Chin J Plant Ecol ›› 2019, Vol. 43 ›› Issue (12): 1091-1103.DOI: 10.17521/cjpe.2019.0194
• Research Articles • Previous Articles
TANG Li-Tao,LIU Dan,LUO Xue-Ping,HU Lei,WANG Chang-Ting()
Received:
2019-08-05
Accepted:
2019-11-11
Online:
2019-12-20
Published:
2020-01-03
Contact:
WANG Chang-Ting
About author:
TANG Li-Tao ORCID:0000-0002-4192-6518
Supported by:
TANG Li-Tao, LIU Dan, LUO Xue-Ping, HU Lei, WANG Chang-Ting. Forest soil phosphorus stocks and distribution patterns in Qinghai, China[J]. Chin J Plant Ecol, 2019, 43(12): 1091-1103.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2019.0194
森林类型 Forest type | 采样区域 Sample area | 优势树 Dominants species | 样地数 Number of plots | 土壤类型 Soil type | 海拔 Altitude (m) |
---|---|---|---|---|---|
阔叶林 Broadleaf forest | 循化、互助、民和、同仁、湟源、湟中、大通、门源、同德、化隆、兴海 Xunhua, Huzhu, Minhe, Tongren, Huangyuan, Huangzhong, Datong, Menyuan, Tongde, Hualong, Xinghai | 白桦 Betula platyphylla | 35 | 山地褐色针叶林土、山地灰褐色森林土、山地暗褐土 Cinnamon coniferous forest soil, gray cinnamon forest soil, dark cinnamon forest soil | 2 200-3 000 |
毛白杨 Populus tomentosa | 13 | ||||
红桦 Betula albosinensis | 5 | ||||
青杨 Populus cathayana | 3 | ||||
山杨 Populus davidiana | 9 | ||||
针叶林 Coniferous forest | 乐都、贵德、互助、门源、化隆、湟中、尖扎、同仁、祁连、玛沁、班玛、同德、玉树、囊谦、大通、都兰、循化、江西林场 Ledu, Guide, Huzhu, Menyuan, Hualong, Huangzhong, Jianzha, Tongren, Qilian, Maqin, Baima, Tongde, Yushu, Nangqien, Datong, Dulan, Xunhua, Jiangxi Forest Farm | 青海云杉 Picea crassifolia | 130 | 山地褐色针叶林土、山地灰褐色森林土、山地棕色暗针叶林土、山地暗褐土Cinnamon coniferous forest soil, gray cinnamon forest soil, brown forest soil, dark cinnamon forest soil | 2 100-3 900 |
青扦 Picea wilsonii | 9 | ||||
圆柏 Juniperus chinensis | 33 | ||||
落叶松 Larix gmelinii | 3 |
Table 1 Basic information of sampling sites of forest soil in Qinghai Province
森林类型 Forest type | 采样区域 Sample area | 优势树 Dominants species | 样地数 Number of plots | 土壤类型 Soil type | 海拔 Altitude (m) |
---|---|---|---|---|---|
阔叶林 Broadleaf forest | 循化、互助、民和、同仁、湟源、湟中、大通、门源、同德、化隆、兴海 Xunhua, Huzhu, Minhe, Tongren, Huangyuan, Huangzhong, Datong, Menyuan, Tongde, Hualong, Xinghai | 白桦 Betula platyphylla | 35 | 山地褐色针叶林土、山地灰褐色森林土、山地暗褐土 Cinnamon coniferous forest soil, gray cinnamon forest soil, dark cinnamon forest soil | 2 200-3 000 |
毛白杨 Populus tomentosa | 13 | ||||
红桦 Betula albosinensis | 5 | ||||
青杨 Populus cathayana | 3 | ||||
山杨 Populus davidiana | 9 | ||||
针叶林 Coniferous forest | 乐都、贵德、互助、门源、化隆、湟中、尖扎、同仁、祁连、玛沁、班玛、同德、玉树、囊谦、大通、都兰、循化、江西林场 Ledu, Guide, Huzhu, Menyuan, Hualong, Huangzhong, Jianzha, Tongren, Qilian, Maqin, Baima, Tongde, Yushu, Nangqien, Datong, Dulan, Xunhua, Jiangxi Forest Farm | 青海云杉 Picea crassifolia | 130 | 山地褐色针叶林土、山地灰褐色森林土、山地棕色暗针叶林土、山地暗褐土Cinnamon coniferous forest soil, gray cinnamon forest soil, brown forest soil, dark cinnamon forest soil | 2 100-3 900 |
青扦 Picea wilsonii | 9 | ||||
圆柏 Juniperus chinensis | 33 | ||||
落叶松 Larix gmelinii | 3 |
林型 Forest type | 面积 Area (100 hm2) | 磷储量 Phosphorus stock (Mg) | ||||||
---|---|---|---|---|---|---|---|---|
0-10 cm | 10-20 cm | 20-30 cm | 30-50 cm | 50-100 cm | 合计 Total | |||
阔叶林 Broadleaved forest | 桦木 Betula | 606 | 19 392 | 20 604 | 25 452 | 59 664 | 177 558 | 302 670 |
杨树 Populus | 404 | 15 352 | 15 756 | 19 796 | 42 420 | 113 524 | 206 848 | |
针叶林 Coniferous forest | 青扦 Picea wilsonii | 56 | 2 296 | 2 632 | 3 472 | 8 624 | 15 232 | 32 256 |
落叶松 Larix gmelinii | 72 | 3 168 | 3 672 | 3 888 | 11 232 | 21 960 | 43 920 | |
柏木 Cupressus funebris | 1 383 | 58 086 | 60 852 | 70 533 | 142 449 | 330 537 | 662 457 | |
青海云杉 Picea crassifolia | 982 | 33 388 | 40 262 | 50 082 | 102 128 | 264 158 | 490 018 | |
总计 Total | 3 503 | 131 682 | 143 778 | 173 223 | 366 517 | 922 969 | 1 738 169 |
Table 2 Phosphorus stocks in forest of Qinghai Province
林型 Forest type | 面积 Area (100 hm2) | 磷储量 Phosphorus stock (Mg) | ||||||
---|---|---|---|---|---|---|---|---|
0-10 cm | 10-20 cm | 20-30 cm | 30-50 cm | 50-100 cm | 合计 Total | |||
阔叶林 Broadleaved forest | 桦木 Betula | 606 | 19 392 | 20 604 | 25 452 | 59 664 | 177 558 | 302 670 |
杨树 Populus | 404 | 15 352 | 15 756 | 19 796 | 42 420 | 113 524 | 206 848 | |
针叶林 Coniferous forest | 青扦 Picea wilsonii | 56 | 2 296 | 2 632 | 3 472 | 8 624 | 15 232 | 32 256 |
落叶松 Larix gmelinii | 72 | 3 168 | 3 672 | 3 888 | 11 232 | 21 960 | 43 920 | |
柏木 Cupressus funebris | 1 383 | 58 086 | 60 852 | 70 533 | 142 449 | 330 537 | 662 457 | |
青海云杉 Picea crassifolia | 982 | 33 388 | 40 262 | 50 082 | 102 128 | 264 158 | 490 018 | |
总计 Total | 3 503 | 131 682 | 143 778 | 173 223 | 366 517 | 922 969 | 1 738 169 |
林型 Forest type | 面积 Area (100 hm2) | 磷密度 Phosphors density (Mg·hm-2) | ||||||
---|---|---|---|---|---|---|---|---|
0-10 cm | 10-20 cm | 20-30 cm | 30-50 cm | 50-100 cm | 0-100 cm | |||
阔叶林 Broadleaved forest | 桦木 Betula | 606 | 0.32 ± 0.02 | 0.34 ± 0.02 | 0.42 ± 0.03 | 0.94 ± 0.06 | 2.93 ± 0.24 | 4.71 |
杨树 Populus | 404 | 0.38 ± 0.02 | 0.39 ± 0.02 | 0.49 ± 0.03 | 1.05 ± 0.08 | 2.81 ± 0.20 | 4.62 | |
平均值 Mean | 0.37 | 0.35 | 0.46 | 1.03 | 2.86 | 4.68 | ||
针叶林 Coniferous forest | 青扦 Picea wilsonii | 56 | 0.41 ± 0.05 | 0.47 ± 0.11 | 0.62 ± 0.13 | 1.54 ± 0.33 | 2.72 ± 0.31 | 5.76 |
落叶松 Larix gmelinii | 72 | 0.44 ± 0.07 | 0.51 ± 0.05 | 0.54 ± 0.09 | 1.56 ± 0.01 | 3.05 ± 0.04 | 6.09 | |
柏木 Cupressus funebris | 1 383 | 0.42 ± 0.03 | 0.44 ± 0.02 | 0.50 ± 0.03 | 1.03 ± 0.05 | 2.39 ± 0.12 | 4.50 | |
青海云杉 Picea crassifolia | 982 | 0.31 ± 0.02 | 0.41 ± 0.02 | 0.51 ± 0.02 | 1.04 ± 0.04 | 2.69 ± 0.10 | 4.48 | |
平均值 Mean | 0.34 | 0.42 | 0.52 | 1.06 | 2.59 | 4.58 | ||
平均值 Mean | 0.35 | 0.40 | 0.50 | 1.05 | 2.66 | 4.65 |
Table 3 Forest soil phosphorus density distribution in Qinghai Province
林型 Forest type | 面积 Area (100 hm2) | 磷密度 Phosphors density (Mg·hm-2) | ||||||
---|---|---|---|---|---|---|---|---|
0-10 cm | 10-20 cm | 20-30 cm | 30-50 cm | 50-100 cm | 0-100 cm | |||
阔叶林 Broadleaved forest | 桦木 Betula | 606 | 0.32 ± 0.02 | 0.34 ± 0.02 | 0.42 ± 0.03 | 0.94 ± 0.06 | 2.93 ± 0.24 | 4.71 |
杨树 Populus | 404 | 0.38 ± 0.02 | 0.39 ± 0.02 | 0.49 ± 0.03 | 1.05 ± 0.08 | 2.81 ± 0.20 | 4.62 | |
平均值 Mean | 0.37 | 0.35 | 0.46 | 1.03 | 2.86 | 4.68 | ||
针叶林 Coniferous forest | 青扦 Picea wilsonii | 56 | 0.41 ± 0.05 | 0.47 ± 0.11 | 0.62 ± 0.13 | 1.54 ± 0.33 | 2.72 ± 0.31 | 5.76 |
落叶松 Larix gmelinii | 72 | 0.44 ± 0.07 | 0.51 ± 0.05 | 0.54 ± 0.09 | 1.56 ± 0.01 | 3.05 ± 0.04 | 6.09 | |
柏木 Cupressus funebris | 1 383 | 0.42 ± 0.03 | 0.44 ± 0.02 | 0.50 ± 0.03 | 1.03 ± 0.05 | 2.39 ± 0.12 | 4.50 | |
青海云杉 Picea crassifolia | 982 | 0.31 ± 0.02 | 0.41 ± 0.02 | 0.51 ± 0.02 | 1.04 ± 0.04 | 2.69 ± 0.10 | 4.48 | |
平均值 Mean | 0.34 | 0.42 | 0.52 | 1.06 | 2.59 | 4.58 | ||
平均值 Mean | 0.35 | 0.40 | 0.50 | 1.05 | 2.66 | 4.65 |
Fig. 3 Phosphorus density of different soil layers (mean ± SE). Different uppercase letters indicate significant differences in soil phosphorus density between soil layers (p < 0.05).
Fig. 4 Relationships between forest soil phosphorus content and altitude in Qinghai Province. A, B, 0-10 cm; C, D, 10-20 cm; E, F, 20-30 cm; G, H, 30-50 cm; I, J, 50-100 cm. Solid line, p < 0.05; dotted line, p > 0.05.
Fig. 6 Soil phosphorus content in different soil types of forests in Qinghai Province (mean ± SE). Different uppercase letters indicate significant differences in soil phosphorus content between different soil types in the same soil layer (p < 0.05); different lowercase letters indicate significant differences in soil phosphorus content between different soil layers of the same soil type (p < 0.05).
Fig. 7 Soil phosphorus density in the 0-100 cm soil layer of different soil types (mean ± SE). Different uppercase letters indicate significant differences in soil phosphorus density between different soil types (p < 0.05).
Fig. 8 Relationships between soil phosphorus and environmental factors. The red line represents a positive correlation, the blue line a negative correlation, and the dotted line an insignificant correlation. *, p < 0.05; **, p < 0.01; ***, p < 0.001. AGFI, adjusted goodness-of-fit index; CHI, Chi-Square; DF, degrees of freedom; GFI, goodness-of-fit index; RMSEA, root mean square error of approximation.
[1] |
Ahern CR, MacNish SE ( 1983). Comparative study of phosphorus and potassium levels of basaltic soils associated with scrub and forest communities on the Darling Downs. Soil Research, 21, 527-538.
DOI URL |
[2] | Allen SK, Plattner GK, Nauels A, Xia Y, Stocker TF ( 2013). Climate change 2013: The physical science basis. An overview of the working group Ι contribution to the fifth assessment report of the Intergovernmental Panel on Climate Change (IPCC). Computational Geometry, 18, 95-123. |
[3] |
Augusto L, Achat DL, Jonard M, Vidal D, Ringeval B ( 2017). Soil parent material—A major driver of plant nutrient limitations in terrestrial ecosystems. Global Change Biology, 23, 3808-3824.
DOI URL PMID |
[4] |
Baeten L, Verstraeten G, de Frenne P, Vanhellemont M, Wuyts K, Hermy M, Verheyen K ( 2011). Former land use affects the nitrogen and phosphorus concentrations and biomass of forest herbs. Plant Ecology, 212, 901-909.
DOI URL |
[5] | Bai JH, Ouyang H, Xiao R, Gao JQ, Gao HF, Cui BS, Huang LB ( 2010). Spatial variability of soil carbon, nitrogen, and phosphorus content and storage in an alpine wetland in the Qinghai-Tibet Plateau, China. Australian Journal of Soil Research, 48, 730-736. |
[6] |
Barrow NJ ( 1983). A mechanistic model for describing the sorption and desorption of phosphate by soil. Journal of Soil Science, 34, 733-750.
DOI URL PMID |
[7] |
Carrino-Kyker SR, Kluber LA, Petersen SM, Coyle KP, Hewins CR, DeForest JL, Smemo KA, Burke DJ ( 2016). Mycorrhizal fungal communities respond to experimental elevation of soil pH and P availability in temperate hardwood forests. FEMS Microbiology Ecology, 92, fiw024. DOI: 10.1093/femsec/fiw024.
DOI URL PMID |
[8] |
Cassagne N, Remaury M, Gauquelin T, Fabre A ( 2000). Forms and profile distribution of soil phosphorus in alpine Inceptisols and Spodosols (Pyrenees, France). Geoderma, 95, 161-172.
DOI URL |
[9] | Chapin III FS, Matson PA, Mooney HA ( 2002). Principles of Terrestrial Ecosystem Ecology. Springer, New York. |
[10] | Chen ML, Chen H, Mao QG, Zhu XM, Mo JM ( 2016). Effect of nitrogen deposition on the soil phosphorus cycle in forest ecosystems: A review. Acta Ecologica Sinica, 36, 4965-4976. |
[ 陈美领, 陈浩, 毛庆功, 朱晓敏, 莫江明 ( 2016). 氮沉降对森林土壤磷循环的影响. 生态学报, 36, 4965-4976.] | |
[11] | Cheng H, Gong YB, Wu Q, Li Y, Liu Y, Zhu DW ( 2018). Content and ecological stoichiometry characteristics of organic carbon, nitrogen and phosphorus of typical soils in sub-alpine/alpine mountain of western Sichuan. Journal of Natural Resources, 33, 161-172. |
[ 程欢, 宫渊波, 吴强, 李瑶, 刘颖, 朱德雯 ( 2018). 川西亚高山/高山典型土壤类型有机碳、氮、磷含量及其生态化学计量特征. 自然资源学报, 33, 161-172.] | |
[12] | Compilation Group of Technical Specifications for Ecosystem Carbon Sequestration Project ( 2015). Technical Specifications for Observation and Investigation of Ecosystem Carbon Sequestration. Science Press, Beijing. |
[ 生态系统固碳项目技术规范编写组 ( 2015). 生态系统固碳观测与调查技术规范. 科学出版社, 北京.] | |
[13] |
Cross AF, Schlesinger WH ( 2001). Biological and geochemical controls on phosphorus fractions in semiarid soils. Biogeochemistry, 52, 155-172.
DOI URL |
[14] |
Dambrine E, Dupouey JL, Laüt L, Humbert L, Thinon M, Beaufils T, Richard H ( 2007). Present forest biodiversity patterns in France related to former Roman agriculture. Ecology, 88, 1430-1439.
DOI URL PMID |
[15] | Editorial Committee of Forest in Qinghai ( 1993). Forest in Qinghai. China Forestry Press, Beijing. |
[ 青海森林编委会 ( 1993). 青海森林. 中国林业出版社, 北京.] | |
[16] | Fahey TJ, Woodbury PB, Battles JJ, Goodale CL, Hamburg SP, Ollinger SV, Woodall CW ( 2010). Forest carbon storage: Ecology, management, and policy. Frontiers in Ecology and the Environment, 8, 245-252. |
[17] | FAO ( 2005). Global forest resource assessment: Progress towards sustainable forest management. In: FAO ed. FAO Forestry Paper 147. Food and Agriculture Organization of the United Nations, Rome. |
[18] |
Frolking S, Roulet NT, Moore TR, Richard PJH, Lavoie M, Muller SD ( 2001). Modeling northern peatland decomposition and peat accumulation. Ecosystems, 4, 479-498.
DOI URL |
[19] |
Fukami T, Wardle DA ( 2005). Long-term ecological dynamics: Reciprocal insights from natural and anthropogenic gradients. Proceedings of the Royal Society B: Biological Sciences, 272, 2105-2115.
DOI URL PMID |
[20] |
Gahoonia TS, Raza S, Nielsen NE ( 1994). Phosphorus depletion in the rhizosphere as influenced by soil moisture. Plant and Soil, 159, 213-218.
DOI URL |
[21] | Guo YP, Yang X, Mohhamot A, Liu HY, Ma WH, Yu SL, Tang ZY ( 2017). Storage of carbon, nitrogen and phosphorus in temperate shrubland ecosystems across Northern China. Chinese Journal of Plant Ecology, 41, 14-21. |
[ 郭焱培, 杨弦, 安尼瓦尔·买买提, 刘鸿雁, 马文红, 于顺利, 唐志尧 ( 2017). 中国北方温带灌丛生态系统碳、氮、磷储量. 植物生态学报, 41, 14-21.] | |
[22] |
Hou EQ, Chen CR, Luo YQ, Zhou GY, Kuang YW, Zhang YG, Heenan M, Lu XK, Wen DZ ( 2018). Effects of climate on soil phosphorus cycle and availability in natural terrestrial ecosystems. Global Change Biology, 24, 3344-3356.
DOI URL PMID |
[23] |
Hu L, Xiang ZY, Wang GX, Rafique R, Liu W, Wang CT ( 2016). Changes in soil physicochemical and microbial properties along elevation gradients in two forest soils. Scandinavian Journal of Forest Research, 31, 242-253.
DOI URL |
[24] |
Ippolito JA, Blecker SW, Freeman CL, McCulley RL, Blair JM, Kelly EF ( 2010). Phosphorus biogeochemistry across a precipitation gradient in grasslands of central North America. Journal of Arid Environments, 74, 954-961.
DOI URL |
[25] |
Jobbágy EG, Jackson RB ( 2004). The uplift of soil nutrients by plants: Biogeochemical consequences across scales. Ecology, 85, 2380-2389.
DOI URL |
[26] |
Khitrov NB, Zazovskaya EP, Rogovneva LV ( 2018). Morphology, radiocarbon age, and genesis of Vertisols of the Eisk Peninsula (the Kuban-Azov Lowland). Eurasian Soil Science, 51, 731-743.
DOI URL |
[27] | Li ZW, Cui LT, Geng SG, Zhang YP ( 2007). Environmental factors affecting soil phosphorus desorption. Soil and Water Conservation in China, ( 6), 33-34. |
[ 李志伟, 崔力拓, 耿世刚, 张艳萍 ( 2007). 影响土壤磷素解吸的环境因素研究. 中国水土保持, ( 6), 33-34.] | |
[28] | Liu Q, Zheng X, Deng BL, Zheng LY, Huang LJ, Wang SL, Zhang L, Guo XM ( 2017). Effect of altitude on the phosphorus contents of soil and plant litter deposits in a Wugong Mountain meadow. Pratacultural Science, 34, 2183-2190. |
[ 刘倩, 郑翔, 邓邦良, 郑利亚, 黄立君, 王书丽, 张令, 郭晓敏 ( 2017). 武功山草甸不同海拔对土壤和植物凋落物磷含量的影响. 草业科学, 34, 2183-2190.] | |
[29] |
Liu Y, Villalba G, Ayres RU, Schroder H ( 2008). Global phosphorus flows and environmental impacts from a consumption perspective. Journal of Industrial Ecology, 12, 229-247.
DOI URL |
[30] | Lu ZQ, Huang QX, Yang XB ( 2014). Research on hydrological effects of forest litters and soil of Pinus tabuliformis plantations in the different altitudes of Wuling Mountains in Hebei. Journal of Soil and Water Conservation, 28, 112-116. |
[ 卢振启, 黄秋娴, 杨新兵 ( 2014). 河北雾灵山不同海拔油松人工林枯落物及土壤水文效应研究. 水土保持学报, 28, 112-116.] | |
[31] | Ma LM, Rena D, Zhang M, Zhao JF ( 2010). Phosphorus fractions and soil release in alternately waterlogged and drained environments at the water-fluctuation-zone of the Three Gorges Reservoir. Journal of Food Agriculture and Environment, 8, 1329-1335. |
[32] |
Marklein AR, Houlton BZ ( 2011). Nitrogen inputs accelerate phosphorus cycling rates across a wide variety of terrestrial ecosystems. New Phytologist, 193, 696-704.
DOI URL PMID |
[33] |
Moreira A, Moraes LAC, Zaninetti RA, Canizella BT ( 2013). Phosphorus dynamics in the conversion of a secondary forest into a rubber tree plantation in the Amazon rainforest. Soil Science, 178, 618-625.
DOI URL |
[34] |
Özgül M, Günes A, Esringü A, Turan M ( 2012). The effects of freeze-and-thaw cycles on phosphorus availability in highland soils in Turkey. Journal of Plant Nutrition and Soil Science, 175, 827-839.
DOI URL |
[35] | Prescott CE, Maynard DG, Laiho R ( 2000b). Humus in northern forests: Friend or foe? Forest Ecology and Management, 133, 23-36. |
[36] | Prescott CE, Zabek LM, Staley CL, Kabzems R ( 2000a). Decomposition of broadleaf and needle litter in forests of British Columbia: Influences of litter type, forest type, and litter mixtures. Canadian Journal of Forest Research, 30, 1742-1750. |
[37] | Qinghai Provincial Agricultural Resources Regionalization Office ( 1997). The Soil in Qinghai Province. China Agriculture Press, Beijing. |
[ 青海省农业资源区划办公室 ( 1997). 青海土壤. 中国农业出版社, 北京.] | |
[38] |
Reed SC, Yang XJ, Thornton PE ( 2015). Incorporating phosphorus cycling into global modeling efforts: A worthwhile, tractable endeavor. New Phytologist, 208, 324-329.
DOI URL PMID |
[39] |
Reich PB, Oleksyn J ( 2004). Global patterns of plant leaf N and P in relation to temperature and latitude. Proceedings of the National Academy of Sciences of the United States of America, 101, 11001-11006.
DOI URL PMID |
[40] | Ruttenberg KC ( 2003). The global phosphorus cycle. Treatise on Geochemistry, 585-643. |
[41] | Siebers N, Sumann M, Kaiser K, Amelung W ( 2017). Climatic effects on phosphorus fractions of native and cultivated north American grassland soils. Soil Science Society of America Journal, 81, 299-309. |
[42] | Smil V ( 2000). Phosphorus in the environment: Natural flows and human interferences. Annual Review of Energy and the Environment, 25, 53-88. |
[43] | Tang LT, Zi HB, Hu L, Ade LJ, Wang CT ( 2019). Forest biomass and its influencing factors in Qinghai Province. Acta Ecologica Sinica, 39, 3677-3686. |
[ 唐立涛, 字洪标, 胡雷, 阿的鲁骥, 王长庭 ( 2019). 青海省森林细根生物量及其影响因子. 生态学报, 39, 3677-3686.] | |
[44] | Vincent AG, Schleucher J, Gröbner G, Vestergren J, Persson P, Jansson M, Giesler R ( 2012). Changes in organic phosphorus composition in boreal forest humus soils: The role of iron and aluminium. Biogeochemistry, 108, 485-499. |
[45] | Vincent AG, Sundqvist MK, Wardle DA, Giesler R ( 2014). Bioavailable soil phosphorus decreases with increasing elevation in a subarctic tundra landscape. PLOS ONE, 9, e92942. DOI: 10.1371/journal.pone.0092942. |
[46] | Viscarra Rossel RA, Bui EN ( 2016). A new detailed map of total phosphorus stocks in Australian soil. Science of the Total Environment, 542, 1040-1049. |
[47] | Vitousek PM, Porder S, Houlton BZ, Chadwick OA ( 2010). Terrestrial phosphorus limitation: Mechanisms, implica- tions, and nitrogen-phosphorus interactions. Ecological Applications, 20, 5-15. |
[48] | Vogt KA, Grier CC, Vogt DJ ( 1986). Production, turnover, and nutrient dynamics of above-and belowground detritus of world forests. Advances in Ecological Research, 15, 303-377. |
[49] | Wan D, Liang B, Nie XG, Yu W, Zhang B ( 2018). Research on vertical zonation of soil physical properties in Sygera Mountain, Tibet. Acta Ecologica Sinica, 38, 1065-1074. |
[ 万丹, 梁博, 聂晓刚, 喻武, 张博 ( 2018). 西藏色季拉山土壤物理性质垂直地带性. 生态学报, 38, 1065-1074.] | |
[50] | Wang T, Yang YH, Ma WH ( 2008). Storage, patterns and environmental controls of soil phosphorus in China. Acta Scientiarum Naturalium Universitatis Pekinensis, 44, 945-952. |
[ 汪涛, 杨元合, 马文红 ( 2008). 中国土壤磷库的大小、分布及其影响因素. 北京大学学报(自然科学版), 44, 945-952.] | |
[51] | Wang WT, Tang XL, Huang M, Zhou GY, Yin GC, Wang JX, Wen DZ (2018). Carbon Storage of Forest Ecosystem in China—Dynamics and Mechanisms. Science Press, Beijing. |
[ 王万同, 唐旭利, 黄玫, 周国逸, 尹光彩, 王金霞, 温达志 (2018). 中国森林生态系统碳储量——动态及机制. 科学出版社, 北京.] | |
[52] | Wang X, Luo XP, Zi HB, Yang WG, Hu L, Wang CT ( 2019). Ecological stoichiometry characteristics of forest litter and its influencing factors in Qinghai Province. Acta Prataculturae Sinica, 28, 1-14. |
[ 王鑫, 罗雪萍, 字洪标, 杨文高, 胡雷, 王长庭 ( 2019). 青海森林凋落物生态化学计量特征及其影响因子. 草业学报, 28, 1-14.] | |
[53] | Wang YL, Zi HB, Cheng RX, Tang LT, Suoer A, Luo XP, Li J, Wang CT ( 2019). Forest soil organic carbon and nitrogen storage and characteristics of vertical distribution in Qinghai Province. Acta Ecologica Sinica, 39, 4096-4105. |
[ 王艳丽, 字洪标, 程瑞希, 唐立涛, 所尔阿芝, 罗雪萍, 李洁, 王长庭 ( 2019). 青海省森林土壤有机碳氮储量及其垂直分布特征. 生态学报, 39, 4096-4105.] | |
[54] | Wei LL, Chen CR, Xu ZH ( 2010). Citric acid enhances the mobilization of organic phosphorus in subtropical and tropical forest soils. Biology and Fertility of Soils, 46, 765-769. |
[55] | Wright RF ( 1998). Effect of increased carbon dioxide and temperature on runoff chemistry at a forested catchment in southern Norway (CLIMEX project). Ecosystems, 1, 216-225. |
[56] | Yuan ZY, Jiao F, Shi XR, Sardans J, Maestre FT, Delgado-Baquerizo M, Reich PB, Peñuelas J ( 2017). Experimental and observational studies find contrasting responses of soil nutrients to climate change. eLife, 6, e23255. DOI: 10.7554/eLife.23255. |
[57] | Yue K, Yang WQ, Peng Y, Peng CH, Tan B, Xu ZF, Zhang L, Ni XY, Zhou W, Wu FZ ( 2018). Individual and combined effects of multiple global change drivers on terrestrial phosphorus pools: A meta-analysis. Science of The Total Environment, 630, 181-188. |
[58] | Zhang C, Tian HQ, Liu JY, Wang SQ, Liu ML, Pan SF, Shi XZ ( 2005). Pools and distributions of soil phosphorus in China. Global Biogeochemical Cycles, 19, GB1020. DOI: 10.1029/2004GB002296. |
[59] | Zhang TD, Wang CK, Zhang QZ ( 2017). Vertical variation in stoichiometric relationships of soil carbon, nitrogen and phosphorus in five forest types in the Maoershan region, Northeast China. Chinese Journal of Applied Ecology, 28, 3135-3143. |
[ 张泰东, 王传宽, 张全智 ( 2017). 帽儿山5种林型土壤碳氮磷化学计量关系的垂直变化. 应用生态学报, 28, 3135-3143.] | |
[60] | Zheng SX, Shangguan ZP ( 2007). Spatial patterns of leaf nutrient traits of the plants in the Loess Plateau of China. Trees, 21, 357-370. |
[61] | Zheng YC, Gao SH, Zhong XH ( 1988). Soil in Siguniang Mountain region and its vertical distribution. Mountain Research, 6, 227-234. |
[ 郑远昌, 高生淮, 钟祥浩 ( 1988). 四姑娘山区土壤及其垂直分布. 山地研究, 6, 227-234.] | |
[62] | Zhou J, Bing HJ, Wu YH, Sun SQ, Luo J ( 2016). Variations in soil P biogeochemistry and its impact factors along an altitudinal gradient in the Yanzigou, eastern slope of the Gongga Mountain. Mountain Research, 34, 385-392. |
[ 周俊, 邴海健, 吴艳宏, 孙守琴, 罗辑 ( 2016). 贡嘎山燕子沟土壤磷海拔梯度特征及影响因素. 山地学报, 34, 385-392.] | |
[63] | Zi HB, Xiang ZY, Wang GX, Ade LJ, Wang CT ( 2017). Profile of soil microbial community under different stand types in Qinghai Province. Scientia Silvae Sinicae, 53(3), 21-32. |
[ 字洪标, 向泽宇, 王根绪, 阿的鲁骥, 王长庭 ( 2017). 青海不同林分土壤微生物群落结构(PLFA). 林业科学, 53(3), 21-32.] |
[1] | PAN Yuan-Fang, PAN Liang-Hao, QIU Si-Ting, QIU Guang-Long, SU Zhi-Nan, SHI Xiao-Fang, FAN Hang-Qing. Variations in tree height among mangroves and their environmental adaptive mechanisms in China’s coastal areas [J]. Chin J Plant Ecol, 2024, 48(4): 483-495. |
[2] | LI An-Yan, HUANG Xian-Fei, TIAN Yuan-Bin, DONG Ji-Xing, ZHENG Fei-Fei, XIA Pin-Hua. Chlorophyll a variation and its driving factors during phase shift from macrophyte- to phytoplankton-dominated states in Caohai Lake, Guizhou, China [J]. Chin J Plant Ecol, 2023, 47(8): 1171-1181. |
[3] | ZHAO Meng-Juan, JIN Guang-Ze, LIU Zhi-Li. Vertical variations in leaf functional traits of three typical ferns in mixed broadleaved- Korean pine forest [J]. Chin J Plant Ecol, 2023, 47(8): 1131-1143. |
[4] | YANG Li-Lin, XING Wan-Qiu, WANG Wei-Guang, CAO Ming-Zhu. Variation of sap flow rate of Cunninghamia lanceolata and its response to environmental factors in the source area of Xinʼanjiang River [J]. Chin J Plant Ecol, 2023, 47(4): 571-583. |
[5] | LI Xiao-Tian, WANG Tie-Juan, HAN Wen-Juan, ZHANG Li, ZHANG Hui, LIU Xiao-Ting, LIU Ya-Jie. Population structure and point pattern analysis of rare and endangered plant Potaninia mongolica in eastern Alxa, China [J]. Chin J Plant Ecol, 2023, 47(4): 506-514. |
[6] | ZHANG Xiao, WU Juan-Juan, JIA Guo-Dong, LEI Zi-Ran, ZHANG Long-Qi, LIU Rui, LÜ Xiang-Rong, DAI Yuan-Meng. Effects of precipitation variations on characteristics of sap flow and water source of Platycladus orientalis [J]. Chin J Plant Ecol, 2023, 47(11): 1585-1599. |
[7] | ZHAO Zhen-Xian, CHEN Yin-Ping, WANG Li-Long, WANG Tong-Tong, LI Yu-Qiang. Comparison on leaf construction cost of different plant groups in the desert area of the Hexi Corridor [J]. Chin J Plant Ecol, 2023, 47(11): 1551-1560. |
[8] | ZHENG Ning, LI Su-Ying, WANG Xin-Ting, LÜ Shi-Hai, ZHAO Peng-Cheng, ZANG Chen, XU Yu-Long, HE Jing, QIN Wen-Hao, GAO Heng-Rui. Dominance of different plant life forms in the typical steppe evidenced from impacts of environmental factors on chlorophyll [J]. Chin J Plant Ecol, 2022, 46(8): 951-960. |
[9] | PENG Xin, JIN Guang-Ze. Effects of plant characteristics and environmental factors on the dark diversity in a broadleaved Korean pine forest [J]. Chin J Plant Ecol, 2022, 46(6): 656-666. |
[10] | WANG Li-Shuang, TONG Xiao-Juan, MENG Ping, ZHANG Jin-Song, LIU Pei-Rong, LI Jun, ZHANG Jing-Ru, ZHOU Yu. Energy flux and evapotranspiration of two typical plantations in semi-arid area of western Liaoning, China [J]. Chin J Plant Ecol, 2022, 46(12): 1508-1522. |
[11] | HUANG Jie, LI Xiao-Ling, WANG Xue-Song, YANG Jin, HUANG Cheng-Ming. Characteristics of Distylium chinense communities and their relationships with soil environmental factors in different water level fluctuation zones of the Three Gorges Reservoir, China [J]. Chin J Plant Ecol, 2021, 45(8): 844-859. |
[12] | LUO Ming-Mo, CHEN Yue, YANG Gang, HU Bin, LI Wei, CHEN Huai. Short-term response of soil prokaryotic community structure to water level restoration in degraded peatland of the Zoigê Plateau [J]. Chin J Plant Ecol, 2021, 45(5): 552-561. |
[13] | WANG Zi-Wei, WAN Song-Ze, JIANG Hong-Mao, HU Yang, MA Shu-Qin, CHEN You-Chao, LU Xu-Yang. Soil enzyme activities and their influencing factors among different alpine grasslands on the Qingzang Plateau [J]. Chin J Plant Ecol, 2021, 45(5): 528-538. |
[14] | ZHAO Wen-Qin, XI Ben-Ye, LIU Jin-Qiang, LIU Yang, ZOU Song-Yan, SONG Wu-Ye, CHEN Li-Xin. Transpiration process and environmental response of poplar plantation under different irrigation conditions [J]. Chin J Plant Ecol, 2021, 45(4): 370-382. |
[15] | LI Yuan-Yuan, ZHANG Yun, KONG Zhao-Chen, YANG Zhen-Jing. Surface sporopollen and modern vegetation in Hongshanzui area, Altai, Xinjiang, China [J]. Chin J Plant Ecol, 2021, 45(2): 174-186. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn