Chin J Plant Ecol ›› 2013, Vol. 37 ›› Issue (10): 961-971.DOI: 10.3724/SP.J.1258.2013.00099
• Research Articles • Previous Articles Next Articles
DI Nan1,*,XI Ben-Ye1,*,Jeremiah R. PINTO2,WANG Ye1,LI Guang-De3,JIA Li-Ming1,**()
Received:
2013-03-19
Accepted:
2013-07-16
Online:
2013-03-19
Published:
2013-09-29
Contact:
DI Nan,XI Ben-Ye,JIA Li-Ming
DI Nan,XI Ben-Ye,Jeremiah R. PINTO,WANG Ye,LI Guang-De,JIA Li-Ming. Root biomass distribution of triploid Populus tomentosa under wide- and narrow-row spacing planting schemes and its responses to soil nutrients[J]. Chin J Plant Ecol, 2013, 37(10): 961-971.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.3724/SP.J.1258.2013.00099
土壤深度 Soil depth (cm) | 砂粒 Sand (%) | 粉粒 Silt (%) | 黏粒 Clay (%) | 质地1) Texture1) | 容重 Bulk density (g·cm-3) | 饱和含水量 Saturated water content (cm3·cm-3) |
---|---|---|---|---|---|---|
0-30 | 16.04 | 83.53 | 0.43 | 粉土 Silt | 1.627 | 0.383 |
30-70 | 4.48 | 94.82 | 0.70 | 粉土 Silt | 1.633 | 0.396 |
70-90 | 10.14 | 89.61 | 0.25 | 粉土 Silt | 1.521 | 0.419 |
90-120 | 6.38 | 93.48 | 0.15 | 粉土 Silt | 1.465 | 0.454 |
>120 | 43.94 | 56.06 | 0.01 | 粉壤 Silt loam | 1.499 | 0.437 |
Table 1 Soil physical properties of the experimental site
土壤深度 Soil depth (cm) | 砂粒 Sand (%) | 粉粒 Silt (%) | 黏粒 Clay (%) | 质地1) Texture1) | 容重 Bulk density (g·cm-3) | 饱和含水量 Saturated water content (cm3·cm-3) |
---|---|---|---|---|---|---|
0-30 | 16.04 | 83.53 | 0.43 | 粉土 Silt | 1.627 | 0.383 |
30-70 | 4.48 | 94.82 | 0.70 | 粉土 Silt | 1.633 | 0.396 |
70-90 | 10.14 | 89.61 | 0.25 | 粉土 Silt | 1.521 | 0.419 |
90-120 | 6.38 | 93.48 | 0.15 | 粉土 Silt | 1.465 | 0.454 |
>120 | 43.94 | 56.06 | 0.01 | 粉壤 Silt loam | 1.499 | 0.437 |
土壤深度 Soil depth (cm) | 土壤有机质 Soil organic matter (g·kg-1) | 土壤速效磷 Soil available phosphorus (mg·kg-1) | 土壤碱解氮 Soil alkaline nitrogen (mg·kg-1) |
---|---|---|---|
0-10 | 12.7 ± 2.0a | 14.8 ± 4.8a | 75.9 ± 2.5a |
10-20 | 8.8 ± 1.0b | 13.0 ± 4.2ab | 67.6 ± 14.9ab |
20-30 | 7.3 ± 1.5bc | 9.8 ± 7.6abc | 47.3 ± 3.0bc |
30-40 | 5.5 ± 1.4bcdef | 3.2 ± 0.5bcde | 42.7 ± 4.4cd |
40-50 | 4.4 ± 1.2cdefg | 3.7 ± 0.9abcde | 35.6 ± 5.7cd |
50-60 | 6.8 ± 0.8bcd | 2.0 ± 0.5cde | 38.2 ± 4.9cd |
60-70 | 6.8 ± 0.9bcd | 2.5 ± 0.1cde | 45.7 ± 7.1cd |
70-80 | 6.5 ± 0.6bcde | 1.5 ± 0.4e | 37.8 ± 3.4cd |
80-90 | 5.8 ± 1.1bcdef | 3.0 ± 1.1cde | 32.5 ± 2.9de |
90-100 | 3.0 ± 0.5fg | 1.9 ± 0.9de | 23.9 ± 0.6ef |
100-110 | 3.7 ± 0.6defg | 6.1 ± 2.2abcd | 21.9 ± 3.1f |
110-120 | 3.3 ± 0.6efg | 1.8 ± 0.8e | 22.4 ± 0.8f |
120-130 | 3.5 ± 0.6defg | 3.2 ± 1.0bcde | 23.5 ± 1.5f |
130-140 | 1.6 ± 0.4g | 3.0 ± 0.3bcde | 20.9 ± 3.6f |
140-150 | 1.5 ± 0.5g | 3.5 ± 0.5abcde | 12.8 ± 0.6g |
Table 2 Soil chemical properties of the experimental site (mean ± SE)
土壤深度 Soil depth (cm) | 土壤有机质 Soil organic matter (g·kg-1) | 土壤速效磷 Soil available phosphorus (mg·kg-1) | 土壤碱解氮 Soil alkaline nitrogen (mg·kg-1) |
---|---|---|---|
0-10 | 12.7 ± 2.0a | 14.8 ± 4.8a | 75.9 ± 2.5a |
10-20 | 8.8 ± 1.0b | 13.0 ± 4.2ab | 67.6 ± 14.9ab |
20-30 | 7.3 ± 1.5bc | 9.8 ± 7.6abc | 47.3 ± 3.0bc |
30-40 | 5.5 ± 1.4bcdef | 3.2 ± 0.5bcde | 42.7 ± 4.4cd |
40-50 | 4.4 ± 1.2cdefg | 3.7 ± 0.9abcde | 35.6 ± 5.7cd |
50-60 | 6.8 ± 0.8bcd | 2.0 ± 0.5cde | 38.2 ± 4.9cd |
60-70 | 6.8 ± 0.9bcd | 2.5 ± 0.1cde | 45.7 ± 7.1cd |
70-80 | 6.5 ± 0.6bcde | 1.5 ± 0.4e | 37.8 ± 3.4cd |
80-90 | 5.8 ± 1.1bcdef | 3.0 ± 1.1cde | 32.5 ± 2.9de |
90-100 | 3.0 ± 0.5fg | 1.9 ± 0.9de | 23.9 ± 0.6ef |
100-110 | 3.7 ± 0.6defg | 6.1 ± 2.2abcd | 21.9 ± 3.1f |
110-120 | 3.3 ± 0.6efg | 1.8 ± 0.8e | 22.4 ± 0.8f |
120-130 | 3.5 ± 0.6defg | 3.2 ± 1.0bcde | 23.5 ± 1.5f |
130-140 | 1.6 ± 0.4g | 3.0 ± 0.3bcde | 20.9 ± 3.6f |
140-150 | 1.5 ± 0.5g | 3.5 ± 0.5abcde | 12.8 ± 0.6g |
Fig. 1 Vertical distribution of fine root biomass density (FRBD) (A) and coarse root biomass density (CRBD) (B) (mean ± SE). Different letters in different soil depths in the same area (wide or narrow row zone) indicate significant difference (p = 0.05), according to the Duncan test.
Fig. 2 Lateral distribution of fine root biomass density (FRBD) (A) and coarse root biomass density (CRBD) (B) (mean ± SE). Different letters in the same figure indicate significant difference (p = 0.05), according to the Duncan test. Dotted lines indicate the boundary of wide and narrow row, i.e. the tree position.
Fig. 3 Two dimensional distribution of fine root biomass density (FRBD; shaded blue to white areas) and coarse root biomass density (CRBD; red isoline, unit mg·cm-3). Dotted lines indicate the boundary of wide- and narrow-row, i.e. the tree position.
Fig. 4 Vertical (A) and lateral (B) variations of fine root to coarse root ratio (F/C) (mean ± SE). Dotted line indicate the boundary of wide and narrow row, i.e. the tree position. Different letters in the same figure indicate significant difference (p = 0.05), according to the Duncan test.
Fig. 5 Two dimensional variation of fine root to coarse root ratio (F/C). Dotted line indicate the boundary of wide and narrow row, i.e. the tree position.
Fig. 6 Correlation between fine root biomass density (FRBD) and soil organic matter (A), available P (B) and alkaline N (C). Data of 0-120 cm soil layers are means of eight trees, data of 120-130, 130-140 and 140-150 cm soil layers are means of six, five and three trees, respectively.
[1] |
Al Afas N, Marron N, Zavalloni C, Ceulemans R(2008). Growth and production of a short-rotation coppice culture of poplar—IV: Fine root characteristics of five poplar clones. Biomass and Bioenergy, 32, 494-502.
DOI URL |
[2] |
Bengough AG, McKenzie BM, Hallett PD, Valentine TA(2011). Root elongation, water stress, and mechanical impedance: a review of limiting stresses and beneficial root tip traits. Journal of Experimental Botany, 62, 59-68.
DOI URL |
[3] |
Burton AJ, Pregitzer KS, Hendrick RL(2000). Relationships between fine root dynamics and nitrogen availability in Michigan northern hardwood forests. Oecologia, 125, 389-399.
DOI URL |
[4] | Deng T, Jia LM (2009). Nutritional characteristics and fertilization of poplar. World Forestry Research, 22(5), 51-56. (in Chinese with English abstract) |
[ 邓坦, 贾黎明 (2009). 杨树营养及施肥研究进展. 世界林业研究, 22(5), 51-56.] | |
[5] |
Domenicano S, Coll L, Messier C, Berninger F(2011). Nitrogen forms affect root structure and water uptake in the hybrid poplar. New Forests, 42, 347-362.
DOI URL |
[6] |
Douglas GB, McIvor IR, Potter JF, Foote LG(2010). Root distribution of poplar at varying densities on pastoral hill country. Plant and Soil, 333, 147-161.
DOI URL |
[7] | Fitter AH 1996. Characteristics and functions of root systems. In: Waisel EAY, Kafkafi U eds. Plant Roots: the Hidden Half. Marcel Dekker, New York. 1-20. |
[8] |
Fu AH, Chen YN, Li WH(2010). Analysis on the change of water potential of Populus euphratica Oliv. and P. russkii Jabl under different irrigation volumes in temperate desert zone. Chinese Science Bulletin, 55, 965-972.
DOI URL |
[9] |
Gerard DJ, Sexton P, Shaw G(1982). Physical factors influencing soil strength and root growth. Agronomy Journal, 74, 875-879.
DOI URL |
[10] |
Gordon WS, Jackson RB(2000). Nutrient concentrations in fine roots. Ecology, 81, 275-280.
DOI URL |
[11] |
Guo DL, Xia MX, Wei X, Chang W, Liu Y, Wang ZQ(2008). Anatomical traits associated with absorption and mycorrhizal colonization are linked to root branch order in twenty-three Chinese temperate tree species. New Phytologist, 180, 673-683.
DOI URL |
[12] |
Heilman PE, Ekuan G, Fogle D(1994). Above- and belowground biomass and fine roots of four-year-old hybrids of Populus trichocarpa × Populus deltoides and parental species in short-rotation culture. Canadian Journal of Forest Research, 24, 1186-1192.
DOI URL |
[13] |
Hendrick RL, Pregitzer KS(1997). The relationship between fine root demography and the soil environment in northern hardwood forests. Ecoscience, 4, 99-105.
DOI URL |
[14] |
Hertel D, Moser G, Culmsee H, Erasmi S, Horna V, Schuldt B, Leuschner CH(2009). Below- and above-ground biomass and net primary production in a paleotropical natural forest (Sulawesi, Indonesia) as compared to neotropical forests. Forest Ecology and Management, 258, 1904-1912.
DOI URL |
[15] |
Hubbert KR, Graham RC, Anderson MA(2001). Soil and weathered bedrock: components of a Jeffrey pine plantation substrate. Soil Science Society of America Journal, 65, 1255-1262.
DOI URL |
[16] | Jackson RB, Mooney HA, Schulze ED(1997). A global budget for fine root biomass, surface area, and nutrient contents. Ecology, 94, 7362-7366. |
[17] | Jackson RB, Moore LA, Hoffmann WA, Pockman WT, Linder CR(1999). Ecosystem rooting depth determined with caves and DNA. Proceedings of the National Academy of Sciences of the United States of America, 96, 11387-11392. |
[18] | Kang XY, Zhu ZT (2002). Status and role of triploid Populus tomentosa in pulp production in China. Journal of Beijing Forestry University, 24(Suppl.), 51-56. (in Chinese) |
[ 康向阳, 朱之悌 (2002). 三倍体毛白杨在我国纸浆生产中的地位与作用. 北京林业大学学报, 24(增刊), 51-56.] | |
[19] |
Khamzina A, Lamers JPA, Vlek PLG(2008). Tree establishment under deficit irrigation on degraded agricultural land in the lower Amu Darya River region, Aral Sea Basin. Forest Ecology and Management, 255, 168-178.
DOI URL |
[20] |
Liu LP, Gan YT, Bueckerta R, Rees KV(2011). Rooting systems of oilseed and pulse crops. II. Vertical distribution patterns across the soil profile. Field Crops Research, 122, 248-255.
DOI URL |
[21] |
Luo DH, Xia J, Yuan JW, Zhang ZH, Zhu JD, Ni J (2010). Root biomass of karst vegetation in a mountainous area of southwestern China. Chinese Journal of Plant Ecology, 34, 611-618. (in Chinese with English abstract)
DOI URL |
[ 罗东辉, 夏婧, 袁婧薇, 张忠华, 祝介东, 倪健 (2010). 我国西南山地喀斯特植被的根系生物量初探. 植物生态学报, 34, 611-618.]
DOI URL |
|
[22] | Ma LH, Wu PT, Wang YK(2012). Spatial distribution of roots in a dense jujube plantation in the semiarid hilly region of the Chinese Loess Plateau. Plant and Soil, 36, 292-301. |
[23] |
Ma LH, Wu PT, Wang YK (2012). Spatial pattern of root systems of dense jujube plantation with jujube age in the semiarid loess hilly region of China. Chinese Journal of Plant Ecology, 36, 292-301. (in Chinese with English abstract)
DOI URL |
[ 马理辉, 吴普特, 汪有科 (2012). 黄土丘陵半干旱区密植枣林随树龄变化的根系空间分布特征. 植物生态学报, 36, 292-301.]
DOI URL |
|
[24] |
McIvor IR, Douglas GB, Benavides R(2009). Coarse root growth of Veronese poplar trees varies with position on an erodible slope in New Zealand. Agroforestry Systems, 76, 251-264.
DOI URL |
[25] |
McIvor IR, Douglas GB, Hurst SE, Hussain Z, Foote AG(2008). Structural root growth of young Veronese poplars on erodible slopes in the southern North Island, New Zealand. Agroforestry Systems, 72, 75-86.
DOI URL |
[26] | Mei L, Wang ZQ, Han YZ, Gu JC, Wang XR, Cheng YH, Zhang XJ (2006). Distribution patterns of Fraxinus mandshurica root biomass, specific root length and root length density. Chinese Journal of Applied Ecology, 17, 1-4. (in Chinese with English abstract) |
[ 梅莉, 王政权, 韩有志, 谷加存, 王向荣, 程云环, 张秀娟 (2006). 水曲柳根系生物量、比根长和根长密度的分布格局. 应用生态学报, 17, 1-4.] | |
[27] |
Moreno G, Obrador JJ, Cubera E, Dupraz C(2005). Fine root distribution in Dehesas of Central-Western Spain. Plant and Soil, 277, 153-162.
DOI URL |
[28] | Mulia R, Dupraz C(2006). Unusual fine root distributions of two deciduous tree species in southern France: What consequences for modelling of tree root dynamics? Plant and Soil, 282, 71-85. |
[29] |
Nagler P, Jetton A, Fleming J, Didan K, Glenn E, Erker J, Morino K, Milliken J, Gloss S(2007). Evapotranspiration in a cottonwood ( Populus fremontii) restoration plantation estimated by sap flow and remote sensing methods. Agricultural and Forest Meteorology, 144, 95-110.
DOI URL |
[30] |
Puri S, Singh V, Bhushan B, Singh S(1994). Biomass production and distribution of roots in three stands of Populus deltoides. Forest Ecology and Management, 65, 135-147.
DOI URL |
[31] |
Schenk HJ, Jackson RB(2005). Mapping the global distribution of deep roots in relation to climate and soil characteristics. Geoderma, 126, 129-140.
DOI URL |
[32] | Singh DV, Rathore TR(2003). Soil strength and its relation with exchangeable cations, organic carbon and finer soil fractions. Indian Journal of Agricultural Research, 37, 17-22. |
[33] | Song YQ, Zhai MP, Jia LM, Li GD (2010). Fine root dynamics of different aged triploid Populus tomentosa pulp forests during growth period. Chinese Journal of Ecology, 29, 1696-1702. (in Chinese with English abstract) |
[ 宋曰钦, 翟明普, 贾黎明, 李广德 (2010). 不同年龄三倍体毛白杨纸浆林生长期间细根变化规律. 生态学杂志, 29, 1696-1702.] | |
[34] | Song ZG, Zhou WQ, Wang YH (2009). The fine root distribution characters of the shelterbelt of Populus tomentosa. Forest Resources Management,(6), 96-101. (in Chinese with English abstract) |
[ 宋子刚, 周文权, 王彦辉 (2009). 毛白杨农田防护林带细根分布特征. 林业资源管理, (6), 96-101.] | |
[35] | Wang WQ, Jia YB, Xu LM, Zhang ZJ (1997). Study on the root distribution of Populus tomentosa. Journal of Agricultural University of Hebei, 20(1), 24-29. (in Chinese with English abstract) |
[ 王文全, 贾渝彬, 胥丽敏, 张振江 (1997). 毛白杨根系分布的研究. 河北农业大学学报, 20(1), 24-29.] | |
[36] | Xi BY, Wang Y, Jia LM, Si J, Xiang DK (2011). Property of root distribution of triploid Populus tomentosa and its relation to root water uptake under the wide-and-narrow row spacing scheme. Acta Ecologica Sinica, 31, 47-57. (in Chinese with English abstract) |
[ 席本野, 王烨, 贾黎明, 司婧, 向地奎 (2011). 宽窄行栽植模式下三倍体毛白杨根系分布特征及其与根系吸水的关系. 生态学报, 31, 47-57.] | |
[37] | Yan H, Liu GQ, Li HS (2010). Changes of root biomass, root surface area, and root length density in a Populus cathayana plantation. Chinese Journal of Applied Ecology, 21, 2763-2768. (in Chinese with English abstract) |
[ 燕辉, 刘广全, 李红生 (2010). 青杨人工林根系生物量、表面积和根长密度变化. 应用生态学报, 21, 2763-2768.] | |
[38] | Yan H, Su YQ, Zhu YY, Zhang JQ (2009). Distribution characters of fine root of poplar plantation and its relation to properties of soil in the northern slope of Qinling Mountain. Journal of Nanjing Forestry University (Natural Science Edition), 33(2), 85-89. (in Chinese with English abstract) |
[ 燕辉, 苏印泉, 朱昱燕, 张景群 (2009). 秦岭北坡杨树人工林细根分布与土壤特性的关系. 南京林业大学学报(自然科学版), 33(2), 85-89.] | |
[39] | Yang LY, Luo TX, Wu ST (2007). Fine root biomass and its depth distribution across the primitive Korean pine and broad-leaved forest and its secondary forests in Changbai Mountain, North-East China. Acta Ecologica Sinica, 27, 3609-3617. (in Chinese with English abstract) |
[ 杨丽韫, 罗天祥, 吴松涛 (2007). 长白山原始阔叶红松(Pinus koraiensis)林及其次生林细根生物量与垂直分布特征. 生态学报, 27, 3609-3617.] | |
[40] |
Yang XT, Yan DF, Zeng LL, Wu MZ(2012). Correlation of root structures and soil properties in the near-surface soil of three forest types in the southern mountains of He’nan Province, China. Journal of Agricultural Science and Applications, 1, 79-85.
DOI URL |
[41] |
Zhang HP, Morison JIL, Simmonds LP(1999). Transpiration and water relations of poplar trees growing close to the water table. Tree Physiology, 19, 563-573.
DOI URL |
[42] |
Zhao Z, Li P, Xue WP, Guo SW (2004). Study on relations of growth and vertical distribution of fine root system of main planting tree species to soil density in the Weibei Loess Plateau. Scientia Silvae Sinicae, 40(5), 50-55. (in Chinese with English abstract)
DOI URL |
[ 赵忠, 李鹏, 薛文鹏, 郭生武 (2004). 渭北主要造林树种细根生长及分布与土壤密度关系. 林业科学, 40(5), 50-55.]
DOI URL |
|
[43] |
Zhou ZC, Shangguan ZP(2007). Vertical distribution of fine roots in relation to soil factors in Pinus tabulaeformis Carr. forest of the Loess Plateau of China. Plant and Soil, 291, 119-129.
DOI URL |
[44] | Zhu QG, Zhang HC, Fang SZ, Jia XP, Yang L (2008). Distribution and seasonal changes of fine roots in poplar plantations in the northern areas of Jiangsu Province China. China Forestry Science And Technology, 22(3), 45-48. (in Chinese with English abstract) |
[ 朱强根, 张焕朝, 方升佐, 贾学萍, 杨丽 (2006). 苏北杨树人工林细根分布及其季节动态. 林业科技开发, 22(3), 45-48.] |
[1] | LI Wan-Nian, LUO Yi-Min, HUANG Ze-Yue, YANG Mei. Effects of mixed young plantations of Parashorea chinensis on soil microbial functional diversity and carbon source utilization [J]. Chin J Plant Ecol, 2022, 46(9): 1109-1124. |
[2] | SUN Cai-Li, QIU Mo-Sheng, HUANG Chao-Xiang, WANG Yi-Wei. Characteristics of soil extracellular enzyme activities and their stoichiometry during rocky desertification in southwestern Guizhou, China [J]. Chin J Plant Ecol, 2022, 46(7): 834-845. |
[3] | ZHU Yu-He, XIAO Hong, WANG Bing, WU Ying, BAI Yong-Fei, CHEN Di-Ma. Stoichiometric characteristics of soil carbon, nitrogen and phosphorus along soil depths in response to climatic variables in grasslands on the Mongolia Plateau [J]. Chin J Plant Ecol, 2022, 46(3): 340-349. |
[4] | MOU Wen-Bo, XU Dang-Hui, WANG Xie-Jun, JING Wen-Mao, ZHANG Rui-Ying, GU Yu-Ling, YAO Guang-Qian, QI Shi-Hua, ZHANG Long, GOU Ya-Fei. Soil carbon, nitrogen, and phosphorus stoichiometry along an altitude gradient in shrublands in Pailugou watershed, China [J]. Chin J Plant Ecol, 2022, 46(11): 1422-1431. |
[5] | MAO Jin, DUO Ying, DENG Jun, CHENG Jie, CHENG Ji-Min, PENG Chang-Hui, GUO Liang. Influences of warming and snow reduction in winter on soil nutrients and bacterial communities composition in a typical grassland of the Loess Plateau [J]. Chin J Plant Ecol, 2021, 45(8): 891-902. |
[6] | WEI Chun-Xue, YANG Lu, WANG Jin-Song, YANG Jia-Ming, SHI Jia-Wei, TIAN Da-Shuan, ZHOU Qing-Ping, NIU Shu-Li. Effects of experimental warming on root biomass in terrestrial ecosystems [J]. Chin J Plant Ecol, 2021, 45(11): 1203-1212. |
[7] | HU Qi-Juan, SHENG Mao-Yin, YIN Jie, BAI Yi-Xin. Stoichiometric characteristics of fine roots and rhizosphere soil of Broussonetia papyrifera adapted to the karst rocky desertification environment in southwest China [J]. Chin J Plant Ecol, 2020, 44(9): 962-972. |
[8] | MEI Kong-Can, CHENG Lei, ZHANG Qiu-Fang, LIN Kai-Miao, ZHOU Jia-Cong, ZENG Quan-Xin, WU Yue, XU Jian-Guo, ZHOU Jin-Rong, CHEN Yue-Min. Effects of dissolved organic matter from different plant sources on soil enzyme activities in subtropical forests [J]. Chin J Plant Ecol, 2020, 44(12): 1273-1284. |
[9] | CHEN Yu-Han, LUO Yi-Fu, SUN Xin-Sheng, WEI Guan-Wen, HUANG Wen-Jun, LUO Fang-Li, YU Fei-Hai. Effects of waterlogging and increased soil nutrients on growth and reproduction of Polygonum hydropiper in the hydro-fluctuation belt of the Three Gorges Reservoir Region [J]. Chin J Plant Ecol, 2020, 44(11): 1184-1194. |
[10] | LI Jun-Jun, LI Meng-Ru, QI Xing-E, WANG Li-Long, XU Shi-Jian. Response of nutrient characteristics of Achnatherum splendens leaves to different levels of nitrogen and phosphorus addition [J]. Chin J Plant Ecol, 2020, 44(10): 1050-1058. |
[11] | CEN Yu, WANG Cheng-Dong, ZHANG Zhen, REN Xia, LIU Mei-Zhen, YANG Fan. Spatial distributions of biomass and carbon density in natural grasslands of Hebei, China [J]. Chin J Plant Ecol, 2018, 42(3): 265-276. |
[12] | ZHANG Xin, XING Ya-Juan, YAN Guo-Yong, WANG Qing-Gui. Response of fine roots to precipitation change: A meta-analysis [J]. Chin J Plant Ecol, 2018, 42(2): 164-172. |
[13] | GOU Xiao-Lin, ZHOU Qing-Ping, CHEN You-Jun, WEI Xiao-Xing, TU Wei-Guo. Characteristics of nutrients in two dominant plant species and rhizospheric soils in alpine desert of the Qinghai-Xizang Plateau under contrasting climates [J]. Chin J Plan Ecolo, 2018, 42(1): 133-142. |
[14] | Wei HE, Xue-Ying YANG, Juan XIAO, Zi-Liang ZHANG, Zheng JIANG, Yuan-Shuang YUAN, Dong WANG, Qing LIU, Hua-Jun YIN. Effects of nitrogen enrichment on root exudative carbon inputs in Sibiraea angustata shrubbery at the eastern fringe of Qinghai-Xizang Plateau [J]. Chin J Plant Ecol, 2017, 41(6): 610-621. |
[15] | Rui-Yu ZHAO, Zheng-Cai LI, Bin WANG, Xiao-Gai GE, Yun-Xi DAI, Zhi-Xia ZHAO, Yu-Jie ZHANG. Duration of mulching caused variable pools of labile organic carbon in a Phyllostachys edulis plantation [J]. Chin J Plant Ecol, 2017, 41(4): 418-429. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn