Chin J Plant Ecol ›› 2016, Vol. 40 ›› Issue (3): 246-254.DOI: 10.17521/cjpe.2015.0377
• Research Articles • Previous Articles Next Articles
Chen-Song HAO, Qing-Kai WANG, Xiao-Ling SUN()
Received:
2015-10-20
Revised:
2016-02-19
Online:
2016-03-10
Published:
2016-03-25
Chen-Song HAO, Qing-Kai WANG, Xiao-Ling SUN. Effects of light heterogeneity on leaf anatomical structure in Buchloe dactyloides[J]. Chin J Plant Ecol, 2016, 40(3): 246-254.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2015.0377
Fig. 1 Diagrammatic presentation of a Buchloe dactyloides stolon segment consisting of mother ramet, elder daughter ramet and younger daughter ramet at the start of this experiment.
试验处理 Treatment | 姊株 EDR | 妹株 YDR |
---|---|---|
HH | 高光 High light | 高光 High light |
HL | 高光 High light | 低光 Low light |
LH | 低光 Low light | 高光 High light |
LL | 低光 Low light | 低光 Low light |
Table 1 The pattern of light treatments to elder daughter ramets (EDR) and younger daughter ramets (YDR)
试验处理 Treatment | 姊株 EDR | 妹株 YDR |
---|---|---|
HH | 高光 High light | 高光 High light |
HL | 高光 High light | 低光 Low light |
LH | 低光 Low light | 高光 High light |
LL | 低光 Low light | 低光 Low light |
Fig. 2 Illustration of an image used to measure the adaxial (lower) and abaxial (upper) mesophyll tissues of Buchloe dactyloides in a cross-section light micrograph. The adaxial and abaxial mesophyll thickness were measured separately relative to the middle of the bundle sheath as shown by the dashed line, which generally represented the middle of the leaf (Jiang et al., 2011). a, mesophyll cells; b, bundle sheath cells; c, sclerenchyma; d, epidermal cell; e, xylem; f, phloem; g, motor cell.
Fig. 3 Main vein diameter (MVD) (A), bundle sheath cell number (BSCN) (B), and total contact length between bundle sheath and mesophyll cells (CLBM) (C) of Buchloe dactyloides elder daughter ramets (EDR) and younger daughter ramets (YDR) under homogeneous and heterogeneous light treatments (means ± SE, n = 7). Different letters indicate significant difference among treatments (p < 0.05). For HH, HL, LH and LL, see Table 1.
Fig 4 Leaf thickness (LT) (A), adaxial mesophyll thickness (AdMT) (B), and abaxial mesophyll thickness (AbMT) (C) of Buchloe dactyloides elder daughter ramets (EDR) and younger daughter ramets (YDR) under homogeneous and heterogeneous light treatments (means ± SE, n = 7). Different letters indicate significant difference among treatments (p < 0.05). For HH, HL, LH and LL, see Table 1.
处理 Treatment | 自由度 Degree of freedom | 主脉直径 MVD | 维管束鞘细胞个数 BSCN | 维管束鞘细胞与叶肉接触面的长度 CLBM | 叶片 厚度 LT | 近轴侧叶肉细胞厚度 AdMT | 远轴侧叶肉细胞厚度 AbMT | 近轴侧 气孔密度 AdSD | 远轴侧 气孔密度 AbSD | 近轴侧 气孔大小 AdSZ | 远轴侧 气孔大小 AbSZ |
---|---|---|---|---|---|---|---|---|---|---|---|
年龄 A | 1, 48 | 0.754 | 0.388 | 0.017 | 1.168 | 4.19* | 4.28* | 0.368 | 0.116 | 33.925*** | 22.998*** |
分株自身所处光照 Lc | 1, 48 | 10.667** | 0.028 | 1.864 | 4.027 | 0.910 | 3.740 | 23.540*** | 31.030*** | 55.845*** | 85.684*** |
相连分株所处光照 Rc | 1, 48 | 3.265 | 0.447 | 0.209 | 0.559 | 8.380** | 17.550*** | 29.793*** | 35.030*** | 130.628*** | 98.520*** |
A × Lc | 1, 48 | 0.018 | 2.495 | 0.988 | 0.008 | 0.110 | 1.630 | 0.828 | 0.485 | 37.874*** | 102.998*** |
Lc × Rc | 1, 48 | 11.227** | 28.096*** | 6.339* | 10.221** | 16.570*** | 20.700*** | 4.506* | 1.486 | 2.041 | 0.112 |
A × Rc | 1, 48 | 0.883 | 4.457* | 0.001 | 1.380 | 12.780*** | 3.730 | 0.092 | 0.059 | 21.304*** | 81.604*** |
A × Lc × Rc | 1, 48 | 0.285 | 2.592 | 1.299 | 0.079 | 1.390 | 3.490 | 0.368 | 0.021 | 0.592 | 66.281*** |
Table 2 F-values of three-way ANOVA for the effects of age (A), local condition (Lc), remote condition (Rc), and their interactions on leaf anatomical traits of Buchloe dactyloides
处理 Treatment | 自由度 Degree of freedom | 主脉直径 MVD | 维管束鞘细胞个数 BSCN | 维管束鞘细胞与叶肉接触面的长度 CLBM | 叶片 厚度 LT | 近轴侧叶肉细胞厚度 AdMT | 远轴侧叶肉细胞厚度 AbMT | 近轴侧 气孔密度 AdSD | 远轴侧 气孔密度 AbSD | 近轴侧 气孔大小 AdSZ | 远轴侧 气孔大小 AbSZ |
---|---|---|---|---|---|---|---|---|---|---|---|
年龄 A | 1, 48 | 0.754 | 0.388 | 0.017 | 1.168 | 4.19* | 4.28* | 0.368 | 0.116 | 33.925*** | 22.998*** |
分株自身所处光照 Lc | 1, 48 | 10.667** | 0.028 | 1.864 | 4.027 | 0.910 | 3.740 | 23.540*** | 31.030*** | 55.845*** | 85.684*** |
相连分株所处光照 Rc | 1, 48 | 3.265 | 0.447 | 0.209 | 0.559 | 8.380** | 17.550*** | 29.793*** | 35.030*** | 130.628*** | 98.520*** |
A × Lc | 1, 48 | 0.018 | 2.495 | 0.988 | 0.008 | 0.110 | 1.630 | 0.828 | 0.485 | 37.874*** | 102.998*** |
Lc × Rc | 1, 48 | 11.227** | 28.096*** | 6.339* | 10.221** | 16.570*** | 20.700*** | 4.506* | 1.486 | 2.041 | 0.112 |
A × Rc | 1, 48 | 0.883 | 4.457* | 0.001 | 1.380 | 12.780*** | 3.730 | 0.092 | 0.059 | 21.304*** | 81.604*** |
A × Lc × Rc | 1, 48 | 0.285 | 2.592 | 1.299 | 0.079 | 1.390 | 3.490 | 0.368 | 0.021 | 0.592 | 66.281*** |
Fig. 5 Adaxial stomatal density (AdSD) (A), abaxial stomatal density (AbSD) (B), adaxial stomatal size (AdSZ) (C) and abaxial stomatal size (AbSZ) (D) of Buchloe dactyloides elder daughter ramets (EDR) and younger daughter ramets (YDR) under homogeneous and heterogeneous light treatments (means ± SE, n = 7). Different letters indicate significant difference among treatments (p < 0.05). For HH, HL, LH and LL, see Table 1.
[1] | Abrams MD, Kubiske ME (1990). Leaf structural characteristics of 31 hardwood and conifer tree species in central Wisconsin: Influence of light regime and shade-tolerance rank.Forest Ecology and Management, 31, 245-253. |
[2] | Alpert P (1999). Clonal integration in Fragaria chiloensis differs between populations: Ramets from grassland are selfish.Oecologia, 120, 69-76. |
[3] | Alpert P, Holzapfel C, Benson JM (2002). Hormonal modification of resource sharing in the clonal plant Fragaria chiloensis.Functional Ecology, 16, 191-197. |
[4] | Alpert P, Simms EL (2002). The relative advantages of plasticity and fixity in different environments: When is it good for a plant to adjust?Evolutionary Ecology, 16, 285-297. |
[5] | Driscoll SP, Prins A, Olmos E, Kunert KJ, Foyer CH (2006). Specification of adaxial and abaxial stomata, epidermal structure and photosynthesis to CO2 enrichment in maize leaves. Journal of Experimental Botany, 57, 381-390. |
[6] | Gong Y, Chen HM, Jiang CD, Shi L (2014). Quantification of leaf anatomical structure and its application in a C4 plant, sorghum.Chinese Bulletin of Botany, 49, 173-182. (in Chinese with English abstract)[巩玥, 陈海苗, 姜闯道, 石雷 (2014). 植物叶片解剖结构的量化及其在C4植物高粱中的应用. 植物学报, 49, 173-182.] |
[7] | Guo W, Song YB, Yu FH (2011). Heterogeneous light supply affects growth and biomass allocation of the understory fern Diplopterygium glaucum at high patch contrast.PLoS ONE, 6, e27998. |
[8] | Karpinski S, Reynolds H, Karpinska B, Wingsle G, Creissen G, Mullineaux P (1999). Systemic signaling and acclimation in response to excess excitation energy inArabidopsis. Science, 284, 654-657. |
[9] | James SA, Bell DT (2000). Influence of light availability on leaf structure and growth of two Eucalyptus globulus ssp. globulus provenances.Tree Physiology, 20, 1007-1018. |
[10] | Jiang CD, Wang X, Gao HY, Shi L, Chow WS (2011). Systemic regulation of leaf anatomical structure, photosynthetic performance, and high-light tolerance in sorghum.Plant Physiology, 155, 1416-1424. |
[11] | Lake JA, Quick WP, Beerling DJ, Woodward FI (2001). Plant development: Signals from mature to new leaves.Nature, 411, 154-154. |
[12] | Li Q, Liu X, Yue M, Zhang XF, Zhang RC (2011). Effects of physiological integration on photosynthetic efficiency of Trifolium repens in response to heterogeneous UV-B radiation.Photosynthetica, 49, 539-545. |
[13] | Long SP, Farage PK, Bolhár-Nordenkampf HR, Rohrhofer U (1989). Separating the contribution of the upper and lower mesophyll to photosynthesis in Zea mays L. leaves.Planta, 177, 207-216. |
[14] | Magyar G, Kun A, Oborny B, Stuefer JF (2007). Importance of plasticity and decision-making strategies for plant resource acquisition in spatio-temporally variable environments.New Phytologist, 174, 182-193. |
[15] | Murchie EH, Horton P (1997). Acclimation of photosynthesis to irradiance and spectral quality in British plant species: Chlorophyll content, photosynthetic capacity and habitat preference.Plant, Cell & Environment, 20, 438-448. |
[16] | Oguchi R, Hikosaka K, Hirose T (2003). Does the photosynthetic light-acclimation need change in leaf anatomy?Plant, Cell & Environment, 26, 505-512. |
[17] | Oguchi R, Hikosaka K, Hiura T, Hirose T (2008). Costs and benefits of photosynthetic light acclimation by tree seedlings in response to gap formation.Oecologia, 155, 665-675. |
[18] | Qian Y, Li D, Han L, Sun Z (2010). Inter-ramet photosynthate translocation in buffalograss under differential water defi- cit stress.Journal of the American Society for Horticultural Science, 135, 310-316. |
[19] | Soares-Cordeiro AS, Driscoll SP, Pellny TK, Olmos E, ArrabaÇA MC, Foyer CH (2009). Variations in the dorso- ventral organization of leaf structure and Kranz anatomy coordinate the control of photosynthesis and associated signalling at the whole leaf level in monocotyledonous species.Plant, Cell & Environment, 32, 1833-1844. |
[20] | Stuefer JF, During HJ, de Kroon H (1994). High benefits of clonal integration in two stoloniferous species, in response to heterogeneous light environments.Journal of Ecology, 82, 511-518. |
[21] | Tao YS, Hong SC, Liao YM, Li YX, Liao XL, Quan QM (2013). Cost-benefits of the clonal integration of Cynodon dactylon, a stolon herbaceous plant, under heterogeneous lighting condition.Acta Ecologica Sinica, 33, 6509-6516. (in Chinese with English abstract)[陶应时, 洪胜春, 廖咏梅, 黎云祥, 廖兴利, 权秋梅 (2013). 异质性光照下匍匐茎草本狗牙根克隆整合的耗益. 生态学报, 33, 6509-6516.] |
[22] | Thomas PW, Woodward FI, Quick WP (2004). Systemic irradiance signalling in tobacco.New phytologist, 161, 193-198. |
[23] | van Kleunen M, Fischer M (2007). Progress in the detection of costs of phenotypic plasticity in plants.New Phytologist, 176, 727-730. |
[24] | Wang N, Yu FH, Li PX, He WM, Liu FH, Liu JM, Dong M (2008). Clonal integration affects growth, photosynthetic efficiency and biomass allocation, but not the competitive ability, of the alien invasive Alternanthera philoxeroides under severe stress.Annals of Botany, 101, 671-678. |
[25] | Wang XL, Li ZQ, Jiang CD, Shi L, Xing Q, Liu LA (2012). Effects of diffuse and direct light on photosynthetic function in sorghum leaf.Acta Agronomica Sinica, 38, 1452-1459. (in Chinese with English abstract)[王晓琳, 李志强, 姜闯道, 石雷, 邢全, 刘立安 (2012). 散射光和直射光对高粱叶片光合功能的影响. 作物学报, 38, 1452-1459.] |
[26] | Wei HJ, Yang HM, Zhao L (2007). The effects of shadowing on stomatal and photosynthetic characteristics of Trifolium repens.Pratacultural Science, 24(10), 94-97. (in Chinese with English abstract)[韦海建, 杨惠敏, 赵亮 (2007). 遮荫环境对白三叶草气孔和光合特性的影响. 草业科学, 24(10), 94-97.] |
[27] | Weijschedé J, Martínková J, de Kroon H, Huber H (2006). Shade avoidance in Trifolium repens: Costs and benefits of plasticity in petiole length and leaf size.New Phytologist, 172, 655-666. |
[28] | Xu Z, Zhou G (2008). Responses of leaf stomatal density to water status and its relationship with photosynthesis in a grass.Journal of Experimental Botany, 59, 3317-3325. |
[29] | Yu FH, Dong M (2003). Effect of light intensity and nutrient availability on clonal growth and clonal morphology of the stoloniferous herbHalerpestes ruthenica. Acta Botanica Sinica, 45, 408-416. |
[30] | Yu FH, Dong M, Krüsi B (2004). Clonal integration helps Psammochloa villosa survive sand burial in an inland dune.New Phytologist, 162, 697-704. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn