Chin J Plant Ecol ›› 2008, Vol. 32 ›› Issue (6): 1238-1247.DOI: 10.3773/j.issn.1005-264x.2008.06.004
• Original article • Previous Articles Next Articles
WEI Xing1,*(), LIU Ying1, CHEN Hai-Bo1,2
Received:
2008-04-01
Accepted:
2008-07-14
Online:
2008-04-01
Published:
2008-11-30
Contact:
WEI Xing
WEI Xing, LIU Ying, CHEN Hai-Bo. ANATOMICAL AND FUNCTIONAL HETEROGENEITY AMONG DIFFERENT ROOT ORDERS OF PHELLODENDRON AMURENSE[J]. Chin J Plant Ecol, 2008, 32(6): 1238-1247.
根序 Root order | ||||||
---|---|---|---|---|---|---|
1级 First order | 2级 Second order | 3级 Third order | 4级 Fourth order | 5级 Fifth order | ||
平均细根直径 Mean root diameter | 最小值到最大值 From Min. to Max. (mm) | 0.38 ~ 0.73 | 0.47 ~ 0.62 | 0.47 ~ 0.78 | 0.79 ~ 1.59 | 1.95 ~ 2.43 |
变异系数 CV (%) | 16.12 | 9.62 | 14.53 | 20.11 | 6.91 | |
维管束直径 Vascular bundle diameter | 最小值到最大值 From Min. to Max. (mm) | 0.08 ~ 0.19 | 0.11 ~ 0.22 | 0.12 ~ 0.38 | 0.63 ~ 1.37 | 1.69 ~ 2.07 |
变异系数 CV (%) | 21.86 | 18.71 | 33.65 | 23.83 | 6.72 |
Table 1 The minimal and maximal diameters, the coefficients of variations of root and vascular bundle diameter among the first five orders roots of Phellodendron amurense
根序 Root order | ||||||
---|---|---|---|---|---|---|
1级 First order | 2级 Second order | 3级 Third order | 4级 Fourth order | 5级 Fifth order | ||
平均细根直径 Mean root diameter | 最小值到最大值 From Min. to Max. (mm) | 0.38 ~ 0.73 | 0.47 ~ 0.62 | 0.47 ~ 0.78 | 0.79 ~ 1.59 | 1.95 ~ 2.43 |
变异系数 CV (%) | 16.12 | 9.62 | 14.53 | 20.11 | 6.91 | |
维管束直径 Vascular bundle diameter | 最小值到最大值 From Min. to Max. (mm) | 0.08 ~ 0.19 | 0.11 ~ 0.22 | 0.12 ~ 0.38 | 0.63 ~ 1.37 | 1.69 ~ 2.07 |
变异系数 CV (%) | 21.86 | 18.71 | 33.65 | 23.83 | 6.72 |
Figs. 3-11 The cortex and stele characteristics of Phellodendron amurense fine roots. 3. The epidermis, exodermis and cortical parenchyma of the first order root of P. amurense. 4. Transverse section of the first order root of P. amurense, showing the passage cell in exodermis. 5. Transverse section of the first order root of P. amurense, showing lots of maccorizal in the cortical parenchyma. 6. The air cavity occurred in the first order roots of P. amurense. 7. The air cavity occurred in the second order roots of P. amurense. 8. The casparian band in endodermis of P. amurense under bright light. 9. The casparian band in endodermis of P. amurense under fluorescence. 10. The new root emerged from the second order root of P. amurense. 11. The inconsecutive phellem in the third order root of P. amurense
根级 Root order | |||||
---|---|---|---|---|---|
1级 First order | 2级 Second order | 3级 Third order | 4级 Fourth order | 5级 Fifth order | |
皮层薄壁组织 Cortical parenchyma | + | + | + | 有少部分Partially | - |
皮层薄壁细胞直径 Diameter of cortical cells (μm) | 177.74 ± 6.95 | 175.59 ± 5.83 | 176.04 ± 4.50 | 0 | 0 |
皮层层数 Cortex layers | 9.94 ± 0.23 | 9.43 ± 0.17 | 9.13 ± 0.23 | 0 | 0 |
通道细胞数目 No. of passage cell | 19.23 ± 1.67 | 20.54 ± 1.31 | 22.69 ± 1.92 | 0 | 0 |
菌丝侵染 Mycorrhizae infection | + | + | + | - | - |
菌丝侵染度 The degree of mycorrhizae | 2.34 ± 0.11 | 2.28 ± 0.07 | 1.88 ± 0.16 | 0 | 0 |
维管形成层 Vascular cambium | - | - | + | + | + |
次生生长 Secondary growth | 0 | 0 | 47% | 100% | 100% |
木栓形成层 Phellogen | 0 | 0 | 47% | 100% | 100% |
Table 2 Anatomical characteristics of the first five order roots of Phellodendron amurense (mean±SE)
根级 Root order | |||||
---|---|---|---|---|---|
1级 First order | 2级 Second order | 3级 Third order | 4级 Fourth order | 5级 Fifth order | |
皮层薄壁组织 Cortical parenchyma | + | + | + | 有少部分Partially | - |
皮层薄壁细胞直径 Diameter of cortical cells (μm) | 177.74 ± 6.95 | 175.59 ± 5.83 | 176.04 ± 4.50 | 0 | 0 |
皮层层数 Cortex layers | 9.94 ± 0.23 | 9.43 ± 0.17 | 9.13 ± 0.23 | 0 | 0 |
通道细胞数目 No. of passage cell | 19.23 ± 1.67 | 20.54 ± 1.31 | 22.69 ± 1.92 | 0 | 0 |
菌丝侵染 Mycorrhizae infection | + | + | + | - | - |
菌丝侵染度 The degree of mycorrhizae | 2.34 ± 0.11 | 2.28 ± 0.07 | 1.88 ± 0.16 | 0 | 0 |
维管形成层 Vascular cambium | - | - | + | + | + |
次生生长 Secondary growth | 0 | 0 | 47% | 100% | 100% |
木栓形成层 Phellogen | 0 | 0 | 47% | 100% | 100% |
细根 Fine roots | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1级 First order | 2级 Second order | 3级 Third order | 4级 Fourth order | 5级 Fifth order | |||||||||||
n | r | p | n | r | p | n | r | p | n | r | p | n | r | p | |
根直径×维管束直径 Root diameter × Vascular bundle diameter | 20 | 0.874* | 0.001 | 20 | 0.482* | 0.043 | 20 | 0.882** | 0.001 | 10 | 0.969** | 0.001 | 10 | 0.991** | 0.008 |
根直径×维/根 Root diameter × The ratio of vascular bundle to root diameter | 20 | 0.229 | 0.334 | 20 | 0.03 | 0.906 | 20 | 0.782** | 0.001 | 10 | 0.388 | 0.267 | 10 | 0.354 | 0.316 |
根直径×皮层薄壁细胞直径 Root diameter × Diameter of cotical parenchyma | 20 | 0.955** | 0.001 | 18 | 0.884** | 0.011 | 19 | 0.627** | 0.004 | 10 | 0 | 0 | 10 | 0 | 0 |
根直径×皮层层数 Root diameter × Cortex layers | 15 | 0.616* | 0.014 | 14 | 0.620* | 0.018 | 14 | 0.433 | 0.122 | 10 | 0 | 0 | 10 | 0 | 0 |
根直径×通道细胞数目 Root diameter × Numbers of passage cell | 20 | 0.733** | 0.001 | 18 | 0.268 | 0.282 | 19 | 0.123 | 0.017 | 10 | 0 | 0 | 10 | 0 | 0 |
根直径×菌根侵染度 Root diameter × The degree of mycorrhizae | 19 | 0.339 | 0.155 | 20 | -0.016 | 0.951 | 19 | -0.011 | 0.966 | 10 | 0 | 0 | 10 | 0 | 0 |
菌根侵染度×维管束直径 Degree of micorrhizae × Vascular bundle diameter | 19 | 0.231 | 0.340 | 18 | -0.309 | 0.213 | 19 | -0.4 | 0.09 | ||||||
菌根侵染度×维/根 Degree of micorrhizae × The ratio of vascular bundle to root diameter | 19 | -0.074 | 0.762 | 18 | -0.351 | 0.153 | 19 | -0.547* | 0.015 | ||||||
菌根侵染度×通道细胞数目 Degree of micorrhizae × Numbers of passage cell | 19 | -0.06 | 0.809 | 20 | -0.179 | 0.449 | 19 | -0.054 | 0.826 | ||||||
菌根侵染度×皮层薄壁细胞直径 Degree of micorrhizae × Diameter of cotical parenchyma | 19 | 0.378 | 0.110 | 20 | 0.423 | 0.063 | 19 | 0.26 | 0.282 | ||||||
菌根侵染度×皮层层数 Degree of micorrhizae × Cortex layers | 14 | 0.711** | 0.004 | 14 | -0.048 | 0.871 | 14 | 0.441 | 0.115 |
Table 3 The correlation among root diameter, degree of micorrhizae and anatomical structures of the first five order roots of Phellodendron amurense
细根 Fine roots | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1级 First order | 2级 Second order | 3级 Third order | 4级 Fourth order | 5级 Fifth order | |||||||||||
n | r | p | n | r | p | n | r | p | n | r | p | n | r | p | |
根直径×维管束直径 Root diameter × Vascular bundle diameter | 20 | 0.874* | 0.001 | 20 | 0.482* | 0.043 | 20 | 0.882** | 0.001 | 10 | 0.969** | 0.001 | 10 | 0.991** | 0.008 |
根直径×维/根 Root diameter × The ratio of vascular bundle to root diameter | 20 | 0.229 | 0.334 | 20 | 0.03 | 0.906 | 20 | 0.782** | 0.001 | 10 | 0.388 | 0.267 | 10 | 0.354 | 0.316 |
根直径×皮层薄壁细胞直径 Root diameter × Diameter of cotical parenchyma | 20 | 0.955** | 0.001 | 18 | 0.884** | 0.011 | 19 | 0.627** | 0.004 | 10 | 0 | 0 | 10 | 0 | 0 |
根直径×皮层层数 Root diameter × Cortex layers | 15 | 0.616* | 0.014 | 14 | 0.620* | 0.018 | 14 | 0.433 | 0.122 | 10 | 0 | 0 | 10 | 0 | 0 |
根直径×通道细胞数目 Root diameter × Numbers of passage cell | 20 | 0.733** | 0.001 | 18 | 0.268 | 0.282 | 19 | 0.123 | 0.017 | 10 | 0 | 0 | 10 | 0 | 0 |
根直径×菌根侵染度 Root diameter × The degree of mycorrhizae | 19 | 0.339 | 0.155 | 20 | -0.016 | 0.951 | 19 | -0.011 | 0.966 | 10 | 0 | 0 | 10 | 0 | 0 |
菌根侵染度×维管束直径 Degree of micorrhizae × Vascular bundle diameter | 19 | 0.231 | 0.340 | 18 | -0.309 | 0.213 | 19 | -0.4 | 0.09 | ||||||
菌根侵染度×维/根 Degree of micorrhizae × The ratio of vascular bundle to root diameter | 19 | -0.074 | 0.762 | 18 | -0.351 | 0.153 | 19 | -0.547* | 0.015 | ||||||
菌根侵染度×通道细胞数目 Degree of micorrhizae × Numbers of passage cell | 19 | -0.06 | 0.809 | 20 | -0.179 | 0.449 | 19 | -0.054 | 0.826 | ||||||
菌根侵染度×皮层薄壁细胞直径 Degree of micorrhizae × Diameter of cotical parenchyma | 19 | 0.378 | 0.110 | 20 | 0.423 | 0.063 | 19 | 0.26 | 0.282 | ||||||
菌根侵染度×皮层层数 Degree of micorrhizae × Cortex layers | 14 | 0.711** | 0.004 | 14 | -0.048 | 0.871 | 14 | 0.441 | 0.115 |
[1] |
Aber JD, Melillo JM, Nadelhoffer KJ (1985). Fine root turnover in forest ecosystems in relation to quality and form of nitrogen availability: a comparison of two methods. Oecologia, 66,317-321.
DOI URL PMID |
[2] | Burton AJ, Pregitzer KS, Zogg GP (1996). Latitudinal variation in sugar maple fine root respiration. Canadian Journal of Forest Research, 26,1761-1768. |
[3] | Eissenstat DM, Achor DS (1999). Anatomical characteristics of roots of Citrus rootstocks that vary in specific root length. New Phytologist, 141,309-321. |
[4] | Esau K (1964). Plant Anatomy. John Wiley,New York. |
[5] | Fahey TJ, Arthur MA (1994). Further studies of root decomposition following harvest of a northern hardwood forest. Forest Science, 40,618-629. |
[6] | Fitter AH (1985). Functional significance of root morphology and root system architecture. In: Fitter AH, Atinson D, Read DJ, Usher MB eds. Ecological Interaction in Soil Plant Microbes and Animals. Special Bulletin Number 4 of British Ecological Society. Blackwell Scientific Publication, Oxford, 87-106. |
[7] | Gordon WS, Jackson RB (2000). Nutrient concentration in fine roots. Ecology, 81,275-280. |
[8] |
Guo DL, Mitchell RJ, Hendricks JJ (2004). Fine root branch orders respond differentially to carbon source-sink manipulations in a longleaf pine forest. Oecologia, 140,450-457.
URL PMID |
[9] | Hendrick RL, Pregitzer KS (1993). Patterns of fine root mortality in two sugar maple forests. Nature, 361,59-61. |
[10] | Hishi T, Takeda H (2005). Life cycles of individual roots in fine root system of Chamaecyparis obtuse Sieb. et Zucc. Journal of Forest Research, 10,181-187. |
[11] | Hishi T (2007). Heterogeneity of individual roots within the fine root architecture: causal links between physiological and ecosystem functions. Journal of Forest Research, 12,126-133. |
[12] | Joslin JD, Henderson GS (1987). Organic matter and nutrients associated with fine root turnover in a white oak stand. Forest Science, 33,330-346. |
[13] | King JS, Albaugh TJ, Allen HL, Buford M, Strain BR, Dougherty P (2002). Below-ground carbon input to soil is controlled by nutrient availability and fine root dynamics in loblolly pine. New Phytologist, 154,389-398. |
[14] | Liu M (刘穆) (2001). Spermatophyte Morphology Anatomy(种子植物形态解剖学导论). Science Press,Beijing. (in Chinese) |
[15] | MacFall JS, Johnson GA, Kramer PJ (1991). Comparative water up-take by roots of different ages in seedlings of loblolly pine ( Pinus taeda L.). New Phytologist, 119,551-560. |
[16] | Majdi H, Damm E, Nylund JE (2001). Longevity of mycorrhizal roots depends on branching order and nutrient availability. New Phytologist, 150,195-202. |
[17] | McKenzie EB, Peterson CA (1995). Root browning in Pinus banksiana Lamn. and Eucalyptus pilularis Sm. 2. Anatomy and permeability of the cork zone. Botanica Acta, 108,138-143. |
[18] | Nadelhoffer KJ, Aber JD, Melillo JM (1985). Fine roots, net primary production, and soil nitrogen availability: a new hypothesis. Ecology, 63,1481-1490. |
[19] | Norby RJ, Jackson RT (2000). Root dynamics and global change: seeking an ecosystem perspective. New Phytologist, 147,3-12. |
[20] | Persson HA (1978). Root dynamics in a young Scots pine stand in central Sweden. Oikos, 30,508-519. |
[21] | Peterson CA, Enstone DE (1996). Functions of passage cells in the endodermis and exodermis of roots. Physiologia Plantarum, 97,592-598. |
[22] | Peterson CA, Enstone DE, Taylor JH (1999). Pine root structure and its potential significance for root function. Plant and Soil, 217,205-213. |
[23] | Pregitzer KS (2002). Fine roots of trees—a new perspective. New Phytologist, 154,267-273. |
[24] | Pregitzer KS, DeForest JL, Burton AJ, Allen MF, Ruess RW, Hendrick R (2002). Fine root architecture of nine North American trees. Ecological Monographs, 72,293-309. |
[25] |
Pregitzer KS, Kubiske ME, Yu CK, Hendrick RL (1997). Relationships among root branch order, carbon, and nitrogen in four temperate species. Oecologia, 111,302-308.
DOI URL PMID |
[26] |
Pregitzer KS, Laskowski MJ, Burton AJ, Lessard VC, Zak D (1998). Variation in sugar maple root respiration with root diameter and soil depth. Tree Physiology, 18,665-670.
DOI URL PMID |
[27] | Ruess RW, Hendrick RL, Burton AJ, Pregitzer KS, Sveinbjornssön B, Allen MF, Maurer GE (2003). Coupling fine root dynamics with ecosystem carbon cycling in black spruce forests of interior Alaska. Ecological Monographs, 73,643-662. |
[28] | Steudle E, Peterson CA (1998). How does water get through roots. Journal of Experimental Botany, 49,775-788. |
[29] | Taylor JH, Peterson CA (2000). Morphometric analysis of Pinus banksiana Lamb. root anatomy during a 3-month field study. Trees, 14,239-247. |
[30] | Tierney GL, Fahey TJ (2002). Fine root turnover in a northern hardwood forest: a direct comparison of the radiocarbon and minirhizotron methods. Canadian Journal of Forest Research, 32,1692-1697. |
[31] | Vogt KA, Grier CC, Vogt DJ (1986). Production, turnover and nutrient dynamics of above- and belowground detritus of world forests. Advances in Ecological Research, 15,303-377. |
[32] | Vogt KA, Persson H (1991). Measuring growth and development of roots. In: Lassoie JPN, Hinckley TM eds. Techniques and Approaches in Forest Tree Ecophysiology. CRC Press, Boston, 477-501. |
[33] | Wang XR (王向荣), Wang ZQ (王政权), Han YZ (韩有志), Gu JC (谷加存), Guo DL (郭大力), Mei L (梅莉) (2005). Variations of fine root diameter with root order in manchurian ash and dahurian larch plantations. Acta Phytoecologica Sinica (植物生态学报), 29,871-877. (in Chinese with English abstract) |
[34] | Wells CE, Eissenstat DM (2003). Beyond the roots of young seedlings: the influence of age and order on fine root physiology. Journal of Plant Growth Regulation, 21,324-334. |
[35] | Wells CE, Eissenstat DM (2001). Marked differences in survivorship among apple roots of different diameters. Ecology, 82,882-892. |
[36] | Zhang XQ (张小全) (2001). Fine-root biomass, production and turnover of trees in relations to environmental conditions. Forest Research (林业科学研究), 14,566-573. (in Chinese with English abstract) |
[1] | Yao Liu Quan-Lin ZHONG Chao-Bin XU Dong-Liang CHENG 芳 跃郑 Zou Yuxing Zhang Xue Xin-Jie Zheng Yun-Ruo Zhou. Relationship between fine root functional traits and rhizosphere microenvironment of Machilus pauhoi at different sizes [J]. Chin J Plant Ecol, 2024, 48(预发表): 0-0. |
[2] | Xu Zi-Yi Guang-Ze JIN. Variation and trade-offs in fine root functional traits of seedlings of different mycorrhizal types in mixed broadleaved-Korean pine forests [J]. Chin J Plant Ecol, 2024, 48(5): 612-622. |
[3] | QU Ze-Kun, ZHU Li-Qin, JIANG Qi, WANG Xiao-Hong, YAO Xiao-Dong, CAI Shi-Feng, LUO Su-Zhen, sCHEN Guang-Shui. Nutrient foraging strategies of arbuscular mycorrhizal tree species in a subtropical evergreen broadleaf forest and their relationship with fine root morphology [J]. Chin J Plant Ecol, 2024, 48(4): 416-427. |
[4] | SACHURA , ZHANG Xia, ZHU Lin, KANG Saruul. Leaf anatomical changes of Cleistogenes songorica under long-term grazing with different intensities in a desert steppe [J]. Chin J Plant Ecol, 2024, 48(3): 331-340. |
[5] | DU Xu-Long, HUANG Jin-Xue, YANG Zhi-Jie, XIONG De-Cheng. Effects of warming on oxidative damage and defense characteristics and their correlation in leaf and fine root of plants: a review [J]. Chin J Plant Ecol, 2024, 48(2): 135-146. |
[6] | SHU Wei-Wei, YANG Kun, MA Jun-Xu, MIN Hui-Lin, CHEN Lin, LIU Shi-Ling, HUANG Ri-Yi, MING An-Gang, MING Cai-Dao, TIAN Zu-Wei. Effects of nitrogen addition on the morphological and chemical traits of fine roots with different orders of Castanopsis hystrix [J]. Chin J Plant Ecol, 2024, 48(1): 103-112. |
[7] | WU Chen, CHEN Xin-Yi, LIU Yuan-Hao, HUANG Jin-Xue, XIONG De-Cheng. Effects of warming on fine root growth, mortality and turnover: a review [J]. Chin J Plant Ecol, 2023, 47(8): 1043-1054. |
[8] | SUN Jia-Hui, SHI Hai-Lan, CHEN Ke-Yu, JI Bao-Ming, ZHANG Jing. Research advances on trade-off relationships of plant fine root functional traits [J]. Chin J Plant Ecol, 2023, 47(8): 1055-1070. |
[9] | WU Fan, WU Chen, ZHANG Yu-Hui, YU Heng, WEI Zhi-Hua, ZHENG Wei, LIU Xiao-Fei, CHEN Shi-Dong, YANG Zhi-Jie, XIONG De-Cheng. Effects of warming on growth, morphology and physiological metabolism characteristics of fine roots in a mature Cunninghamia lanceolata plantation in different seasons [J]. Chin J Plant Ecol, 2023, 47(6): 856-866. |
[10] | ZHU Wei, ZHOU Ou, SUN Yi-Ming, Gulimire YILIHAMU, WANG Ya-Fei, YANG Hong-Qing, JIA Li-Ming, XI Ben-Ye. Dynamic niche partitioning in root water uptake of Populus tomentosa and Robinia pseudoacacia in mixed forest [J]. Chin J Plant Ecol, 2023, 47(3): 389-403. |
[11] | CHEN Xin-Yi, WU Chen, HUANG Jin-Xue, XIONG De-Cheng. Effects of warming on fine root phenology of forests: a review [J]. Chin J Plant Ecol, 2023, 47(11): 1471-1482. |
[12] | BAI Yue, LIU Chen, HUANG Yue, DONG Ya-Nan, WANG Lu. Response of spatial heterogeneity of plant community height to different herbivore assemblages in Horqin sandy grassland [J]. Chin J Plant Ecol, 2022, 46(4): 394-404. |
[13] | GAO Lu-Xin, LAN Tian-Yuan, ZHAO Zhi-Xia, DENG Shu-Yu, XIONG Gao-Ming, XIE Zong-Qiang, SHEN Guo-Zhen. Spatial turnover of shrubland communities and underlying factors in northern mid-subtropical China [J]. Chin J Plant Ecol, 2022, 46(11): 1411-1421. |
[14] | Nan DONG, Ming-Ming TANG, Wen-Qian CUI, Meng-Yao YUE, Jie LIU, Yu-Jie HUANG. Growth of chestnut and tea seedlings under different root partitioning patterns [J]. Chin J Plant Ecol, 2022, 46(1): 62-73. |
[15] | SUN Wen-Tai, MA Ming. Response of soil physical degradation and fine root growth on long-term film mulching in apple orchards on Loess Plateau [J]. Chin J Plant Ecol, 2021, 45(9): 972-986. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn