Chin J Plant Ecol ›› 2016, Vol. 40 ›› Issue (1): 60-68.DOI: 10.17521/cjpe.2015.0273
• Orginal Article • Previous Articles Next Articles
WANG Na, ZHANG Yun, QIAN Wen-Li, WANG Zheng-Quan, GU Jia-Cun*
Online:
2016-01-01
Published:
2016-01-28
Contact:
Jia-Cun GU
About author:
# Co-first authors
WANG Na, ZHANG Yun, QIAN Wen-Li, WANG Zheng-Quan, GU Jia-Cun. Effects of elevated CO2 concentration on root and needle anatomy and physiological functions in Pinus koraiensis seedlings[J]. Chin J Plant Ecol, 2016, 40(1): 60-68.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2015.0273
CO2浓度 CO2 concentration | p | ||
---|---|---|---|
350 µmol·mol-1 | 700 µmol·mol-1 | ||
气孔密度 Stomatal density (No.·mm-2) | 66.78 ± 1.85 | 56.83 ± 1.61 | < 0.01 |
叶横截面积 Needle cross section area (mm2) | 0.37 ± 0.02 | 0.44 ± 0.01 | < 0.01 |
叶肉组织面积 Mesophyll tissue area (mm2) | 0.26 ± 0.01 | 0.30 ± 0.01 | < 0.05 |
叶肉细胞面积 Mesophyll cell area (µm2) | 2 306.63 ± 69.97 | 2 501.67 ± 46.92 | < 0.05 |
木质部面积 Xylem area (µm2) | 3 817.96 ± 101.06 | 4 412.13 ± 126.86 | < 0.01 |
韧皮部面积 Phloem area (µm2) | 4 031.57 ± 152.95 | 5 534.15 ± 275.95 | < 0.01 |
中柱直径 Central cylinder diameter (µm) | 254.14 ± 8.31 | 277.55 ± 6.35 | < 0.05 |
管胞数 Tracheid number (No.) | 47.87 ± 1.85 | 50.60 ± 1.20 | 0.23 |
管胞直径 Tracheid diameter (µm) | 6.53 ± 0.09 | 6.62 ± 0.14 | 0.62 |
管胞密度 Tracheid density (No.·µm-2) | 0.001 ± 0.000 06 | 0.000 8 ± 0.000 05 | < 0.05 |
管胞壁厚度 Tracheid wall thickness (µm) | 0.68 ± 0.01 | 0.87 ± 0.02 | < 0.01 |
表皮和下皮厚度 Epidermis plus hypodermis thickness (µm) | 1.54 ± 0.03 | 1.67 ± 0.04 | < 0.05 |
Table 1 Effects of different CO2 concentration treatments on the needle anatomy of Pinus koraiensis seedlings (mean ± SE)
CO2浓度 CO2 concentration | p | ||
---|---|---|---|
350 µmol·mol-1 | 700 µmol·mol-1 | ||
气孔密度 Stomatal density (No.·mm-2) | 66.78 ± 1.85 | 56.83 ± 1.61 | < 0.01 |
叶横截面积 Needle cross section area (mm2) | 0.37 ± 0.02 | 0.44 ± 0.01 | < 0.01 |
叶肉组织面积 Mesophyll tissue area (mm2) | 0.26 ± 0.01 | 0.30 ± 0.01 | < 0.05 |
叶肉细胞面积 Mesophyll cell area (µm2) | 2 306.63 ± 69.97 | 2 501.67 ± 46.92 | < 0.05 |
木质部面积 Xylem area (µm2) | 3 817.96 ± 101.06 | 4 412.13 ± 126.86 | < 0.01 |
韧皮部面积 Phloem area (µm2) | 4 031.57 ± 152.95 | 5 534.15 ± 275.95 | < 0.01 |
中柱直径 Central cylinder diameter (µm) | 254.14 ± 8.31 | 277.55 ± 6.35 | < 0.05 |
管胞数 Tracheid number (No.) | 47.87 ± 1.85 | 50.60 ± 1.20 | 0.23 |
管胞直径 Tracheid diameter (µm) | 6.53 ± 0.09 | 6.62 ± 0.14 | 0.62 |
管胞密度 Tracheid density (No.·µm-2) | 0.001 ± 0.000 06 | 0.000 8 ± 0.000 05 | < 0.05 |
管胞壁厚度 Tracheid wall thickness (µm) | 0.68 ± 0.01 | 0.87 ± 0.02 | < 0.01 |
表皮和下皮厚度 Epidermis plus hypodermis thickness (µm) | 1.54 ± 0.03 | 1.67 ± 0.04 | < 0.05 |
Fig. 2 Effects of different CO2 concentration treatments on needle net photosynthetic rate (A), stomatal conductance (B), transpiration rate (C) and water use efficiency (D) of Pinus koraiensis seedlings (mean ± SE). Different lowercase letters indicate significant difference between two CO2 concentration treatments.
CO2浓度 CO2 concentration | p | ||
---|---|---|---|
350 µmol·mol-1 | 700 µmol·mol-1 | ||
根尖直径 Root tips diameter (µm) | 400.68 ± 10.90 | 453.79 ± 15.94 | < 0.01 |
中柱直径 Stele diameter (µm) | 216.23 ± 7.59 | 228.83 ± 12.13 | 0.38 |
皮层层数 Cortical layer number (No.) | 4.77 ± 0.11 | 5.87 ± 0.12 | < 0.01 |
皮层厚度 Cortical thickness (µm) | 79.39 ± 2.11 | 99.19 ± 2.88 | < 0.01 |
皮层细胞面积 Cortical cell area (µm2) | 464.17 ± 18.06 | 525.72 ± 21.36 | < 0.05 |
管胞数 Tracheid number (No.) | 25.23 ± 0.76 | 24.03 ± 0.81 | 0.28 |
管胞直径 Tracheid diameter (µm) | 12.18 ± 0.21 | 11.41 ± 0.21 | < 0.05 |
管胞密度 Tracheid density (No.·µm -2) | 0.0008 ± 0.00006 | 0.0007 ± 0.00006 | 0.09 |
管胞壁厚度 Tracheid wall thickness (µm) | 0.92 ± 0.02 | 1.08 ± 0.03 | < 0.01 |
Table 2 Effects of different CO2 concentration treatments on root tip anatomy of Pinus koraiensis seedlings (mean ± SE)
CO2浓度 CO2 concentration | p | ||
---|---|---|---|
350 µmol·mol-1 | 700 µmol·mol-1 | ||
根尖直径 Root tips diameter (µm) | 400.68 ± 10.90 | 453.79 ± 15.94 | < 0.01 |
中柱直径 Stele diameter (µm) | 216.23 ± 7.59 | 228.83 ± 12.13 | 0.38 |
皮层层数 Cortical layer number (No.) | 4.77 ± 0.11 | 5.87 ± 0.12 | < 0.01 |
皮层厚度 Cortical thickness (µm) | 79.39 ± 2.11 | 99.19 ± 2.88 | < 0.01 |
皮层细胞面积 Cortical cell area (µm2) | 464.17 ± 18.06 | 525.72 ± 21.36 | < 0.05 |
管胞数 Tracheid number (No.) | 25.23 ± 0.76 | 24.03 ± 0.81 | 0.28 |
管胞直径 Tracheid diameter (µm) | 12.18 ± 0.21 | 11.41 ± 0.21 | < 0.05 |
管胞密度 Tracheid density (No.·µm -2) | 0.0008 ± 0.00006 | 0.0007 ± 0.00006 | 0.09 |
管胞壁厚度 Tracheid wall thickness (µm) | 0.92 ± 0.02 | 1.08 ± 0.03 | < 0.01 |
Fig. 3 Effect of different CO2 concentration treatments on theoretical hydraulic conductivity (A), hydraulic mean diameter (B) and the ratio of double wall thickness to hydraulic mean diameter (t/Dh)2 (C) in needles and root tips of Pinus koraiensis seedlings (mean ± SE). Different lowercase letters indicate significant difference between two CO2 concentration treatments.
1 | Ainsworth EA, Long SP (2005). What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2.New Phytologist, 165, 351-372. |
2 | Bader M, Hiltbrunner E, Körner C (2009). Fine root responses of mature deciduous forest trees to free air carbon dioxide enrichment (FACE).Functional Ecology, 23, 913-921. |
3 | Brodribb TJ, Mcadam SA, Jordan GJ, Feild TS (2009). Evolution of stomatal responsiveness to CO2 and optimization of water-use efficiency among land plants.New Phytologist, 183, 839-847. |
4 | Crookshanks M, Taylor G, Dolan L (1998). A model system to study the effects of elevated CO2 on the developmental physiology of roots: The use of Arabidopsis thaliana.Journal of Experimental Botany, 49, 593-597. |
5 | de Boer HJ, Lammertsma EI, Wagner-Cremer F, Dilcher DL, Wassen MJ, Dekker SC (2011). Climate forcing due to optimization of maximal leaf conductance in subtropical vegetation under rising CO2.Proceedings of the National Academy of Sciences of the United States of America, 108, 4041-4046. |
6 | Eissenstat DM, Wells CE, Yanai RD, Whitbeck JL (2000). Building roots in a changing environment: Implications for root longevity. New Phytologist, 147, 33-42. |
7 | Else MA, Coupland D, Dutton L, Jackson MB (2001). Decreased root hydraulic conductivity reduces leaf water potential, initiates stomatal closure and slows leaf expansion in flooded plants of castor oil (Ricinus communis) despite diminished delivery of ABA from the roots to shoots in xylem sap.Physiologia Plantarum, 111, 46-54. |
8 | Esau K (1977). Anatomy of Seed Plants. 2nd ed. Wiley, New York. 215-255. |
9 | Finzi AC, Norby RJ, Calfapietra C, Gallet-Budynek A, Gielen B, Holmes WE, Hoosbeek MR, Iversen CM, Jackson RB, Kubiske ME (2007). Increases in nitrogen uptake rather than nitrogen-use efficiency support higher rates of temperate forest productivity under elevated CO2.Proceedings of the National Academy of Sciences of the United States of America, 104, 14014-14019. |
10 | Gu JC, Xu Y, Dong XY, Wang HF, Wang ZQ (2014). Root diameter variations explained by anatomy and phylogeny of 50 tropical and temperate tree species. Tree Physiology, 34, 415-425. |
11 | Hacke UG, Sperry JS, Pockman WT, Davis SD, McCulloh KA (2001). Trends in wood density and structure are linked to prevention of xylem implosion by negative pressure.Oecologia, 126, 457-461. |
12 | Han M, Ji CJ, Zuo WY, He JS (2006). Interactive effects of elevated CO2 and temperature on the leaf anatomical characteristics of eleven species.Acta Ecologica Sinica, 26, 326-333. |
(in Chinese with English abstract) [韩梅, 吉成均, 左闻韵, 贺金生 (2006). CO2浓度和温度升高对11种植物叶片解剖特征的影响. 生态学报, 26, 326-333.] | |
13 | Handa IT, Hagedorn F, Hättenschwiler S (2008). No stimulation in root production in response to 4 years of in situ CO2 enrichment at the Swiss treeline.Functional Ecology, 22, 348-358. |
14 | Hou Y (2013). Recent advances in effects of elevated CO2 and temperature on plant morphology. Ecological Science, 32, 253-258. |
(in Chinese with English abstract) [侯颖 (2013). CO2浓度和气温升高对植物形态结构影响的研究进展. 生态科学, 32, 253-258.] | |
15 | Iversen CM (2010). Digging deeper: Fine-root responses to rising atmospheric CO2 concentration in forested ecosystems.New Phytologist, 186, 346-357. |
16 | Li CR, Gan LJ, Xia K, Zhou X, Hew CS (2002). Responses of carboxylating enzymes, sucrose metabolizing enzymes and plant hormones in a tropical epiphytic CAM orchid to CO2 enrichment.Plant, Cell & Environment, 25, 369-377. |
17 | Lin J, Jach ME, Ceulemans R (2001). Stomatal density and needle anatomy of Scots pine (Pinus sylvestris) are affected by elevated CO2. New Phytologist, 150, 665-674. |
18 | Mao ZJ, Jia GM, Liu LX, Zhao M (2010). Combined effects of elevated temperature, elevated [CO2] and nitrogen supply on non-structural carbohydrate accumulation and allocation in Quercus mongolica seedlings.Chinese Journal of Plant Ecology, 34, 1174-1184. |
(in Chinese with English abstract) [毛子军, 贾桂梅, 刘林馨, 赵甍 (2010). 温度增高、CO2浓度升高、施氮对蒙古栎幼苗非结构碳水化合物积累及其分配的综合影响. 植物生态学报, 34, 1174-1184.] | |
19 | McCormack ML, Adams TS, Smithwick EAH, Eissenstat DM (2012). Predicting fine root lifespan from plant functional traits in temperate trees.New Phytologist, 195, 823-831. |
20 | Nie M, Lu M, Bell J, Raut S, Pendall E (2013). Altered root traits due to elevated CO2: A meta-analysis.Global Ecology and Biogeography, 22, 1095-1105. |
21 | Overdieck D, Ziche D, Böttcher-Jungclaus K (2007). Temperature responses of growth and wood anatomy in European beech saplings grown in different carbon dioxide concentrations.Tree Physiology, 27, 261-268. |
22 | Pregitzer KS, DeForest JL, Burton AJ, Allen MF, Ruess RW, Hendrick RL (2002). Fine root architecture of nine north American trees.Ecological Monographs, 72, 293-309. |
23 | Rico C, Pittermann J, Polley HW, Aspinwall MJ, Fay PA (2013). The effect of subambient to elevated atmospheric CO2 concentration on vascular function in Helianthus annuus: Implications for plant response to climate change.New Phytologist, 199, 956-965. |
24 | Rieger M, Litvin P (1999). Root system hydraulic conductivity in species with contrasting root anatomy.Journal of Experimental Botany, 50, 201-209. |
25 | Rodríguez-Gamir J, Intrigliolo DS, Primo-Millo E, Forner- Giner M (2010). Relationships between xylem anatomy, root hydraulic conductivity, leaf/root ratio and transpiration in citrus trees on different rootstocks.Physiologia plantarum, 139, 159-169. |
26 | Rogers HH, Peterson CM, McCrimmon JN, Cure JD (1992). Response of plant roots to elevated atmospheric carbon dioxide. Plant, Cell & Environment, 15, 749-752. |
27 | Rua MA, Umbanhowar J, Hu S, Burkey KO, Mitchell CE (2013). Elevated CO2 spurs reciprocal positive effects between a plant virus and an arbuscular mycorrhizal fungus.New Phytologist, 199, 541-549. |
28 | Sperry JS, Hacke UG, Pittermann J (2006). Size and function in conifer tracheids and angiosperm vessels.American Journal of Botany, 93, 1490-1500. |
29 | Tingey DT, Phillips DL, Johnson MG (2000). Elevated CO2 and conifer roots: Effects on growth, life span and turnover.New Phytologist, 147, 87-103. |
30 | Treseder KK (2004). A meta-analysis of mycorrhizal responses to nitrogen, phosphorus, and atmospheric CO2 in field studies.New Phytologist, 164, 347-355. |
31 | Tyree MT, Dixon MA (1986). Water stress induced cavitation and embolism in some woody plants.Physiologia Plantarum, 66, 397-405. |
32 | Tyree MT, Ewers FW (1991). The hydraulic architecture of trees and other woody plants.New Phytologist, 119, 345-360. |
33 | Wang JL, Wen XF, Zhao FH, Fang QX, Yang XM (2012). Effects of doubled CO2 concentration on leaf photosynthesis, transpiration and water use efficiency of eight crop species.Chinese Journal of Plant Ecology, 36, 438-446. |
(in Chinese with English abstract) [王建林, 温学发, 赵风华, 房全孝, 杨新民 (2012). CO2浓度倍增对8种作物叶片光合作用, 蒸腾作用和水分利用效率的影响. 植物生态学报, 36, 438-446.] | |
34 | Wang Y, Du ST, Li LL, Huang LD, Fang P, Lin XY, Zhang YS, Wang HL (2009). Effect of CO2 elevation on root growth and its relationship with indole acetic acid and ethylene in tomato seedlings.Pedosphere, 19, 570-576. |
35 | Wei X, Liu Y, Chen HB (2008). Anatomical and functional heterogeneity among different root orders of Phellodendron amurense. Journal of Plant Ecology (Chinese Version), 32, 1238-1247. |
(in Chinese with English abstract) [卫星, 刘颖, 陈海波 (2008). 黄波罗不同根序的解剖结构及其功能异质性. 植物生态学报, 32, 1238-1247.] | |
36 | Woodward FI, Kelly CK (1995). The influence of CO2 concentration on stomatal density. New Phytologist, 131, 311-327. |
37 | Xu Y, Gu JC, Dong XY, Liu Y, Wang ZQ (2011). Fine root morphology, anatomy and tissue nitrogen and carbon contents of the first five orders in four tropical hardwood species in Hainan Island, China.Chinese Journal of Plant Ecology, 35, 955-964. |
(in Chinese with English abstract) [许旸, 谷加存, 董雪云, 刘颖, 王政权 (2011). 海南岛4个热带阔叶树种前5级细根的形态、解剖结构和组织碳氮含量. 植物生态学报, 35, 955-964.] | |
38 | Zhou YM, Han SJ, Zheng JQ, Xin LH, Zhang HS (2007). Effects of elevated CO2 concentrations on soil microbial respiration and root/rhizosphere respiration in forest soil. Journal of Plant Ecology (Chinese Version), 31, 386-393. |
(in Chinese with English abstract) [周玉梅, 韩士杰, 郑俊强, 辛丽花, 张海森 (2007). CO2浓度升高对森林土壤微生物呼吸与根(际)呼吸的影响. 植物生态学报, 31, 386-393.] | |
39 | Zuo WY, He JS, Han M, Ji CJ, Dan FBF, Fang JY (2005). Responses of plant stomata to elevated CO2 and temperature: Observations from 10 plant species grown in temperature and CO2 gradients.Acta Ecologica Sinica, 25, 565-574. |
(in Chinese with English abstract) [左闻韵, 贺金生, 韩梅, 吉成均, Dan FBF, 方精云 (2005). 植物气孔对大气CO2浓度和温度升高的反应——基于在CO2浓度和温度梯度中生长的10种植物的观测. 生态学报, 25, 565-574.] |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn