Chin J Plant Ecol ›› 2023, Vol. 47 ›› Issue (3): 404-417.DOI: 10.17521/cjpe.2022.0321
• Research Articles • Previous Articles Next Articles
ZHAO Xiao-Ning1, TIAN Xiao-Nan1, LI Xin2, LI Guang-De3, GUO You-Zheng1, JIA Li-Ming1, DUAN Jie1, XI Ben-Ye1,**()
Received:
2022-07-29
Accepted:
2022-09-12
Online:
2023-03-20
Published:
2023-02-28
Contact:
XI Ben-Ye
About author:
First author contact:*Contributed equally to this work
Supported by:
ZHAO Xiao-Ning, TIAN Xiao-Nan, LI Xin, LI Guang-De, GUO You-Zheng, JIA Li-Ming, DUAN Jie, XI Ben-Ye. Analysis of applicability of Granier’s original equation for calculating the stem sap flux density—Take Populus tomentosa as an example[J]. Chin J Plant Ecol, 2023, 47(3): 404-417.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2022.0321
茎段编号 Stem number | 直径 Diameter (cm) | 安装探针类型 Sensor type | 圆盘面积 Disc area (cm2) | 平均边材厚度 Average sapwood depth (cm) | 具有导水能力的边材面积 Area of water conducting sapwood (cm2) |
---|---|---|---|---|---|
1 | 9.80 | TDP-20, TDP-30 | 72.7 | 1.2 | 32.5 |
2 | 10.50 | TDP-20, TDP-30 | 86.1 | 0.9 | 25.4 |
3 | 10.20 | TDP-20, TDP-30 | 87.2 | 1.5 | 43.8 |
4 | 10.91 | TDP-20, TDP-30 | 97.6 | 1.9 | 54.8 |
5 | 11.20 | TDP-20, TDP-30 | 103.3 | 1.2 | 38.9 |
6 | 12.00 | TDP-20, TDP-30 | 111.9 | 1.1 | 36.6 |
7 | 11.80 | TDP-30 | 106.8 | 0.8 | 25.0 |
Table 1 Basic information on the stems and their discs where the sap flux density was measured in the stem-weighing method experiment
茎段编号 Stem number | 直径 Diameter (cm) | 安装探针类型 Sensor type | 圆盘面积 Disc area (cm2) | 平均边材厚度 Average sapwood depth (cm) | 具有导水能力的边材面积 Area of water conducting sapwood (cm2) |
---|---|---|---|---|---|
1 | 9.80 | TDP-20, TDP-30 | 72.7 | 1.2 | 32.5 |
2 | 10.50 | TDP-20, TDP-30 | 86.1 | 0.9 | 25.4 |
3 | 10.20 | TDP-20, TDP-30 | 87.2 | 1.5 | 43.8 |
4 | 10.91 | TDP-20, TDP-30 | 97.6 | 1.9 | 54.8 |
5 | 11.20 | TDP-20, TDP-30 | 103.3 | 1.2 | 38.9 |
6 | 12.00 | TDP-20, TDP-30 | 111.9 | 1.1 | 36.6 |
7 | 11.80 | TDP-30 | 106.8 | 0.8 | 25.0 |
Fig. 2 Cross-section of different stem segments after dyeing of Populus tomentosa. The red area in the cross sections indicates the water-conducting sapwood.
Fig. 3 Comparison between the calculated sap flux density by Granier’s original equation and the actual sap flux density measured with the stem-weighing method. R2 and p values represent the linear regression results of stems with data points having corresponding color.
Fig. 4 Degree of underestimation for sap flux density predicted with Granier’s original equation and compared with the actual value measured by the stem-weighing method.
Fig. 7 Relationship between the calibrated parameters of Granier’s original equation and the proportion of probe inserted into water-conducting sapwood.
Fig. 8 Verification of Granier’s original equation and other calibrated equations of Populus tomentosa using the data of the stem-weighing method. M1, Granier’s original equation; M2, calibrated equation of stem-weighing method; M3, calibrated equation of whole-tree potometer method; M4, calibrated equation of Ma et al. (2020); M5, calibrated equation of Xie & Wan (2018).
Fig. 9 Verification of Granier’s original equation and other calibrated equations of Populus tomentosa using the data of the whole-tree potometer method. M1, Granier’s original equation; M2, calibrated equation of stem-weighing method; M3, calibrated equation of whole-tree potometer method; M4, calibrated equation of Ma et al. (2020); M5, calibrated equation of Xie & Wan (2018).
Fig. 10 Comparison of sap flux density predicted with Granier’s original equation and other calibrated equations for field grown Populus tomentosa (mean ± SE). Different lowercase letters indicate a significant difference at p <0.05, according to Tukey’s test. M1, Granier’s original equation; M2, calibrated equation of stem-weighing method; M3, calibrated equation of whole-tree potometer method; M4, calibrated equation of Ma et al. (2020); M5, calibrated equation of Xie & Wan (2018).
[1] |
Børja I, Svĕtlík J, Nadezhdin V, Čermák J, Rosner S, Nadezhdina N (2016). Sap flux—A real time assessment of health status in Norway spruce. Scandinavian Journal of Forest Research, 31, 450-457.
DOI URL |
[2] |
Burgess SSO, Adams MA, Turner NC, Beverly CR, Ong CK, Khan AAH, Bleby TM (2001). An improved heat pulse method to measure low and reverse rates of sap flow in woody plants. Tree Physiology, 21, 589-598.
PMID |
[3] |
Bush SE, Hultine KR, Sperry JS, Ehleringer JR (2010). Calibration of thermal dissipation sap flow probes for ring- and diffuse-porous trees. Tree Physiology, 30, 1545-1554.
DOI PMID |
[4] |
Clearwater MJ, Meinzer FC, Andrade JL, Goldstein G, Holbrook NM (1999). Potential errors in measurement of nonuniform sap flow using heat dissipation probes. Tree Physiology, 19, 681-687.
PMID |
[5] |
Dix MJ, Aubrey DP (2021a). Calibration approach and range of observed sap flow influences transpiration estimates from thermal dissipation sensors. Agricultural and Forest Meteorology, 307, 108534. DOI: 10.1016/j.agrformet.2021.108534.
DOI |
[6] | Dix MJ, Aubrey DP (2021b). Recalibrating best practices, challenges, and limitations of estimating tree transpiration via sap flow. Current Forestry Reports, 7, 31-37. |
[7] | FAO (2020). Global Forest Resources Assessment 2020: Main Report. Food and Agriculture Organization of the United Nations, Rome. |
[8] |
Flo V, Martinez-Vilalta J, Steppe K, Schuldt B, Poyatos R (2019). A synthesis of bias and uncertainty in sap flow methods. Agricultural and Forest Meteorology, 271, 362-374.
DOI |
[9] |
Fricke W (2019). Night-time transpiration—Favouring growth? Trends in Plant Science, 24, 311-317.
DOI URL |
[10] | Fuchs S, Leuschner C, Link R, Coners H, Schuldt B (2017). Calibration and comparison of thermal dissipation, heat ratio and heat field deformation sap flow probes for diffuse-porous trees. Agricultural and Forest Meteorology, 244- 245, 151-161. |
[11] |
Granier A (1985). A new method of sap flow measurement in tree stems. Annales des Sciences Forestières, 42, 193-200.
DOI URL |
[12] |
Green S, Clothier B, Jardine B (2003). Theory and practical application of heat pulse to measure sap flow. Agronomy Journal, 95, 1371-1379.
DOI URL |
[13] |
Iqbal S, Zha TS, Jia X, Hayat M, Qian D, Bourque CPA, Tian Y, Bai YJ, Liu P, Yang RZ, Khan A (2021). Interannual variation in sap flow response in three xeric shrub species to periodic drought. Agricultural and Forest Meteorology, 297, 108276. DOI: 10.1016/j.agrformet.2020.108276.
DOI |
[14] |
Jasechko S, Sharp ZD, Gibson JJ, Birks SJ, Yi Y, Fawcett PJ (2013). Terrestrial water fluxes dominated by transpiration. Nature, 496, 347-350.
DOI |
[15] |
Komatsu H, Shinohara Y, Nogata M, Tsuruta K, Otsuki K (2013). Changes in canopy transpiration due to thinning of a Cryptomeria japonica plantation. Hydrological Research Letters, 7, 60-65.
DOI URL |
[16] |
Köstner BMM, Schulze ED, Kelliher FM, Hollinger DY, Byers JN, Hunt JE, McSeveny TM, Meserth R, Weir PL (1992). Transpiration and canopy conductance in a pristine broad- leaved forest of Nothofagus: an analysis of xylem sap flow and eddy correlation measurements. Oecologia, 91, 350-359.
DOI PMID |
[17] |
Li DD, Liu JQ, Verhoef A, Xi BY, Hernandez-Santana V (2021). Understanding the relationship between biomass production and water use of Populus tomentosa trees throughout an entire short-rotation. Agricultural Water Management, 246, 106710. DOI: 10.1016/j.agrformet.2020.106710.
DOI |
[18] | Li GD, Fu FZ, Xi BY, Wang Y, Jia LM (2016). Study of transpiration and water consumption of triploid Populus tomentosa at individual tree and stand scales by using thermal dissipation technology. Acta Ecologica Sinica, 36, 2945-2953. |
[李广德, 富丰珍, 席本野, 王烨, 贾黎明 (2016). 基于热扩散技术的三倍体毛白杨单木及林分蒸腾耗水研究. 生态学报, 36, 2945-2953.] | |
[19] | Li GD, Jia LM, Fu FZ (2014). Comparison on the whole-tree water use of hybrid triploid of Chinese white poplar between the whole tree potometer and thermal dissipation probe. China Forestry Science and Technology, 28(5), 41-44. |
[李广德, 贾黎明, 富丰珍 (2014). 不同方法测定三倍体毛白杨整树蒸腾的比较. 林业科技开发, 28(5), 41-44.] | |
[20] |
Link RM, Fuchs S, Arias Aguilar D, Leuschner C, Castillo Ugalde M, Valverde Otarola JC, Schuldt B (2020). Tree height predicts the shape of radial sap flow profiles of Costa-Rican tropical dry forest tree species. Agricultural and Forest Meteorology, 287, 107913. DOI: 10.1016/j.agrformet.2020.107913.
DOI |
[21] |
Liu JQ, Li DD, Fernández JE, Coleman M, Hu W, Di N, Zou SY, Liu Y, Xi BY, Clothier B (2022). Variations in water- balance components and carbon stocks in poplar plantations with differing water inputs over a whole rotation: implications for sustainable forest management under climate change. Agricultural and Forest Meteorology, 320, 108958. DOI: 10.1016/j.agrformet.2022.108958.
DOI |
[22] |
Liu QX, Meng P, Zhang JS, Gao J, Sun SJ, Ren YF (2013). Calibration coefficients of Granier original formula based on sap flow of Platycladus orientalis. Acta Ecologica Sinica, 33, 1944-1951.
DOI URL |
[刘庆新, 孟平, 张劲松, 高峻, 孙守家, 任迎丰 (2013). 基于侧柏液流的测定对Granier原始公式系数进行校正. 生态学报, 33, 1944-1951.] | |
[23] |
Lu P, Woo KC, Liu ZT (2002). Estimation of whole-plant transpiration of bananas using sap flow measurements. Journal of Experimental Botany, 53, 1771-1779.
PMID |
[24] | Ma CM, Zhang HH, Han Y, Meng QX, Zhang JS, Ma YJ (2021). Error and correction formula of Granier’s original formula to calculate the stem sap flux density of clone 107 poplar. Scientia Silvae Sinicae, 57(3), 161-169. |
[马长明, 张含含, 韩煜, 孟庆星, 张劲松, 马玉洁 (2021). Granier原始公式测算107杨树干液流通量密度的误差及校正公式. 林业科学, 57(3), 161-169.] | |
[25] | Ma YJ, Wu PF, Wang X, Zhang JS, Yin CJ, Ma CM (2020). Adaptability of Granier empirical formula in sap flow measurement of Populus tomentosa based on whole tree weighing method. Chinese Journal of Applied Ecology, 31, 1518-1524. |
[马玉洁, 武鹏飞, 王晓, 张劲松, 尹昌君, 马长明 (2020). 基于整树称重法的Granier经验公式对毛白杨树干液流测定的适用性. 应用生态学报, 31, 1518-1524.]
DOI |
|
[26] |
McCulloh KA, Winter K, Meinzer FC, Garcia M, Aranda J, Lachenbruch B (2007). A comparison of daily water use estimates derived from constant-heat sap-flow probe values and gravimetric measurements in pot-grown saplings. Tree Physiology, 27, 1355-1360.
PMID |
[27] |
Nadezhdina N (2018). Revisiting the Heat Field Deformation (HFD) method for measuring sap flow. iForest, 11, 118-130.
DOI URL |
[28] |
Niu JF, Xu Y, Peng YH, Chen YJ, Zhao P (2022). Small inaccuracies in estimating narrow sapwood depth produce large error in sap velocity corrections. Ecohydrology, 15, e2409. DOI: 10.1002/eco.2409.
DOI |
[29] |
Ouyang L, Wu J, Zhao P, Zhu LW, Ni GY (2021). Stand age rather than soil moisture gradient mainly regulates the compromise between plant growth and water use of Eucalyptus urophylla in hilly South China. Land Degradation & Development, 32, 2423-2436.
DOI URL |
[30] |
Pasqualotto G, Carraro V, Menardi R, Anfodillo T (2019). Calibration of granier-type (TDP) sap flow probes by a high precision electronic potometer. Sensors, 19, 2419. DOI: 10.3390/s19102419.
DOI |
[31] |
Peters RL, Fonti P, Frank DC, Poyatos R, Pappas C, Kahmen A, Carraro V, Prendin AL, Schneider L, Baltzer JL, Baron-Gafford GA, Dietrich L, Heinrich I, Minor RL, Sonnentag O, Matheny AM, Wightman MG, Steppe K, et al. (2018). Quantification of uncertainties in conifer sap flow measured with the thermal dissipation method. New Phytologist, 219, 1283-1299.
DOI PMID |
[32] | Poyatos R, Granda V, Flo V, Adams MA, Adorján B, Aguadé D, Aidar MPM, Allen S, Alvarado-Barrientos MS, Anderson-Teixeira KJ, Aparecido LM, Arain MA, Aranda I, Asbjornsen H, Baxter R, et al. (2021). Global transpiration data from sap flow measurements: the SAPFLUXNET database. Earth System Science Data, 13, 2607-2649. |
[33] | Rafael P, Víctor G, Víctor F, Adams MA, Balázs A, David A, Aidar Marcos PM, Scott A, Susana ABM, Anderson Kristina J, Maria AL, Altaf AM, Ismael A, Heidi A, Robert B, et al. (2021). Global transpiration data from sap flow measurements: the SAPFLUXNET database. Earth System Science Data, 13, 2607-2649. |
[34] | Schlesinger WH, Jasechko S (2014). Transpiration in the global water cycle. Agricultural and Forest Meteorology, 189- 190, 115-117. |
[35] |
Schwärzel K, Zhang LL, Montanarella L, Wang YH, Sun G (2020). How afforestation affects the water cycle in drylands: a process-based comparative analysis. Global Change Biology, 26, 944-959.
DOI PMID |
[36] |
Smith DM, Allen SJ (1996). Measurement of sap flow in plant stems. Journal of Experimental Botany, 47, 1833-1844.
DOI URL |
[37] |
Steppe K, de Pauw DJW, Doody TM, Teskey RO (2010). A comparison of sap flux density using thermal dissipation, heat pulse velocity and heat field deformation methods. Agricultural and Forest Meteorology, 150, 1046-1056.
DOI URL |
[38] |
Sun HZ, Aubrey DP, Teskey RO (2012). A simple calibration improved the accuracy of the thermal dissipation technique for sap flow measurements in juvenile trees of six species. Trees, 26, 631-640.
DOI URL |
[39] | Taiz L, Zeiger E (2006). Plant Physiology. 4th ed. Sinauer Associates, Sunderland, USA. |
[40] |
Taneda H, Sperry JS (2008). A case-study of water transport in co-occurring ring-versus diffuse-porous trees: contrasts in water-status, conducting capacity, cavitation and vessel refilling. Tree Physiology, 28, 1641-1651.
DOI URL |
[41] |
Wang HB, Li X, Xiao JF, Ma MG (2021). Evapotranspiration components and water use efficiency from desert to alpine ecosystems in drylands. Agricultural and Forest Meteorology, 298-299, 108283. DOI: 10.1016/j.agrformet.2020.108283.
DOI |
[42] |
Wei ZW, Yoshimura K, Wang LX, Miralles D, Jasechko S, Lee X (2017). Revisiting the contribution of transpiration to global terrestrial evapotranspiration. Geophysical Research Letters, 44, 2792-2801.
DOI URL |
[43] |
Xi BY, Di N, Wang Y, Duan J, Jia LM (2017). Modeling stand water use response to soil water availability and groundwater level for a mature Populus tomentosa plantation located on the North China Plain. Forest Ecology and Management, 391, 63-74.
DOI URL |
[44] |
Xi BY, Wang Y, Di N, Jia LM, Li GD, Huang XF, Gao YY (2012). Effects of soil water potential on the growth and physiological characteristics of Populus tomentosa pulpwood plantation under subsurface drip irrigation. Acta Ecologica Sinica, 32, 5318-5319.
DOI URL |
[席本野, 王烨, 邸楠, 贾黎明, 李广德, 黄祥丰, 高园园 (2012). 地下滴灌下土壤水势对毛白杨纸浆林生长及生理特性的影响. 生态学报, 32, 5318-5329.] | |
[45] |
Xie J, Wan XC (2018). The accuracy of the thermal dissipation technique for estimating sap flow is affected by the radial distribution of conduit diameter and density. Acta Physiologiae Plantarum, 40, 88.
DOI |
[46] | Zhao XH, Zhao P, Zhou J, Zhang ZZ, Sun ZW, Zhong WC (2015). Applicability evaluation of transpiration of five bamboo species by using TDP (thermal dissipation probe) method. Journal of Tropical and Subtropical Botany, 23, 567-575. |
[赵秀华, 赵平, 周娟, 张振振, 孙振伟, 钟文超 (2015). 热消散法(TDP)在5种竹子蒸腾耗水测定中的适用性评价. 热带亚热带植物学报, 23, 567-575.] |
[1] | YANG Shang-Jin, FAN Yun-Xiang, ZHANG Yu-Wen, HAN Qiao-Ling, ZHAO Yue, DUAN Jie, DI Nan, XI Ben-Ye. Comparison of methods for dividing nighttime sap flow components in Populus tomentosa trees [J]. Chin J Plant Ecol, 2024, 48(4): 496-507. |
[2] | LI Wei-Bin, ZHANG Hong-Xia, ZHANG Yu-Shu, CHEN Ni-Na. Influence of diurnal asymmetric warming on carbon sink capacity in a broadleaf Korean pine forest in Changbai Mountains, China [J]. Chin J Plant Ecol, 2023, 47(9): 1225-1233. |
[3] | WANG Xiu-Ying, CHEN Qi, DU Hua-Li, ZHANG Rui, MA Hong-Lu. Evapotranspiration interpolation in alpine marshes wetland on the Qingzang Plateau based on machine learning [J]. Chin J Plant Ecol, 2023, 47(7): 912-921. |
[4] | ZHANG Min, SANG Ying, SONG Jin-Feng. Root pressure of hydroponic Dracaena sanderiana and its determinants [J]. Chin J Plant Ecol, 2023, 47(7): 1010-1019. |
[5] | JIANG Hai-Gang, ZENG Yun-Hong, TANG Hua-Xin, LIU Wei, LI Jie-Lin, HE Guo-Hua, QIN Hai-Yan, WANG Li-Chao, Victor RESCO de DIOS, YAO Yin-An. Rhythmic regulation of carbon fixation and water dissipation in three mosses [J]. Chin J Plant Ecol, 2023, 47(7): 988-997. |
[6] | DU Ying-Dong, YUAN Xiang-Yang, FENG Zhao-Zhong. Effects of different nitrogen forms on photosynthesis characteristics and growth of poplar [J]. Chin J Plant Ecol, 2023, 47(3): 348-360. |
[7] | FAN Yun-Xiang, DI Nan, LIU Yang, ZHANG Yu-Wen, DUAN Jie, LI Xin, WANG Hai-Hong, XI Ben-Ye. Spatiotemporal dynamics of nocturnal sap flow of Populus tomentosa and environmental impact factors [J]. Chin J Plant Ecol, 2023, 47(2): 262-274. |
[8] | ZHU Yu-Ying, ZHANG Hua-Min, DING Ming-Jun, YU Zi-Ping. Changes of vegetation greenness and its response to drought-wet variation on the Qingzang Plateau [J]. Chin J Plant Ecol, 2023, 47(1): 51-64. |
[9] | FENG Yin-Cheng, WANG Yun-Qi, WANG Yu-Jie, WANG Kai, WANG Song-Nian, WANG Jie-Shuai. Water vapor fluxes and their relationship with environmental factors in a conifer-broadleaf mixed forest ecosystem in Jinyun Mountain, Chongqing, China [J]. Chin J Plant Ecol, 2022, 46(8): 890-903. |
[10] | XIONG Bo-Wen, LI Tong, HUANG Ying, YAN Chun-Hua, QIU Guo-Yu. Effects of different reference temperature values on the accuracy of vegetation transpiration estimation by three-temperature model [J]. Chin J Plant Ecol, 2022, 46(4): 383-393. |
[11] | HUANG Ying, CHEN Zhi, SHI Zhe, XIONG Bo-Wen, YAN Chun-Hua, QIU Guo-Yu. Temporal and spatial variation characteristics and different calculation methods for the key parameter αe in the generalized complementary principle of evapotranspiration [J]. Chin J Plant Ecol, 2022, 46(3): 300-310. |
[12] | ZHENG Zhou-Tao, ZHANG Yang-Jian. Variation in ecosystem water use efficiency and its attribution analysis during 1982-2018 in Qingzang Plateau [J]. Chin J Plant Ecol, 2022, 46(12): 1486-1496. |
[13] | WANG Li-Shuang, TONG Xiao-Juan, MENG Ping, ZHANG Jin-Song, LIU Pei-Rong, LI Jun, ZHANG Jing-Ru, ZHOU Yu. Energy flux and evapotranspiration of two typical plantations in semi-arid area of western Liaoning, China [J]. Chin J Plant Ecol, 2022, 46(12): 1508-1522. |
[14] | WU Lin-Sheng, ZHANG Yong-Guang, ZHANG Zhao-Ying, ZHANG Xiao-Kang, WU Yun-Fei. Remote sensing of solar-induced chlorophyll fluorescence and its applications in terrestrial ecosystem monitoring [J]. Chin J Plant Ecol, 2022, 46(10): 1167-1199. |
[15] | JIN Chuan, LI Xin-Hao, JIANG Yan, XU Ming-Ze, TIAN Yun, LIU Peng, JIA Xin, ZHA Tian- Shan. Relative changes and regulation of photosynthetic energy partitioning components in Artemisia ordosica during growing season [J]. Chin J Plant Ecol, 2021, 45(8): 870-879. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn