Chin J Plant Ecol ›› 2022, Vol. 46 ›› Issue (7): 766-774.DOI: 10.17521/cjpe.2021.0406
• Research Articles • Previous Articles Next Articles
YAN Han1, MA Song-Mei1,*(), WEI Bo2, ZHANG Hong-Xiang3, ZHANG Dan1
Received:
2021-11-11
Accepted:
2021-12-28
Online:
2022-07-20
Published:
2022-06-09
Contact:
MA Song-Mei
Supported by:
YAN Han, MA Song-Mei, WEI Bo, ZHANG Hong-Xiang, ZHANG Dan. Historical distribution patterns and environmental drivers of relict shrub Amygdalus pedunculata[J]. Chin J Plant Ecol, 2022, 46(7): 766-774.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2021.0406
Fig. 1 Simulation accuracy of Amygdalus pedunculata distribution model in different periods (mean ± SE). AUC, area under the curve of receiver operator characteristic curve; LGM, the Last Glacial Maximum; LIG, the Last Inter Glacial.
Fig. 2 Historical distribution changes (A, B) and centroid migration paths (C) of Amygdalus pedunculata since the Last Inter Glacial (LIG). Dots with different colors indicate the centroid of suitable areas in different periods, and arrows indicate the migration direction of centroid in different periods. LGM, the Last Glacial Maximum.
适生等级 Suitable grade | 模拟时期 Simulation periods | ||
---|---|---|---|
末次间冰期 LIG | 末次盛冰期 LGM | 当前 Present | |
高度适生区面积(×10 000 km2) Highly suitable distribution areas | 3.55 | 1.19 | 6.42 |
适生区面积(×10 000 km2) Suitable distribution areas | 6.33 | 2.31 | 14.85 |
Table 1 Suitable area of Amygdalus pedunculata in northwest China in different periods
适生等级 Suitable grade | 模拟时期 Simulation periods | ||
---|---|---|---|
末次间冰期 LIG | 末次盛冰期 LGM | 当前 Present | |
高度适生区面积(×10 000 km2) Highly suitable distribution areas | 3.55 | 1.19 | 6.42 |
适生区面积(×10 000 km2) Suitable distribution areas | 6.33 | 2.31 | 14.85 |
Fig. 4 Climatic fluctuation of the known distribution points of Amygdalus pedunculata in different periods. LGM, the Last Glacial Maximum; LIG, the Last Inter Glacial.
Fig. 5 Pricipal component analysis (PCA) of eight key climatic variables affecting the distribution of Amygdalus pedunculata in different periods. Bio2, annual mean diurnal range; Bio3, isothermality; Bio5, max temperature of warmest month; Bio6, min temperature of coldest month; Bio7, annual temperature range; Bio13, precipitation of wettest month; Bio14, precipitation of driest month; Bio15, precipitation seasonality. LGM, the Last Glacial Maximum; LIG, the Last Inter Glacial.
气候因子 Climatic factor | LIG-LGM | LGM-Present | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
PC1 | PC2 | PC3 | PC4 | PC5 | PC1 | PC2 | PC3 | PC4 | PC5 | |
Bio2 | 0.093 | 0.460 | 0.730 | 0.428 | 0.052 | 0.521 | 0.138 | 0.086 | 0.122 | 0.090 |
Bio3 | 0.404 | 0.362 | -0.066 | 0.061 | 0.122 | 0.108 | 0.452 | 0.093 | -0.638 | -0.452 |
Bio5 | -0.436 | 0.171 | 0.136 | -0.120 | -0.075 | 0.448 | 0.161 | 0.048 | 0.131 | 0.081 |
Bio6 | -0.187 | 0.695 | -0.181 | -0.479 | 0.086 | -0.456 | -0.042 | -0.130 | -0.111 | -0.126 |
Bio7 | -0.410 | -0.237 | 0.280 | 0.160 | -0.146 | 0.456 | 0.095 | 0.095 | 0.121 | 0.108 |
Bio13 | -0.284 | 0.194 | -0.537 | 0.709 | 0.278 | -0.293 | 0.605 | 0.066 | -0.089 | 0.786 |
Bio14 | 0.416 | 0.128 | -0.200 | 0.196 | -0.725 | -0.255 | 0.151 | 0.846 | 0.381 | -0.226 |
Bio15 | -0.425 | 0.188 | -0.069 | 0.050 | -0.588 | -0.129 | 0.533 | -0.486 | 0.617 | -0.293 |
Table 2 Characteristic values of principal components that affecting the climate fluctuation at distribution points of Amygdalus pedunculata in different periods
气候因子 Climatic factor | LIG-LGM | LGM-Present | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
PC1 | PC2 | PC3 | PC4 | PC5 | PC1 | PC2 | PC3 | PC4 | PC5 | |
Bio2 | 0.093 | 0.460 | 0.730 | 0.428 | 0.052 | 0.521 | 0.138 | 0.086 | 0.122 | 0.090 |
Bio3 | 0.404 | 0.362 | -0.066 | 0.061 | 0.122 | 0.108 | 0.452 | 0.093 | -0.638 | -0.452 |
Bio5 | -0.436 | 0.171 | 0.136 | -0.120 | -0.075 | 0.448 | 0.161 | 0.048 | 0.131 | 0.081 |
Bio6 | -0.187 | 0.695 | -0.181 | -0.479 | 0.086 | -0.456 | -0.042 | -0.130 | -0.111 | -0.126 |
Bio7 | -0.410 | -0.237 | 0.280 | 0.160 | -0.146 | 0.456 | 0.095 | 0.095 | 0.121 | 0.108 |
Bio13 | -0.284 | 0.194 | -0.537 | 0.709 | 0.278 | -0.293 | 0.605 | 0.066 | -0.089 | 0.786 |
Bio14 | 0.416 | 0.128 | -0.200 | 0.196 | -0.725 | -0.255 | 0.151 | 0.846 | 0.381 | -0.226 |
Bio15 | -0.425 | 0.188 | -0.069 | 0.050 | -0.588 | -0.129 | 0.533 | -0.486 | 0.617 | -0.293 |
气候因子 Climate factor | 贡献率百分比 Contribution percentage (%) | 适宜区间 Suitable range |
---|---|---|
最湿月降水量 Precipitation of wettest month (Bio13) (mm) | 38.5 | 3-199 |
平均气温年较差 Annual temperature range (Bio7) (℃) | 16.9 | 27-63 |
降水量季节性 Precipitation seasonality (Bio15) | 14.8 | 23-138 |
最冷月最低气温 Min temperature of coldest month (Bio6) (℃) | 11.8 | -38- -1 |
最干月降水量 Precipitation of driest month (Bio14) (mm) | 6.8 | 0-20 |
等温性 Isothermality (Bio3) | 5.5 | 13-42 |
最热月最高气温 Max temperature of warmest month (Bio5) (℃) | 3.4 | -6-39 |
平均气温日较差 Annual mean diurnal range (Bio2) (℃) | 2.2 | 4-20 |
Table 3 Contribution rate and suitable range of each climate factor to distribution of Amygdalus pedunculata under present climate
气候因子 Climate factor | 贡献率百分比 Contribution percentage (%) | 适宜区间 Suitable range |
---|---|---|
最湿月降水量 Precipitation of wettest month (Bio13) (mm) | 38.5 | 3-199 |
平均气温年较差 Annual temperature range (Bio7) (℃) | 16.9 | 27-63 |
降水量季节性 Precipitation seasonality (Bio15) | 14.8 | 23-138 |
最冷月最低气温 Min temperature of coldest month (Bio6) (℃) | 11.8 | -38- -1 |
最干月降水量 Precipitation of driest month (Bio14) (mm) | 6.8 | 0-20 |
等温性 Isothermality (Bio3) | 5.5 | 13-42 |
最热月最高气温 Max temperature of warmest month (Bio5) (℃) | 3.4 | -6-39 |
平均气温日较差 Annual mean diurnal range (Bio2) (℃) | 2.2 | 4-20 |
[1] |
Bush A, Catullo RA, Mokany K, Thornhill AH, Miller JT, Ferrier S (2018). Truncation of thermal tolerance niches among Australian plants. Global Ecology and Biogeography, 27, 22-31.
DOI URL |
[2] |
Chan LM, Brown JL, Yoder AD (2011). Integrating statistical genetic and geospatial methods brings new power to phylogeography. Molecular Phylogenetics and Evolution, 59, 523-537.
DOI URL |
[3] |
Cheng J, Kao HX, Dong SB (2020). Population genetic structure and gene flow of rare and endangered Tetraena mongolica Maxim. revealed by reduced representation sequencing. BMC Plant Biology, 20, 391. DOI: 10.1186/s12870-020-02594-y.
DOI PMID |
[4] | Chu JM, Li YF, Zhang L, Li B, Gao MY, Tang XQ, Ni JW, Xu XQ (2017). Potential distribution range and conservation strategies for the endangered species Amygdalus pedunculata. Biodiversity Science, 25, 799-806. |
[褚建民, 李毅夫, 张雷, 李斌, 高明远, 唐晓倩, 倪建伟, 许新桥 (2017). 濒危物种长柄扁桃的潜在分布与保护策略. 生物多样性, 25, 799-806.]
DOI |
|
[5] |
Chu JM, Xu XQ, Zhang YL (2013). Production and properties of biodiesel produced from Amygdalus pedunculata Pall. Bioresource Technology, 134, 374-376.
DOI URL |
[6] |
Hewitt GM (2000). The genetic legacy of the Quaternary ice ages. Nature, 405, 907-913.
DOI URL |
[7] |
Hewitt GM (2004). Genetic consequences of climatic oscillations in the quaternary. Philosophical Transactions of the Royal Society B: Biological Sciences, 359, 183-195.
DOI URL |
[8] |
Hutchinson GE (1957). Concluding remarks. Cold Spring Harbor Symposia on Quantitative Biology, 22, 415-427.
DOI URL |
[9] |
Jiang XL, An M, Zheng SS, Deng M, Su ZH (2018). Geographical isolation and environmental heterogeneity contribute to the spatial genetic patterns of Quercus kerrii (Fagaceae). Heredity, 120, 219-233.
DOI URL |
[10] |
Li JY, Chang H, Liu T, Zhang C (2019). The potential geographical distribution of Haloxylon across Central Asia under climate change in the 21st century. Agricultural and Forest Meteorology, 275, 243-254.
DOI URL |
[11] | Li XC, Ma SM (2017). Genetic variation structure of the endangered plant Amygdalus pedunculata. Acta Botanica Boreali-Occidentalia Sinica, 37, 1278-1285. |
[李晓辰, 马松梅 (2017). 濒危植物长柄扁桃的遗传变异格局研究. 西北植物学报, 37, 1278-1285.] | |
[12] | Li XC, Ma SM, Wei B (2018). Impacts of climate change on the potential distribution of medicinal plant Capparis spinosa. Journal of Shihezi University (Natural Science), 36, 176-182. |
[李晓辰, 马松梅, 魏博 (2018). 气候变化对药用植物刺山柑适宜分布的影响. 石河子大学学报(自然科学版), 36, 176-182.] | |
[13] | Liu Y (2008). Simulations of Climate Changes over China in LGM and Mid-Holocene. PhD dissertation, Nanjing University of Information Science and Technology, Nanjing. |
[刘煜 (2008). 末次冰期冰盛期和中全新世中国地区气候变化的数值研究. 博士学位论文, 南京信息工程大学, 南京.] | |
[14] | Liu YD, Qi YT, Qiu YJ, Zhang H, Wang SM (2009). The geographical distribution, origin and evolution of Ephedra. Journal of Arid Land Resources and Environment, 23, 120-126. |
[刘运东, 齐妍婷, 邱远金, 张浩, 王绍明 (2009). 麻黄属的地理分布与起源演化. 干旱区资源与环境, 23, 120-126.] | |
[15] |
Ma SM, Nie YB, Jiang XL, Xu Z, Ji WQ (2019). Genetic structure of the endangered, relict shrub Amygdalus mongolica (Rosaceae) in arid northwest China. Australian Journal of Botany, 67, 128-139.
DOI URL |
[16] |
Ma SM, Zhang ML (2012). Phylogeography and conservation genetics of the relic Gymnocarpos przewalskii (Caryophyllaceae) restricted to northwestern China. Conservation Genetics, 13, 1531-1541.
DOI URL |
[17] |
Meng HH, Gao XY, Huang JF, Zhang ML (2015). Plant phylogeography in arid Northwest China: retrospectives and perspectives. Journal of Systematics and Evolution, 53, 33-46.
DOI URL |
[18] |
Meng HH, Zhang ML (2013). Diversification of plant species in arid Northwest China: species-level phylogeographical history of Lagochilus Bunge ex Bentham (Lamiaceae). Molecular phylogenetics and evolution, 68, 398-409.
DOI URL |
[19] |
Pepper M, Ho SYW, Fujita MK, Keogh JS (2011). The genetic legacy of aridification: climate cycling fostered lizard diversification in Australian montane refugia and left low-lying deserts genetically depauperate. Molecular Phylogenetics and Evolution, 61, 750-759.
DOI PMID |
[20] |
Richards CL, Carstens BC, Knowles LL (2007). Distribution modelling and statistical phylogeography: an integrative framework for generating and testing alternative biogeographical hypotheses. Journal of Biogeography, 34, 1833-1845.
DOI URL |
[21] | Schorr G, Holstein N, Pearman PB, Guisan A, Kadereit JW (2012). Integrating species distribution models (SDMs) and phylogeography for two species of Alpine Primula. Ecology and Evolution, 2, 1260-1277. |
[22] |
Shi XJ, Zhang ML (2015). Phylogeographical structure inferred from cpDNA sequence variation of Zygophyllum xanthoxylon across north-west China. Journal of Plant Research, 128, 269-282.
DOI URL |
[23] |
Wang Q, Zhang ML, Yin LK (2016). Phylogeographic structure of a Tethyan relict Capparis spinosa (Capparaceae) traces pleistocene geologic and climatic changes in the western Himalayas, Tianshan Mountains, and adjacent desert regions. BioMed Research International, 2016, 5792708. DOI: 10.1155/2016/5792708.
DOI |
[24] | Wei B, Ma SM, Song J, He LY, Li XC (2019). Prediction of the potential distribution and ecological suitability of Fritillaria walujewii. Acta Ecologica Sinica, 39, 228-234. |
[魏博, 马松梅, 宋佳, 贺凌云, 李晓辰 (2019). 新疆贝母潜在分布区域及生态适宜性预测. 生态学报, 39, 228-234.] | |
[25] |
Wei B, Zhang L, Ma SM, Ren CR, Nie YB, Sun FF (2021). Intraspecific genetic variation and biogeographic history of the arid relict shrub Amygdalus pedunculata (Rosaceae) in northwest China. Nordic Journal of Botany, 39. DOI: 10.1111/njb.02867.
DOI |
[26] |
Xu Z, Zhang ML (2015). Phylogeography of the arid shrub Atraphaxis frutescens (Polygonaceae) in northwestern China: evidence from cpDNA sequences. Journal of Heredity, 106, 184-195.
DOI URL |
[27] |
Yin HX, Wang LR, Shi Y, Qian CJ, Zhou HK, Wang WY, Ma XF, Tran LSP, Zhang BY (2020). The East Asian winter monsoon acts as a major selective factor in the intraspecific differentiation of drought-tolerant Nitraria tangutorum in northwest China. Plants, 9, 1100. DOI: 10.3390/plants9091100.
DOI URL |
[28] | Yu HB, Zhang YL, Li SC, Qi W, Hu ZJ (2014). Predicting the dispersal routes of alpine plant Pedicularis longiflora (Drobanchaceae) based on GIS and species distribution models. Chinese Journal of Applied Ecology, 25, 1669- 1673. |
[于海彬, 张镱锂, 李士成, 祁威, 胡忠俊 (2014). 基于GIS分布模型的高山植物长花马先蒿迁移路线模拟. 应用生态学报, 25, 1669-1673.] | |
[29] |
Yu YJ, Luo HL, Liu NN, Xiong DJ, Luo YB, Yang BY (2020). Influence of the climate change on suitable areas of Calanthe sieboldii and its pollinators in China. Biodiversity Science, 28, 769-778.
DOI URL |
[余元钧, 罗火林, 刘南南, 熊冬金, 罗毅波, 杨柏云 (2020). 气候变化对中国大黄花虾脊兰及其传粉者适生区的影响. 生物多样性, 28, 769-778.]
DOI |
|
[30] | Zhang D, Ma SM, Wei B, Wang CC, Zhang L, Yan H (2022). Study on the historical distribution pattern and driving mechanism of Haloxylon in China. Biodiversity Science, 30, 42-51. |
[张丹, 马松梅, 魏博, 王春成, 张林, 闫涵 (2022). 中国梭梭属植物历史分布格局及其驱动机制研究. 生物多样性, 30, 42-51.] | |
[31] |
Zhang HX, Zhang ML (2012). Identifying a contact zone between two phylogeographic lineages of Clematis sibirica (Ranunculeae) in the Tianshan and Altai Mountains. Journal of Systematics and Evolution, 50, 295-304.
DOI URL |
[32] | Zhang HX, Zhang ML, Sanderson SC (2017). Spatial genetic structure of forest and xerophytic plant species in arid Eastern Central Asia: insights from comparative phylogeography and ecological niche modelling. Biological Journal of the Linnean Society, 120, 612-625. |
[33] | Zhao RN, He QQ, Chu XJ, Lu ZQ, Zhu ZL (2019). Prediction of potential distribution of Carpinus cordata in China under climate change. Chinese Journal of Applied Ecology, 30, 3833-3843. |
[赵儒楠, 何倩倩, 褚晓洁, 鲁志强, 祝遵凌 (2019). 气候变化下千金榆在我国潜在分布区预测. 应用生态学报, 30, 3833-3843.]
DOI |
|
[34] | Zhao YZ (1992). Atlas of Endangered Rare Plants in Inner Mongolia. China Agricultural Science and Technology Press, Beijing. |
[赵一之 (1992). 内蒙古珍稀濒危植物图谱. 中国农业科技出版社, 北京.] | |
[35] | Zhao YZ (1995). A study on the floristic geographical distribution of Amygdala mongolica. Acta Scientiarum Naturalium Universitatis NeiMonggol (Natural Science), 26, 713-715. |
[赵一之 (1995). 蒙古扁桃的植物区系地理分布研究. 内蒙古大学学报(自然科学版), 26, 713-715.] |
[1] | Jiang-Qun LIU, Ming-Yu YIN, Si-Yu ZUO, Shao-Bing YANG, Tana WUYUN. Phenotypic variations in natural populations of Amygdalus pedunculata [J]. Chin J Plant Ecol, 2017, 41(10): 1091-1102. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn