Chin J Plant Ecol ›› 2023, Vol. 47 ›› Issue (4): 515-529.DOI: 10.17521/cjpe.2022.0089

• Research Articles • Previous Articles     Next Articles

Characteristics and spatial distribution pattern of natural regeneration young plants of Prunus armeniaca in Xinjiang, China

SHI Dang1, GUO Chuan-Chao1, JIANG Nan-Lin1, TANG Ying-Ying1, ZHENG Feng1, WANG Jin2, LIAO Kang1, LIU Li-Qiang1,*()   

  1. 1. College of Horticulture, Xinjiang Agricultural University, Ürümqi 830052, China
    2. Forestry Science Research Academy of Ili Kazak Autonomous Prefecture, Yining, Xinjiang 839300, China
  • Received:2022-03-08 Accepted:2022-09-24 Online:2023-04-20 Published:2022-10-21
  • Contact: *(llq9989@126.com )
  • Supported by:
    Third Comprehensive Scientific Investigation Project in Xinjiang(2021xjkk0501);National Natural Science Foundation of China(31460190);Ministry of Agriculture and Rural Affairs Service Project(125A0605)

Abstract:

Aims Exploring the growth status and spatial distribution pattern of regenerated naturally young plants of Xinjiang wild apricot (Prunus armeniaca) population, which would provide a basis for protecting and artificially promoting the natural regeneration to this species.

Methods In this study, Daxigou (DXG) in Huocheng County, Xinghuagou (XHG) in Xinyuan County and Xiaomohu’ergou (XMHE) in Gongliu County were selected as the study sites. In order to fully understand the regeneration status of Prunus armeniaca population in the patchy, sparse and scattered habitats, forest understory, forest gap and forest glade were set sample plots in three study sites respectively. The distribution density, basal diameter, height and crown width of young plants were measured. The distribution type was determined by the method with 5 m × 5 m contiguous grid quadrats (7 aggregation indices). The aggregation intensity was calculated by point distribution pattern method.

Important findings The characteristics of natural regeneration young plants of Prunus armeniaca in Xinjiang were as follows: (1) The distribution density of XHG, DXG to XMHE was from high to low; the density in the forest gap is significantly higher than that in forest glade and forest understory. The average natural regeneration intensity of the population was 325 plants·hm-2. (2) The basal diameter class of XMHE and DXG was significantly higher than that of XHG; and the one in the forest glade was significantly higher than that of forest understory and forest gap. The average basal diameter of natural regeneration of the population was about 1.7 cm. (3) The height of DXG and XMHE was significantly higher than that of XHG, and the one from the forest glade was significantly higher than that from forest understory and forest gap. The average height of natural regeneration of the population was 77.0 cm. (4) The crown breadth of DXG was significantly higher than that of XMHE and XHG, and the one in the forest glade was significantly higher than that of forest gap and understory. The average crown breadth of natural regeneration of the population was 38.7 cm. (5) There were 22 sample plots with young plants among all plots. In 5 m × 5 m quadrats, the proportions of aggregated, uniform and random distribution plots were 63.6%, 27.3% and 9.1% respectively. (6) In the point distribution pattern, the regeneration young plants were mostly aggregated in forest understory and forest glade. The aggregation intensity was the highest when the scale was 5-8 m, and it was mainly randomly distributed in the forest gap. When the scale was 1 m, the aggregation intensity was the highest, and its spatial pattern in different habitats was aggregated to random distribution. The results showed that both distribution area and habitat type could significantly affect the individual characteristics of young plants of wild apricot regeneration, and mixed forests types of DXG and XMHE were more conducive to the growth of young plants. The distribution number of regenerated young plants was seriously inhibited in forest understory. The forest gap was conducive to seed germination and planting, but the growth of young plants was hindered. The forest glade with condition was conducive to the growth and development of regenerated young plants. On the whole, the regeneration barriers of P. armeniacapopulation was obvious. The spatial distribution pattern of the existing regenerated young plants reflects the habitat change, survival stress, and grazing disturbance. In this context, more protective intervention should be enhanced to promote natural regeneration of P. armeniacapopulation.

Key words: Prunus armeniaca, Xinjiang, population renewal, habitat condition, individual characteristic, distribution pattern