Chin J Plant Ecol ›› 2014, Vol. 38 ›› Issue (8): 868-877.DOI: 10.3724/SP.J.1258.2014.00081
• Research Articles • Previous Articles Next Articles
XIONG Hui1, MA Cheng-En2, LI Le3, ZENG Hui1,2, GUO Da-Li3,*()
Received:
2014-03-11
Accepted:
2014-05-25
Online:
2014-03-11
Published:
2014-08-18
Contact:
GUO Da-Li
XIONG Hui, MA Cheng-En, LI Le, ZENG Hui, GUO Da-Li. Stomatal characteristics of ferns and angiosperms and their responses to changing light intensity at different habitats[J]. Chin J Plant Ecol, 2014, 38(8): 868-877.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.3724/SP.J.1258.2014.00081
物种 Species | 植物类型 Plant type | 生境 Habitat | 缩写 Abbreviations | 高度 Height (m) |
---|---|---|---|---|
芒萁 Dicranopteris pedata | 蕨类植物 Fern | 开阔 Open | Dp | 0.78 ± 0.09 |
菜蕨 Callipteris esculenta | 蕨类植物 Fern | 开阔 Open | Ce | 1.13 ± 0.09 |
长叶铁角蕨 Asplenium prolongatum | 蕨类植物 Fern | 林下 Understory | Ap | 0.34 ± 0.01 |
福建观音座莲 Angiopteris fokiensis | 蕨类植物 Fern | 林下 Understory | Af | 1.85 ± 0.09 |
狗脊 Woodwardia japonica | 蕨类植物 Fern | 林下 Understory | Wj | 0.94 ± 0.09 |
少花柏拉木 Blastus pauciflorus | 被子植物 Angiosperm | 开阔 Open | Bp | 1.02 ± 0.09 |
三叶地锦 Parthenocissus semicordata | 被子植物 Angiosperm | 林下 Understory | Ps | 藤本 Alina |
对叶楼梯草 Elatostema sinense | 被子植物 Angiosperm | 林下 Understory | Es | 0.55 ± 0.03 |
心叶毛蕊茶 Camellia cordifolia | 被子植物 Angiosperm | 林下 Understory | Cc | 3.43 ± 0.54 |
Table 1 Plant type, habitat, species abbreviations and plant height of the nine species (mean ± SE)
物种 Species | 植物类型 Plant type | 生境 Habitat | 缩写 Abbreviations | 高度 Height (m) |
---|---|---|---|---|
芒萁 Dicranopteris pedata | 蕨类植物 Fern | 开阔 Open | Dp | 0.78 ± 0.09 |
菜蕨 Callipteris esculenta | 蕨类植物 Fern | 开阔 Open | Ce | 1.13 ± 0.09 |
长叶铁角蕨 Asplenium prolongatum | 蕨类植物 Fern | 林下 Understory | Ap | 0.34 ± 0.01 |
福建观音座莲 Angiopteris fokiensis | 蕨类植物 Fern | 林下 Understory | Af | 1.85 ± 0.09 |
狗脊 Woodwardia japonica | 蕨类植物 Fern | 林下 Understory | Wj | 0.94 ± 0.09 |
少花柏拉木 Blastus pauciflorus | 被子植物 Angiosperm | 开阔 Open | Bp | 1.02 ± 0.09 |
三叶地锦 Parthenocissus semicordata | 被子植物 Angiosperm | 林下 Understory | Ps | 藤本 Alina |
对叶楼梯草 Elatostema sinense | 被子植物 Angiosperm | 林下 Understory | Es | 0.55 ± 0.03 |
心叶毛蕊茶 Camellia cordifolia | 被子植物 Angiosperm | 林下 Understory | Cc | 3.43 ± 0.54 |
Fig. 2 Stomatal density (SD) and stomatal length (SL) for 4 angiosperms and 5 ferns in open and understory habitats (mean ± SE). Abbreviations of species name see Table 1; A and F represent angiosperms (n = 4) and ferns (n = 5), respectively; U and O represent plants in understory (n = 6) and open habitats (n = 3), respectively; **, p < 0.01; *, p < 0.05.
Fig. 3 Relationship between stomatal density and stomatal length in ferns and angiosperms in open and understory habitats. Data include measurements in this study and from literature.
Fig. 4 Effects of habitat and plant type on stomatal density and stomatal length (mean ± SE). Data include measurements in this study and from literature; ***, p < 0.001.
Fig. 5 Comparison of stomatal density and stomatal length among four categories of plants: angiosperm in open habitat (OA), fern in open habitat (OF), angiosperm in understory (UA), and fern in understory (UF) (mean ± SE). Different letters indicate significant difference (p < 0.05); Data include measurements in this study and from literature.
变异来源 Source of variable | 植物生境 Habitat | 植物类型 Plant type | 类型×生境 Habitat × Plant type |
---|---|---|---|
光合速率最大值(A, μmol·m-2·s-1) | 0.017 | 0.165 | 0.172 |
气孔导度最大值(Gs, mol·m-2·s-1) | 0.024 | 0.169 | 0.126 |
气孔关闭绝对速率(Gclosure, Gs·s-1) | 0.000 | 0.116 | 0.260 |
气孔关闭相对速率(Pclosure, %Gs·s-1) | 0.032 | 0.241 | 0.934 |
气孔张开绝对速率(Gopen, Gs·s-1) | 0.493 | 0.814 | 0.751 |
气孔张开相对速率(Popen, %Gs·s-1) | 0.601 | 0.179 | 0.985 |
Table 2 Effects of habitat and plant type on each index in response to changing light intensity of nine species.
变异来源 Source of variable | 植物生境 Habitat | 植物类型 Plant type | 类型×生境 Habitat × Plant type |
---|---|---|---|
光合速率最大值(A, μmol·m-2·s-1) | 0.017 | 0.165 | 0.172 |
气孔导度最大值(Gs, mol·m-2·s-1) | 0.024 | 0.169 | 0.126 |
气孔关闭绝对速率(Gclosure, Gs·s-1) | 0.000 | 0.116 | 0.260 |
气孔关闭相对速率(Pclosure, %Gs·s-1) | 0.032 | 0.241 | 0.934 |
气孔张开绝对速率(Gopen, Gs·s-1) | 0.493 | 0.814 | 0.751 |
气孔张开相对速率(Popen, %Gs·s-1) | 0.601 | 0.179 | 0.985 |
Fig. 6 Responses of stomatal conductance (Gs) and CO2 assimilation rate (A) in two ferns (A-D) and two angiosperms (E-H) in open and understory habitats for 30 minutes after each of four transitions in light intensity (PPFD) (dashed line). The two species in open habitats showed rapid stomatal closure following transition from high to low light (1000 to 100 μmol·m-2·s-1) (A and E, black arrows); whereas the two species in understory showed slow stomatal closure following transition from high to low light (1000 to 100 μmol·m-2·s-1) (C and G, black arrows).
性状指标 Traits | 气孔密度 SD | 气孔长度 SL | 光合速率 最大值 A | 气孔导度 最大值 Gs | 气孔关闭绝对速率 Gclosure | 气孔关闭相对速率 Pclosure | 气孔张开绝对速率 Gopen |
---|---|---|---|---|---|---|---|
气孔长度 SL | -0.588+ | ||||||
光合速率最大值 A | 0.773* | -0.363 | |||||
气孔导度最大值 Gs | 0.755* | -0.371 | 0.984** | ||||
气孔关闭绝对速率 Gclosure | 0.911** | -0.555 | 0.901** | 0.906** | |||
气孔关闭相对速率 Pclosure | 0.661+ | -0.639+ | 0.325 | 0.306 | 0.658+ | ||
气孔张开绝对速率 Gopen | 0.090 | -0.135 | 0.648 | 0.673* | 0.440 | -0.063 | |
气孔张开相对速率 Popen | -0.448 | -0.102 | -0.166 | -0.217 | -0.291 | -0.122 | 0.414 |
性状指标 Traits | 气孔密度 SD | 气孔长度 SL | 光合速率 最大值 A | 气孔导度 最大值 Gs | 气孔关闭绝对速率 Gclosure | 气孔关闭相对速率 Pclosure | 气孔张开绝对速率 Gopen |
---|---|---|---|---|---|---|---|
气孔长度 SL | -0.588+ | ||||||
光合速率最大值 A | 0.773* | -0.363 | |||||
气孔导度最大值 Gs | 0.755* | -0.371 | 0.984** | ||||
气孔关闭绝对速率 Gclosure | 0.911** | -0.555 | 0.901** | 0.906** | |||
气孔关闭相对速率 Pclosure | 0.661+ | -0.639+ | 0.325 | 0.306 | 0.658+ | ||
气孔张开绝对速率 Gopen | 0.090 | -0.135 | 0.648 | 0.673* | 0.440 | -0.063 | |
气孔张开相对速率 Popen | -0.448 | -0.102 | -0.166 | -0.217 | -0.291 | -0.122 | 0.414 |
[1] |
Abrams MD, Kubiske ME (1990). Leaf structural characteristics of 31 hardwood and conifer tree species in central wisconsin: influence of light regime and shade-tolerance rank. Forest Ecology and Management, 31, 245-253.
DOI URL |
[2] |
Abrams MD, Mostoller SA (1995). Gas exchange, leaf structure and nitrogen in contrasting successional tree species growing in open and understory sites during a drought. Tree Physiology, 15, 361-370.
DOI URL |
[3] |
Allen MT, Pearcy RW (2000). Stomatal behavior and photosynthetic performance under dynamic light regimes in a seasonally dry tropical rain forest. Oecologia, 122, 470-478.
DOI URL |
[4] |
Arve LE, Terfa MT, Gislerød HR, Olsen JE, Torre S (2013). High relative air humidity and continuous light reduce stomata functionality by affecting the ABA regulation in rose leaves. Plant, Cell & Environment, 36, 382-392.
URL PMID |
[5] | Atala C, Saldana A, Navarrete E (2012). Stomatal frequency and gas exchange differs in two Blechnum species (Pteridophyta, Blechnaceae) with contrasting ecological breadth. Gayana Botánica, 69, 161-166. |
[6] | Bakker J (1991). Effects of humidity on stomatal density and its relation to leaf conductance. Scientia Horticulturae, 48, 205-212. |
[7] |
Beerling D, Kelly C (1997). Stomatal density responses of temperate woodland plants over the past seven decades of CO2 increase: a comparison of Salisbury (1927) with contemporary data. American Journal of Botany, 84, 1572-1572.
URL PMID |
[8] | Beerling DJ, Chaloner WG (1993). The impact of atmospheric CO2 and temperature changes on stomatal density: observation from Quercus robur lammas leaves. Annals of Botany, 71, 231-235. |
[9] | Brodribb TJ, Holbrook NM (2004). Stomatal protection against hydraulic failure: a comparison of coexisting ferns and angiosperms. New Phytologist, 162, 663-670. |
[10] |
Brodribb TJ, McAdam SA, Jordan GJ, Feild TS (2009). Evolution of stomatal responsiveness to CO2 and optimization of water-use efficiency among land plants. New Phytologist, 183, 839-847.
URL PMID |
[11] |
Brodribb TJ, McAdam SAM (2011). Passive origins of stomatal control in vascular plants. Science, 331, 582-585.
DOI URL PMID |
[12] |
Cai ZQ, Qi X, Cao KF (2004). Response of stomatal characteristic and its plasticity to different light intensities in leaves of seven tropical woody seedlings. Chinese Journal of Applied Ecology, 15, 201-204. (in Chinese with English abstract)
URL PMID |
[ 蔡志全, 齐欣, 曹坤芳 (2004). 七种热带雨林树苗叶片气孔特征及其可塑性对不同光照强度的响应. 应用生态学报, 15, 201-204.]
PMID |
|
[13] |
Casson SA, Hetherington AM (2010). Environmental regulation of stomatal development. Current Opinion in Plant Biology, 13, 90-95.
DOI URL PMID |
[14] | Chazdon RL (1988). Sunflecks and their importance to forest understorey plants. Advances in Ecological Research, 18, 1-63. |
[15] | Clemente HS, Marler TE (1996). Drought stress influences gas-exchange responses of papaya leaves to rapid changes in irradiance. Journal of the American Society for Horticultural Science, 121, 292-295. |
[16] | Czerniak CF (2013). Causes and Consequences of Variation in Fern Leaf Form and Physiology. PhD dissertation, University of California, Los Angeles. 126-168. |
[17] |
Doi M, Wada M, Shimazaki K (2006). The fern Adiantum capillus-veneris lacks stomatal responses to blue light. Plant & Cell Physiology, 47, 748-755.
DOI URL PMID |
[18] |
Drake PL, Froend RH, Franks PJ (2013). Smaller, faster stomata: scaling of stomatal size, rate of response, and stomatal conductance. Journal of Experimental Botany, 64, 495-505.
DOI URL PMID |
[19] |
El-Sharkawy MA, Cock JH, Hernandez ADP (1985). Stomatal response to air humidity and its relation to stomatal density in a wide range of warm climate species. Photosynthesis Research, 7, 137-149.
URL PMID |
[20] |
Fanourakis D, Heuvelink E, Carvalho SMP (2013). A comprehensive analysis of the physiological and anatomical components involved in higher water loss rates after leaf development at high humidity. Journal of Plant Physiology, 170, 890-898.
URL PMID |
[21] |
Franks PJ, Beerling DJ (2009). Maximum leaf conductance driven by CO2 effects on stomatal size and density over geologic time. Proceedings of the National Academy of Sciences of the United States of America, 106, 10343-10347.
URL PMID |
[22] |
Gago J, Coopman RE, Cabrera HM, Hermida C, Molins A, Conesa MÀ, Galmés J, Ribas-Carbó M, Flexas J (2013). Photosynthesis limitations in three fern species. Physiologia Plantarum, 149, 599-611.
URL PMID |
[23] |
Hetherington AM, Woodward FI (2003). The role of stomata in sensing and driving environmental change. Nature, 424, 901-908.
URL PMID |
[24] | Hollinger DY (1987). Photosynthesis and stomatal conductance patterns of two fern species from different forest understoreys. Journal of Ecology, 75, 925-935. |
[25] | Kirschbaum MUF, Gross LJ, Pearcy RW (1988). Observed and modelled stomatal responses to dynamic light environments in the shade plant Alocasia macrorrhiza. Plant, Cell & Environment, 11, 111-121. |
[26] | Kloeppel BD, Abrams MD, Kubiske ME (1993). Seasonal ecophysiology and leaf morphology of four successional Pennsylvania barrens species in open versus understory environments. Canadian Journal of Forest Research, 23, 181-189. |
[27] | Li CH, Tao MC, Ji QS (2001). The climate of evergreen broad-leaved forest area in the Jiulian mountain of Jiangxi Province. Resources Science, 23(suppl.), 3-14. (in Chinese with English abstract) |
[ 李昌华, 唐茂聪, 吉庆森 (2001). 江西九连山常绿阔叶林区气候资源. 资源科学, 23(增刊), 3-14.] | |
[28] | Li QK, Ma KP (2002). Advances in plant succession ecophysiology. Acta Phytoecologia Sinica, 26(suppl.), 9-19. (in Chinese with English abstract) |
[ 李庆康, 马克平 (2002). 植物群落演替过程中植物生理生态学特性及其主要环境因子的变化. 植物生态学报, 26(增刊), 9-19.] | |
[29] | Ludlow CJ, Wolf FT (1975). Photosynthesis and respiration rates of ferns. American Fern Journal, 65, 43-48. |
[30] | Maherali H, Reid C, Polley H, Johnson H, Jackson R (2002). Stomatal acclimation over a subambient to elevated CO2 gradient in a C3/C4 grassland. Plant, Cell & Environment, 25, 557-566. |
[31] |
McAdam SA, Brodribb TJ (2012a). Fern and lycophyte guard cells do not respond to endogenous abscisic acid. The Plant Cell, 24, 1510-1521.
URL PMID |
[32] |
McAdam SA, Brodribb TJ (2012b). Stomatal innovation and the rise of seed plants. Ecology Letters, 15, 1-8.
URL PMID |
[33] |
Nejad AR, Harbinson J, van Meeteren U (2006). Dynamics of spatial heterogeneity of stomatal closure in Tradescantia virginiana altered by growth at high relative air humidity. Journal of Experimental Botany, 57, 3669-3678.
DOI URL |
[34] |
Nejad AR, van Meeteren U (2005). Stomatal response characteristics of Tradescantia virginiana grown at high relative air humidity. Physiologia Plantarum, 125, 324-332.
DOI URL |
[35] | Nejad AR, van Meeteren U (2007). The role of abscisic acid in disturbed stomatal response characteristics of Tradescantia virginiana during growth at high relative air humidity. Journal of Experimental Botany, 58, 627-636. |
[36] | Nobel PS, Calkin HW, Gibson AC (1984). Influences of PAR, temperature and water vapor concentration on gas exchange by ferns. Physiologia Plantarum, 62, 527-534. |
[37] | Page CN (2002). Ecological strategies in fern evolution: a neopteridological overview. Review of Palaeobotany and Palynology, 119, 1-33. |
[38] | Pearcy RW (1987). Photosynthetic gas exchange responses of Australian tropical forest trees in canopy, gap and understory micro-environments. Functional Ecology, 1, 169-178. |
[39] | Poole I, Weyers J, Lawson T, Raven J (1996). Variations in stomatal density and index: implications for palaeoclimatic reconstructions. Plant, Cell & Environment, 19, 705-712. |
[40] | Riaño K, Briones O (2013). Leaf physiological response to light environment of three tree fern species in a mexican cloud forest. Journal of Tropical Ecology, 29, 217-228. |
[41] |
Schneider H, Schuettpelz E, Pryer KM, Cranfill R, Magallón S, Lupia R (2004). Ferns diversified in the shadow of angiosperms. Nature, 428, 553-557.
URL PMID |
[42] | Takahashi K, Mikami Y (2006). Effects of canopy cover and seasonal reduction in rainfall on leaf phenology and leaf traits of the fern Oleandra pistillaris in a tropical montane forest, indonesia. Journal of Tropical Ecology, 22, 599-604. |
[43] | Tinoco-Ojanguren C, Pearcy RW (1993). Stomatal dynamics and its importance to carbon gain in two rainforest Piper species. I. VPD effects on the transient stomatal response to lightflecks. Oecologia, 94, 388-394. |
[44] | Torre S, Fjeld T, Gislerød HR, Moe R (2003). Leaf anatomy and stomatal morphology of greenhouse roses grown at moderate or high air humidity. Journal of the American Society for Horticultural Science, 128, 598-602. |
[45] |
Valladares F, Allen MT, Pearcy RW (1997). Photosynthetic responses to dynamic light under field conditions in six tropical rainforest shrubs occuring along a light gradient. Oecologia, 111, 505-514.
URL PMID |
[46] | Woodward FI (1987). Stomatal numbers are sensitive to increases in CO2 from pre-industrial levels. Nature, 327, 617-618. |
[47] | Zhan JC, Huang WD, Wang XQ, Wang LJ (2005). Leaf transpiration and stomatal structure of young grape plants grown in a low light environment. Acta Phytoecologia Sinica, 29, 26-31. (in Chinese with English abstract) |
[ 战吉宬, 黄卫东, 王秀芹, 王利军 (2005). 弱光下生长的葡萄叶片蒸腾速率和气孔结构的变化. 植物生态学报, 29, 26-31.] | |
[48] | Zhang SB, Sun M, Cao KF, Hu H, Zhang JL (2014). Leaf photosynthetic rate of tropical ferns is evolutionarily linked to water transport capacity. PLoS ONE, doi: 10.1371/journal.pone.0084682. |
[49] | Zhao J, Wan SZ, Li ZA, Shao YH, Xu GL, Liu ZF, Zhou LX, Fu SL (2012). Dicranopteris-dominated understory as major driver of intensive forest ecosystem in humid subtropical and tropical region. Soil Biology and Biochemistry, 49, 78-87. |
[1] |
Jia WEN Xin-Na ZHANG 娟 王 Xiu-Hai ZHAO Chun-Yu ZHANG.
Responses of seedling survival rate to neighbor competition and environmental variables regulated by traits [J]. Chin J Plant Ecol, 2024, 48(预发表): 0-0. |
[2] | MA Chang-Qin, HUANG Hai-Long, PENG Zheng-Lin, WU Chun-Ze, WEI Qing-Yu, JIA Hong-Tao, WEI Xing. Response of compound leaf types and photosynthetic function of male and female Fraxinus mandschurica to different habitats [J]. Chin J Plant Ecol, 2023, 47(9): 1287-1297. |
[3] | ZHAO Meng-Juan, JIN Guang-Ze, LIU Zhi-Li. Vertical variations in leaf functional traits of three typical ferns in mixed broadleaved- Korean pine forest [J]. Chin J Plant Ecol, 2023, 47(8): 1131-1143. |
[4] | FENG Shan-Shan, HUANG Chun-Hui, TANG Meng-Yun, JIANG Wei-Xin, BAI Tian-Dao. Geographical variation of needles phenotypic and anatomic traits between populations of Pinus yunnanensis var. tenuifolia and its environmental interpretation [J]. Chin J Plant Ecol, 2023, 47(8): 1116-1130. |
[5] | WANG Jia-Yi, WANG Xiang-Ping, XU Cheng-Yang, XIA Xin-Li, XIE Zong-Qiang, FENG Fei, FAN Da-Yong. Response of hydraulic architecture in Fraxinus velutina street trees to the percentage of impervious pavement in Beijing [J]. Chin J Plant Ecol, 2023, 47(7): 998-1009. |
[6] | FENG Ke, LIU Dong-Mei, ZHANG Qi, AN Jing, HE Shuang-Hui. Effect of tourism disturbance on soil microbial diversity and community structure in a Pinus tabuliformis forest [J]. Chin J Plant Ecol, 2023, 47(4): 584-596. |
[7] | SHI Dang, GUO Chuan-Chao, JIANG Nan-Lin, TANG Ying-Ying, ZHENG Feng, WANG Jin, LIAO Kang, LIU Li-Qiang. Characteristics and spatial distribution pattern of natural regeneration young plants of Prunus armeniaca in Xinjiang, China [J]. Chin J Plant Ecol, 2023, 47(4): 515-529. |
[8] | WANG Jing-Jing, WANG Jia-Hao, HUANG Zhi-Yun, Vanessa Chiamaka OKECHUKW, HU Die, QI Shan-Shan, DAI Zhi-Cong, DU Dao-Lin. Effects of endophytic nitrogen-fixing bacteria on the growth strategy of an invasive plant Sphagneticola trilobata under different nitrogen levels [J]. Chin J Plant Ecol, 2023, 47(2): 195-205. |
[9] | YU Qiu-Wu, YANG Jing, SHEN Guo-Chun. Relationship between canopy structure and species composition of an evergreen broadleaf forest in Tiantong region, Zhejiang, China [J]. Chin J Plant Ecol, 2022, 46(5): 529-538. |
[10] | MA Yan-Ze, YANG Xi-Lai, XU Yan-Sen, FENG Zhao-Zhong. Response of key parameters of leaf photosynthetic models to increased ozone concentration in four common trees [J]. Chin J Plant Ecol, 2022, 46(3): 321-329. |
[11] | MENG Qing-Jing, FAN Wei-Guo. Calcium-tolerance type and adaptability to high-calcium habitats of Rosa roxburghii [J]. Chin J Plant Ecol, 2022, 46(12): 1562-1572. |
[12] | ZHOU Ming-Xing, LI Deng-Qiu, ZOU Jian-Jun. Vegetation change of giant panda habitats in Qionglai Mountains through dense Landsat Data [J]. Chin J Plant Ecol, 2021, 45(4): 355-369. |
[13] | YE Zi-Piao, YU Feng, AN Ting, WANG Fu-Biao, KANG Hua-Jing. Investigation on CO2-response model of stomatal conductance for plants [J]. Chin J Plant Ecol, 2021, 45(4): 420-428. |
[14] | ZHONG Yu-Chen, WANG Bin, FANG Zhong-Ping, XU Xiao-Zhong, YU Ming-Jian. Seed predation and dispersal pattern of Fagaceae species in a fragmented landscape, eastern China [J]. Chin J Plant Ecol, 2021, 45(2): 154-162. |
[15] | CHEN Sheng-Nan, CHEN Zuo-Si-Nan, ZHANG Zhi-Qiang. Canopy stomatal conductance characteristics of Pinus tabulaeformis and Acer truncatum and their responses to environmental factors in the mountain area of Beijing [J]. Chin J Plant Ecol, 2021, 45(12): 1329-1340. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn