing SONG, Yuan-Guang WEN, Chun-Gan LI, Wan-Xia PENG, Hao ZHANG, Zhao-Xia ZENG. Spatial pattern of soil organic carbon of the main forest soils and its influencing factors in Guangxi, China [J]. Chin J Plant Ecol, 2016, 40(4): 282-291. |
[14] | Chen-Song HAO, Qing-Kai WANG, Xiao-Ling SUN. Effects of light heterogeneity on leaf anatomical structure in Buchloe dactyloides [J]. Chin J Plant Ecol, 2016, 40(3): 246-254. |
[15] | Yun CHEN, Ting WANG, Pei-Kun LI, Cheng-Liang YAO, Zhi-Liang YUAN, Yong-Zhong YE. Community characteristics and spatial distribution of dominant tree species in a deciduous broad-leaved forest of Muzhaling, Henan, China [J]. Chin J Plant Ecol, 2016, 40(11): 1179-1188. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn