Chin J Plant Ecol ›› 2023, Vol. 47 ›› Issue (3): 389-403.DOI: 10.17521/cjpe.2022.0197
Special Issue: 稳定同位素生态学; 根系生态学
• Research Articles • Previous Articles Next Articles
ZHU Wei, ZHOU Ou, SUN Yi-Ming, Gulimire YILIHAMU, WANG Ya-Fei, YANG Hong-Qing, JIA Li-Ming(), XI Ben-Ye
Received:
2022-05-17
Accepted:
2022-09-12
Online:
2023-03-20
Published:
2023-02-28
Contact:
JIA Li-Ming
Supported by:
ZHU Wei, ZHOU Ou, SUN Yi-Ming, Gulimire YILIHAMU, WANG Ya-Fei, YANG Hong-Qing, JIA Li-Ming, XI Ben-Ye. Dynamic niche partitioning in root water uptake of Populus tomentosa and Robinia pseudoacacia in mixed forest[J]. Chin J Plant Ecol, 2023, 47(3): 389-403.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2022.0197
Fig. 1 Schematic diagram of fine root, isotope, and soil water content (SWC) sampling design and stand structure in a mixed forest of Populus tomentosa and Robinia pseudoacacia on the North China Plain.
Fig. 2 Daily precipitation and reference evapotranspiration at the experimental site in a mixed forest of Populus tomentosa and Robinia pseudoacacia on the North China Plain in 2019.
Fig. 4 Monthly variations in hydrogen and oxygen stable isotopes ratio (δD, δ18O) of different water sources, tree xylem water of Populus tomentosa and Robinia pseudoacacia in a mixed forest of P. tomentosa and R. pseudoacacia on the North China Plain. Horizontal bands depict confidence interval.
土层 Soil layer (cm) | 土壤含水率 Soil water content (%) | ||||||
---|---|---|---|---|---|---|---|
4月 Apr. | 5月 May | 6月 June | 7月 July | 8月 Aug. | 9月 Sept. | 平均值 Mean | |
0-30 | 6.60 ± 0.61bB | 3.24 ± 0.37cC | 3.85 ± 0.37cB | 4.19 ± 0.32cB | 8.11 ± 1.23abB | 8.71 ± 1.76aAB | 5.78 ± 2.33B |
30-100 | 4.99 ± 0.58cC | 4.29 ± 0.20cdB | 3.99 ± 0.35dB | 4.13 ± 0.29cdB | 8.18 ± 0.47aB | 6.61 ± 0.95bB | 5.36 ± 1.64B |
100-600 | 10.30 ± 0.40aA | 10.20 ± 0.71aA | 7.21 ± 0.35bA | 6.82 ± 0.70bA | 11.60 ± 1.41aA | 11.10 ± 1.12aA | 9.59 ± 2.06A |
平均值 Mean | 7.32 ± 2.44ab | 5.94 ± 3.31bc | 5.02 ± 1.67c | 5.05 ± 1.39c | 9.32 ± 2.01a | 8.82 ± 2.28a |
Table 1 Seasonal dynamics of soil water content in each soil layer in a mixed forest of Populus tomentosa and Robinia pseudoacacia on the North China Plain (mean ± SD)
土层 Soil layer (cm) | 土壤含水率 Soil water content (%) | ||||||
---|---|---|---|---|---|---|---|
4月 Apr. | 5月 May | 6月 June | 7月 July | 8月 Aug. | 9月 Sept. | 平均值 Mean | |
0-30 | 6.60 ± 0.61bB | 3.24 ± 0.37cC | 3.85 ± 0.37cB | 4.19 ± 0.32cB | 8.11 ± 1.23abB | 8.71 ± 1.76aAB | 5.78 ± 2.33B |
30-100 | 4.99 ± 0.58cC | 4.29 ± 0.20cdB | 3.99 ± 0.35dB | 4.13 ± 0.29cdB | 8.18 ± 0.47aB | 6.61 ± 0.95bB | 5.36 ± 1.64B |
100-600 | 10.30 ± 0.40aA | 10.20 ± 0.71aA | 7.21 ± 0.35bA | 6.82 ± 0.70bA | 11.60 ± 1.41aA | 11.10 ± 1.12aA | 9.59 ± 2.06A |
平均值 Mean | 7.32 ± 2.44ab | 5.94 ± 3.31bc | 5.02 ± 1.67c | 5.05 ± 1.39c | 9.32 ± 2.01a | 8.82 ± 2.28a |
Fig. 5 Vertical fine root distributions of different species in a mixed forest of Populus tomentosa and Robinia pseudoacacia on the North China Plain (mean ± SD). A, Fine root length density (FRLD). B, Cumulative fine root fraction. C, Fine root fraction in each soil layer. *, significant differences (p < 0.05) in the fine root index between different species; β, the root extinction coefficient, larger values of β imply deeper rooting profiles.
因子 Factor | 月份 Month | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
4 | 5 | 6 | 7 | 8 | 9 | 平均值 Mean | ||||||||
F | p | F | p | F | p | F | p | F | p | F | p | F | p | |
水源 Water source | 1.93 | ns | 74.47 | * | 17.78 | * | 2.50 | * | 86.42 | * | 104.66 | * | 2.35 | * |
物种 Species | 0.01 | ns | 0.80 | ns | 0.70 | ns | 0.10 | ns | 0.32 | ns | 0.13 | ns | 0.01 | ns |
水源×物种 Water source × species | 19.73 | * | 11.61 | * | 93.43 | * | 10.09 | * | 94.23 | * | 47.36 | * | 5.70 | * |
Table 2 Analyses by linear mixed-effects models for the effects of water source and species on water uptake contributions of different species in a mixed forest of Populus tomentosa and Robinia pseudoacacia on the North China Plain
因子 Factor | 月份 Month | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
4 | 5 | 6 | 7 | 8 | 9 | 平均值 Mean | ||||||||
F | p | F | p | F | p | F | p | F | p | F | p | F | p | |
水源 Water source | 1.93 | ns | 74.47 | * | 17.78 | * | 2.50 | * | 86.42 | * | 104.66 | * | 2.35 | * |
物种 Species | 0.01 | ns | 0.80 | ns | 0.70 | ns | 0.10 | ns | 0.32 | ns | 0.13 | ns | 0.01 | ns |
水源×物种 Water source × species | 19.73 | * | 11.61 | * | 93.43 | * | 10.09 | * | 94.23 | * | 47.36 | * | 5.70 | * |
Fig. 6 Effects of species on water uptake contributions of different water sources (mean values of the growing season) in a mixed forest of Populus tomentosa and Robinia pseudoacacia on the North China Plain (mean ± SD). A, Shallow, middle, and deep soil water and groundwater (GW). B, Vertical water uptake patterns. *, significant differences (p < 0.05) in water uptake contributions between different species; ns, no significant differences between different species (p > 0.05). Different lowercase letters indicate significant differences (p < 0.05) in water uptake contributions among water sources, according to the least significance difference test.
Fig. 7 Seasonal dynamics of vertical water uptake patterns of different species in a mixed forest of Populus tomentosa and Robinia pseudoacacia on the North China Plain (mean ± SD). GW, groundwater.
指标 Index | 生态位重叠指数 Niche overlap index | ||||||
---|---|---|---|---|---|---|---|
4月 Apr. | 5月 May | 6月 June | 7月 July | 8月 Aug. | 9月 Sept. | 平均值 Mean | |
吸水贡献 Contribution to water uptake | 0.79 ± 0.03b | 0.94 ± 0.06a | 0.83 ± 0.05b | 0.84 ± 0.05b | 0.90 ± 0.03a | 0.94 ± 0.03a | 0.87 ± 0.03A |
根长密度 Fine root length density | - | - | - | - | - | - | 0.40 ± 0.06B |
Table 3 Niche overlap index calculated using root length density and water uptake contribution in a mixed forest of Populus tomentosa and Robinia pseudoacacia on the North China Plain (mean ± SD)
指标 Index | 生态位重叠指数 Niche overlap index | ||||||
---|---|---|---|---|---|---|---|
4月 Apr. | 5月 May | 6月 June | 7月 July | 8月 Aug. | 9月 Sept. | 平均值 Mean | |
吸水贡献 Contribution to water uptake | 0.79 ± 0.03b | 0.94 ± 0.06a | 0.83 ± 0.05b | 0.84 ± 0.05b | 0.90 ± 0.03a | 0.94 ± 0.03a | 0.87 ± 0.03A |
根长密度 Fine root length density | - | - | - | - | - | - | 0.40 ± 0.06B |
[1] |
Allen MR, Ingram WJ (2002). Constraints on future changes in climate and the hydrologic cycle. Nature, 419, 228-232.
DOI |
[2] | Allen RG, Pereira LS, Raes D, Smith M (1998). Crop Evapotranspiration—Guidelines for Computing Crop Water Requirements—FAO Irrigation and Drainage Paper 56. FAO, Rome. |
[3] |
Araya YN, Silvertown J, Gowing DJ, McConway KJ, Linder HP, Midgley G (2011). A fundamental, eco-hydrological basis for niche segregation in plant communities. New Phytologist, 189, 253-258.
DOI PMID |
[4] |
Bachmann D, Gockele A, Ravenek JM, Roscher C, Strecker T, Weigelt A, Buchmann N (2015). No evidence of complementary water use along a plant species richness gradient in temperate experimental grasslands. PLoS ONE, 10, e0116367. DOI: 10.1371/journal.pone.0116367.
DOI |
[5] |
Barberon M, Vermeer JEM, de Bellis D, Wang P, Naseer S, Andersen TG, Humbel BM, Nawrath C, Takano J, Salt DE, Geldner N (2016). Adaptation of root function by nutrient-induced plasticity of endodermal differentiation. Cell, 164, 447-459.
DOI PMID |
[6] |
Bello J, Hasselquist NJ, Vallet P, Kahmen A, Perot T, Korboulewsky N (2019). Complementary water uptake depth of Quercus petraea and Pinus sylvestris in mixed stands during an extreme drought. Plant and Soil, 437, 93-115.
DOI |
[7] |
Bennett AC, McDowell NG, Allen CD, Anderson-Teixeira KJ (2015). Larger trees suffer most during drought in forests worldwide. Nature Plants, 1, 15139. DOI: 10.1038/nplants.2015.139.
DOI |
[8] |
Block RMA, van Rees KCJ, Knight JD (2006). A review of fine root dynamics in Populus plantations. Agroforestry Systems, 67, 73-84.
DOI URL |
[9] |
Bolte A, Villanueva I (2006). Interspecific competition impacts on the morphology and distribution of fine roots in European beech (Fagus sylvatica L.) and Norway spruce (Picea abies (L.) Karst.). European Journal of Forest Research, 125, 15-26.
DOI URL |
[10] |
Brassard BW, Chen HYH, Bergeron Y (2009). Influence of environmental variability on root dynamics in northern forests. Critical Reviews in Plant Sciences, 28, 179-197.
DOI URL |
[11] |
Brassard BW, Chen HYH, Bergeron Y, Paré D (2011). Differences in fine root productivity between mixed- and single-species stands. Functional Ecology, 25, 238-246.
DOI URL |
[12] |
Brassard BW, Chen HYH, Cavard X, Laganière J, Reich PB, Bergeron Y, Paré D, Yuan ZY (2013). Tree species diversity increases fine root productivity through increased soil volume filling. Journal of Ecology, 101, 210-219.
DOI URL |
[13] |
Cai GC, Vanderborght J, Couvreur V, Mboh CM, Vereecken H (2018). Parameterization of root water uptake models considering dynamic root distributions and water uptake compensation. Vadose Zone Journal, 17, 160125. DOI: DOI:10.2136/vzj2016.12.0125.
DOI |
[14] |
Coleman MD, Aubrey DP (2018). Stand development and other intrinsic factors largely control fine-root dynamics with only subtle modifications from resource availability. Tree Physiology, 38, 1805-1819.
DOI PMID |
[15] |
D’Amato AW, Bradford JB, Fraver S, Palik BJ (2011). Forest management for mitigation and adaptation to climate change: insights from long-term silviculture experiments. Forest Ecology and Management, 262, 803-816.
DOI URL |
[16] |
Dawson TE, Ehleringer JR (1991). Streamside trees that do not use stream water. Nature, 350, 335-337.
DOI |
[17] |
Dawson TE, Pate JS (1996). Seasonal water uptake and movement in root systems of Australian phraeatophytic plants of dimorphic root morphology: a stable isotope investigation. Oecologia, 107, 13-20.
DOI PMID |
[18] |
Dawud SM, Raulund-Rasmussen K, Domisch T, Finér L, Jaroszewicz B, Vesterdal L (2016). Is tree species diversity or species identity the more important driver of soil carbon stocks, C/N ratio, and pH? Ecosystems, 19, 645-660.
DOI URL |
[19] |
del Castillo J, Comas C, Voltas J, Ferrio JP (2016). Dynamics of competition over water in a mixed oak-pine Mediterranean forest: spatio-temporal and physiological components. Forest Ecology and Management, 382, 214-224.
DOI URL |
[20] | Di N (2019). Root Traits Spatial-Temporal Variation and Root-Water Uptake Characteristics and Mechanisms of Populus tomentosa. PhD dissertation, Beijing Forestry University, Beijing. |
[邸楠 (2019). 毛白杨根系性状时空变异及土壤水分吸收利用特征与机制. 博士学位论文, 北京林业大学, 北京.] | |
[21] |
Di N, Liu Y, Mead DJ, Xie YQ, Jia LM, Xi BY (2018). Root-system characteristics of plantation-grown Populus tomentosa adapted to seasonal fluctuation in the groundwater table. Trees, 32, 137-149.
DOI URL |
[22] |
Dore MHI (2005). Climate change and changes in global precipitation patterns: What do we know? Environment International, 31, 1167-1181.
PMID |
[23] |
Drake PL, Froend RH, Franks PJ (2011). Linking hydraulic conductivity and photosynthesis to water-source partitioning in trees versus seedlings. Tree Physiology, 31, 763-773.
DOI PMID |
[24] |
Ellner SP, Snyder RE, Adler PB, Hooker G (2019). An expanded modern coexistence theory for empirical applications. Ecology Letters, 22, 3-18.
DOI PMID |
[25] |
Feild TS, Dawson TE (1998). Water sources used by Didymopanax pittieri at different life stages in a tropical cloud forest. Ecology, 79, 1448-1452.
DOI URL |
[26] |
Finér L, Helmisaari HS, Lõhmus K, Majdi H, Brunner I, Børja I, Eldhuset T, Godbold D, Grebenc T, Konôpka B, Kraigher H, Möttönen MR, Ohashi M, Oleksyn J, Ostonen I, et al. (2007). Variation in fine root biomass of three European tree species: beech (Fagus sylvatica L.), Norway spruce (Picea abies L. Karst.), and Scots pine (Pinus sylvestris L.). Plant Biosystems, 141, 394-405.
DOI URL |
[27] |
Finér L, Ohashi M, Noguchi K, Hirano Y (2011). Factors causing variation in fine root biomass in forest ecosystems. Forest Ecology and Management, 261, 265-277.
DOI URL |
[28] |
Fruleux A, Bogeat-Triboulot MB, Collet C, Bonal D (2020). Lack of effect of admixture proportion and tree density on water acquisition depth for European beech (Fagus sylvatica L.) and sycamore maple (Acer pseudoplatanus L.). Annals of Forest Science, 77, 36. DOI: 10.1007/s13595-020-00937-1.
DOI |
[29] |
Fruleux A, Bogeat-Triboulot MB, Collet C, Deveau A, Saint-André L, Santenoise P, Bonal D (2018). Aboveground overyielding in a mixed temperate forest is not explained by belowground processes. Oecologia, 188, 1183-1193.
DOI PMID |
[30] |
Gale MR, Grigal DF (1987). Vertical root distributions of northern tree species in relation to successional status. Canadian Journal of Forest Research, 17, 829-834.
DOI URL |
[31] |
Geng QH, Ma XC, Fu XF, Yan ZM, Liu X, Xu X (2022). Effects of stand age and inter-annual precipitation variability on fine root biomass in poplar plantations in the eastern coastal China. Forest Ecology and Management, 505, 119883. DOI: 10.1016/jforeco.2021.119883.
DOI |
[32] |
Gong C, Tan QY, Xu MX, Liu GB (2020). Mixed-species plantations can alleviate water stress on the Loess Plateau. Forest Ecology and Management, 458, 117767. DOI: 10.1016/j.foreco.2019.117767.
DOI |
[33] |
Grant GE, Dietrich WE (2017). The frontier beneath our feet. Water Resources Research, 53, 2605-2609.
DOI URL |
[34] |
Guderle M, Bachmann D, Milcu A, Gockele A, Bechmann M, Fischer C, Roscher C, Landais D, Ravel O, Devidal S, Roy J, Gessler A, Buchmann N, Weigelt A, Hildebrandt A (2018). Dynamic niche partitioning in root water uptake facilitates efficient water use in more diverse grassland plant communities. Functional Ecology, 32, 214-227.
DOI URL |
[35] |
Hagerman SM, Pelai R (2018). Responding to climate change in forest management: two decades of recommendations. Frontiers in Ecology and the Environment, 16, 579-587.
DOI URL |
[36] |
He YL, Xi BY, Li GD, Wang Y, Jia LM, Zhao DH (2021). Influence of drip irrigation, nitrogen fertigation, and precipitation on soil water and nitrogen distribution, tree seasonal growth and nitrogen uptake in young triploid poplar (Populus tomentosa) plantations. Agricultural Water Management, 243, 106460. DOI: 10.1016/j.agwat.2020.106460.
DOI |
[37] |
Hodge A (2004). The plastic plant: root responses to heterogeneous supplies of nutrients. New Phytologist, 162, 9-24.
DOI URL |
[38] |
Huo GP, Zhao XN, Gao XD, Wang SF, Pan YH (2018). Seasonal water use patterns of rainfed jujube trees in stands of different ages under semiarid plantations in China. Agriculture, Ecosystems & Environment, 265, 392-401.
DOI URL |
[39] |
Jacob A, Hertel D, Leuschner C (2013). On the significance of belowground overyielding in temperate mixed forests: separating species identity and species diversity effects. Oikos, 122, 463-473.
DOI URL |
[40] |
Jactel H, Brockerhoff EG (2007). Tree diversity reduces herbivory by forest insects. Ecology Letters, 10, 835-848.
PMID |
[41] |
Jagodzinski AM, Ziółkowski J, Warnkowska A, Prais H (2016). Tree age effects on fine root biomass and morphology over chronosequences of Fagus sylvatica, Quercus robur and Alnus glutinosa stands. PLoS ONE, 11, e0148668. DOI: 10.1371/journal.pone.0148668.
DOI |
[42] |
Javaux M, Couvreur V, Vanderborght J, Vereecken H (2013). Root water uptake: from three-dimensional biophysical processes to macroscopic modeling approaches. Vadose Zone Journal, 12, vzj2013.02.0042. DOI: 10.2136/vzj2013.02.0042.
DOI |
[43] |
Kulmatiski A, Adler PB, Foley KM (2020a). Hydrologic niches explain species coexistence and abundance in a shrub-steppe system. Journal of Ecology, 108, 998-1008.
DOI URL |
[44] |
Kulmatiski A, Adler PB, Stark JM, Tredennick AT (2017). Water and nitrogen uptake are better associated with resource availability than root biomass. Ecosphere, 8, e01738. DOI: 10.1002/ecs2.1738.
DOI |
[45] |
Kulmatiski A, Beard KH (2013). Root niche partitioning among grasses, saplings, and trees measured using a tracer technique. Oecologia, 171, 25-37.
DOI PMID |
[46] |
Kulmatiski A, Beard KH, Holdrege MC, February EC (2020b). Small differences in root distributions allow resource niche partitioning. Ecology and Evolution, 10, 9776-9787.
DOI URL |
[47] |
Kulmatiski A, Beard KH, Verweij RJT, February EC (2010). A depth-controlled tracer technique measures vertical, horizontal and temporal patterns of water use by trees and grasses in a subtropical savanna. New Phytologist, 188, 199-209.
DOI PMID |
[48] |
Kumar R, Shankar V, Jat MK (2015). Evaluation of root water uptake models—A review. ISH Journal of Hydraulic Engineering, 21, 115-124.
DOI URL |
[49] |
Letten AD, Ke P, Fukami T (2017). Linking modern coexistence theory and contemporary niche theory. Ecological Monographs, 87, 161-177.
DOI URL |
[50] |
Letten AD, Keith DA, Tozer MG, Hui FKC (2015). Fine-scale hydrological niche differentiation through the lens of multi-species co-occurrence models. Journal of Ecology, 103, 1264-1275.
DOI URL |
[51] |
Li DD, Fernández JE, Li X, Xi BY, Jia LM, Hernandez-Santana V (2020). Tree growth patterns and diagnosis of water status based on trunk diameter fluctuations in fast-growing Populus tomentosa plantations. Agricultural Water Management, 241, 106348. DOI: 10.1016/j.agwat.2020.106348.
DOI |
[52] |
Loreau M, Naeem S, Inchausti P, Bengtsson J, Grime JP, Hector A, Hooper DU, Huston MA, Raffaelli D, Schmid B, Tilman D, Wardle DA (2001). Biodiversity and ecosystem functioning: current knowledge and future challenges. Science, 294, 804-808.
DOI PMID |
[53] |
Ma Y, Song XF (2016). Using stable isotopes to determine seasonal variations in water uptake of summer maize under different fertilization treatments. Science of the Total Environment, 550, 471-483.
DOI URL |
[54] |
Maeght JL, Rewald B, Pierret A (2013). How to study deep roots—And why it matters. Frontiers in Plant Science, 4, 299. DOI: 10.3389/fpls.2013.00299.
DOI |
[55] |
McCormack ML, Dickie IA, Eissenstat DM, Fahey TJ, Fernandez CW, Guo DL, Helmisaari HS, Hobbie EA, Iversen CM, Jackson RB, Leppälammi-Kujansuu J, Norby RJ, Phillips RP, Pregitzer KS, Pritchard SG, et al. (2015). Redefining fine roots improves understanding of below-ground contributions to terrestrial biosphere processes. New Phytologist, 207, 505-518.
DOI PMID |
[56] | McKane RB, Johnson LC, Shaver GR, Nadelhoffer KJ, Rastetter EB, Fry B, Giblin AE, Kielland K, Kwiatkowski BL, Laundre JA, Murray G (2002). Resource-based niches provide a basis for plant species diversity and dominance in Arctic tundra. Nature, 415, 68-71. |
[57] |
Meinen C, Leuschner C, Ryan NT, Hertel D (2009). No evidence of spatial root system segregation and elevated fine root biomass in multi-species temperate broad-leaved forests. Trees, 23, 941-950.
DOI URL |
[58] |
Meinzer FC, Goldstein G, Franco AC, Bustamante M, Igler E, Jackson P, Caldas L, Rundel PW (1999). Atmospheric and hydraulic limitations on transpiration in Brazilian cerrado woody species. Functional Ecology, 13, 273-282.
DOI URL |
[59] |
Montagnoli A, Dumroese RK, Terzaghi M, Onelli E, Scippa GS, Chiatante D (2019). Seasonality of fine root dynamics and activity of root and shoot vascular cambium in a Quercus ilex L. forest (Italy). Forest Ecology and Management, 431, 26-34.
DOI |
[60] |
Nippert JB, Holdo RM (2015). Challenging the maximum rooting depth paradigm in grasslands and savannas. Functional Ecology, 29, 739-745.
DOI URL |
[61] |
O’Keefe K, Nippert JB, McCulloh KA (2019). Plant water uptake along a diversity gradient provides evidence for complementarity in hydrological niches. Oikos, 128, 1748-1760.
DOI URL |
[62] |
Peng S, Chen HYH (2021). Global responses of fine root biomass and traits to plant species mixtures in terrestrial ecosystems. Global Ecology and Biogeography, 30, 289-304.
DOI URL |
[63] |
Pianka ER (1973). The structure of lizard communities. Annual Review of Ecology and Systematics, 4, 53-74.
DOI URL |
[64] |
Pierret A, Maeght JL, Clément C, Montoroi JP, Hartmann C, Gonkhamdee S (2016). Understanding deep roots and their functions in ecosystems: an advocacy for more unconventional research. Annals of Botany, 118, 621-635.
DOI PMID |
[65] |
Pregitzer KS, DeForest JL, Burton AJ, Allen MF, Ruess RW, Hendrick RL (2002). Fine root architecture of nine North American trees. Ecological Monographs, 72, 293-309.
DOI URL |
[66] |
Puri S, Singh V, Bhushan B, Singh S (1994). Biomass production and distribution of roots in three stands of Populus deltoides. Forest Ecology and Management, 65, 135-147.
DOI URL |
[67] |
Quijano JC, Kumar P, Drewry DT, Goldstein A, Misson L (2012). Competitive and mutualistic dependencies in multispecies vegetation dynamics enabled by hydraulic redistribution. Water Resources Research, 48, W05518. DOI: 10.1029/2011WR011416.
DOI |
[68] | Russell RS (1977). Plant Root Systems: Their Function and Interaction with the Soil. McGraw Hill, London. |
[69] |
Sarmiento G, Goldstein G, Meinzer F (1985). Adaptive strategies of woody species in neotropical savannas. Biological Reviews, 60, 315-355.
DOI URL |
[70] |
Schenk HJ (2008). The shallowest possible water extraction profile: a null model for global root distributions. Vadose Zone Journal, 7, 1119-1124.
DOI URL |
[71] |
Schwendenmann L, Pendall E, Sanchez-Bragado R, Kunert N, Hölscher D (2015). Tree water uptake in a tropical plantation varying in tree diversity: interspecific differences, seasonal shifts and complementarity. Ecohydrology, 8, 1-12.
DOI URL |
[72] |
Schymanski SJ, Sivapalan M, Roderick ML, Beringer J, Hutley LB (2008). An optimality-based model of the coupled soil moisture and root dynamics. Hydrology and Earth System Sciences, 12, 913-932.
DOI URL |
[73] | Shen GF, Jia LM, Zhai MP (1998). The soil amelioration effect of poplar-black locust mixed plantation on sand soil and the interaction of mutual supplement of nutrient between tree species. Scientia Silvae Sinicae, 34(5), 12-20. |
[沈国舫, 贾黎明, 翟明普 (1998). 沙地杨树刺槐人工混交林的改良土壤功能及养分互补关系. 林业科学, 34(5), 12-20.] | |
[74] |
Sillmann J, Thorarinsdottir T, Keenlyside N, Schaller N, Alexander LV, Hegerl G, Seneviratne SI, Vautard R, Zhang X, Zwiers FW (2017). Understanding, modeling and predicting weather and climate extremes: challenges and opportunities. Weather and Climate Extremes, 18, 65-74.
DOI URL |
[75] |
Silvertown J, Araya Y, Gowing D (2015). Hydrological niches in terrestrial plant communities: a review. Journal of Ecology, 103, 93-108.
DOI URL |
[76] |
Smithwick EAH, Lucash MS, McCormack ML, Sivandran G (2014). Improving the representation of roots in terrestrial models. Ecological Modelling, 291, 193-204.
DOI URL |
[77] |
Stock BC, Jackson AL, Ward EJ, Parnell AC, Phillips DL, Semmens BX (2018). Analyzing mixing systems using a new generation of Bayesian tracer mixing models. PeerJ, 6, e5096. DOI: 10.7717/peerj.5096.
DOI |
[78] |
Stovall AEL, Shugart H, Yang X (2019). Tree height explains mortality risk during an intense drought. Nature Communications, 10, 4385. DOI: 10.1038/s41467-019-12380-6.
DOI |
[79] | Sun CL, Guo YW, Tong CR, Xu LC, Wang Z (1997). A study on the soil microbes and soil enzyme activities in various poplar mixed stands. Scientia Silvae Sinicae, 33, 488-497. |
[孙翠玲, 郭玉文, 佟超然, 徐兰成, 王珍 (1997). 杨树混交林地土壤微生物与酶活性的变异研究. 林业科学, 33, 488-497.] | |
[80] |
Sun SJ, Meng P, Zhang JS, Wan XC (2011). Variation in soil water uptake and its effect on plant water status in Juglans regia L. during dry and wet seasons. Tree Physiology, 31, 1378-1389.
DOI URL |
[81] |
Sun Z, Liu X, Schmid B, Bruelheide H, Bu W, Ma K (2017). Positive effects of tree species richness on fine-root production in a subtropical forest in SE-China. Journal of Plant Ecology, 10, 146-157.
DOI URL |
[82] |
Tang YK, Wu X, Chen YM, Wen J, Xie YL, Lu SB (2018). Water use strategies for two dominant tree species in pure and mixed plantations of the semiarid Chinese Loess Plateau. Ecohydrology, 11, e1943. DOI: 10.1002/eco.1943.
DOI |
[83] |
Trogisch S, Salmon Y, He J, Hector A, Scherer-Lorenzen M (2016). Spatio-temporal water uptake patterns of tree saplings are not altered by interspecific interaction in the early stage of a subtropical forest. Forest Ecology and Management, 367, 52-61.
DOI URL |
[84] |
Valverde-Barrantes OJ, Smemo KA, Feinstein LM, Kershner MW, Blackwood CB (2013). The distribution of below-ground traits is explained by intrinsic species differences and intraspecific plasticity in response to root neighbours. Journal of Ecology, 101, 933-942.
DOI URL |
[85] |
van der Ploeg MJ, Gooren HPA, Bakker G, de Rooij GH (2008). Matric potential measurements by polymer tensiometers in cropped lysimeters under water-stressed conditions. Vadose Zone Journal, 7, 1048-1054.
DOI URL |
[86] |
Wang J, Fu BJ, Jiao L, Lu N, Li JY, Chen WL, Wang LX (2021). Age-related water use characteristics of Robinia pseudoacacia on the Loess Plateau. Agricultural and Forest Meteorology, 301-302, 108344. DOI: 10.1016/j.agrformet.2021.108344.
DOI |
[87] |
Wang J, Fu BJ, Lu N, Zhang L (2017). Seasonal variation in water uptake patterns of three plant species based on stable isotopes in the semi-arid Loess Plateau. Science of the Total Environment, 609, 27-37.
DOI URL |
[88] |
Wang P, Huang KL, Hu SJ (2020a). Distinct fine-root responses to precipitation changes in herbaceous and woody plants: a meta-analysis. New Phytologist, 225, 1491-1499.
DOI URL |
[89] |
Wang S, An J, Zhao X, Gao X, Wu P, Huo G, Robinson BH (2020b). Age- and climate-related water use patterns of apple trees on China’s Loess Plateau. Journal of Hydrology, 582, 124462. DOI: 10.1016/j.jhydrol.2019.124462.
DOI |
[90] |
Weemstra M, Kiorapostolou N, Ruijven J, Mommer L, Vries J, Sterck F (2020). The role of fine-root mass, specific root length and life span in tree performance: a whole-tree exploration. Functional Ecology, 34, 575-585.
DOI URL |
[91] | Williams DG, Ehleringer JR (2000). Intra- and interspecific variation for summer precipitation use in pinyon-juniper woodlands. Ecological Monographs, 70, 517-537. |
[92] |
Wu J, Zeng H, Zhao F, Chen C, Singh A, Jiang X, Yang B, Liu W (2022). Plant hydrological niches become narrow but stable as the complexity of interspecific competition increases. Agricultural and Forest Meteorology, 320, 108953. DOI: 10.1016/j.agrformet.2022.108953.
DOI |
[93] | Xi BY (2013). Research on Theories of Irrigation Management and Key Techniques of High Efficient Subsurface Drip Irrigation in Populus tomentosa Plantation. PhD dissertation, Beijing Forestry University, Beijing. |
[席本野 (2013). 毛白杨人工林灌溉管理理论及高效地下滴灌关键技术研究. 博士学位论文, 北京林业大学, 北京.] | |
[94] |
Yuan ZY, Chen HYH (2010). Fine root biomass, production, turnover rates, and nutrient contents in boreal forest ecosystems in relation to species, climate, fertility, and stand age: literature review and meta-analyses. Critical Reviews in Plant Sciences, 29, 204-221.
DOI URL |
[95] |
Yuan ZY, Chen HYH (2012). Fine root dynamics with stand development in the boreal forest. Functional Ecology, 26, 991-998.
DOI URL |
[96] |
Zhang ZD, Huang MB, Zhang YK (2018). Vertical distribution of fine-root area in relation to stand age and environmental factors in black locust (Robinia pseudoacacia) forests of the Chinese Loess Plateau. Canadian Journal of Forest Research, 48, 1148-1158.
DOI URL |
[97] | Zhao LS, Wang JL (1995). Research on relations between growth effect and soil enzyme activities and soil nutrient factors in mixed poplar and black locust plantations. Journal of Beijing Forestry University, 17(4), 1-8. |
[赵林森, 王九龄 (1995). 杨槐混交林生长及土壤酶与肥力的相互关系. 北京林业大学学报, 17(4), 1-8.] | |
[98] |
Zhao YL, Wang YQ, He MN, Tong YP, Zhou JX, Guo XY, Liu JZ, Zhang XC (2020). Transference of Robinia pseudoacacia water-use patterns from deep to shallow soil layers during the transition period between the dry and rainy seasons in a water-limited region. Forest Ecology and Management, 457, 117727. DOI: 10.1016/j.foreco.2019.117727.
DOI |
[99] |
Zhou ZX, Wang YQ, An ZS, Li RJ, Xu YT, Zhang PP, Yang Y, Wang T (2022). Deep root information “hidden in the dark”: a case study on the 21-m soil profile of Robinia pseudoacacia in the critical zone of the Chinese Loess Plateau. Catena, 213, 106121. DOI: 10.1016/j.catena.2022.106121.
DOI |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn