Chin J Plant Ecol ›› 2019, Vol. 43 ›› Issue (1): 27-36.DOI: 10.17521/cjpe.2018.0155
Special Issue: 全球变化与生态系统
• Research Articles • Previous Articles Next Articles
WEN Xiao-Shi1,CHEN Bin-Hang1,ZHANG Shu-Bin1,XU Kai1,YE Xin-Yu1,NI Wei-Jie2,WANG Xiang-Ping1,*()
Received:
2018-07-05
Accepted:
2019-01-04
Online:
2019-01-20
Published:
2019-04-25
Contact:
WANG Xiang-Ping ORCID:0000-0001-8158-560X
Supported by:
WEN Xiao-Shi, CHEN Bin-Hang, ZHANG Shu-Bin, XU Kai, YE Xin-Yu, NI Wei-Jie, WANG Xiang-Ping. Relationships of radial growth with climate change in larch plantations of different stand ages and species[J]. Chin J Plant Ecol, 2019, 43(1): 27-36.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2018.0155
样地编号 Plot ID | 年平均气温 Annual mean air temperature (℃) | 年降水量 Annual precipitation (mm) | 树种 Tree species | 林龄 Stand age | 立地条件 Site quality | 林分密度 Stem density (tree·hm-2) | 蓄积量 Wood volume (m3·hm-2) | 平均胸径 Mean DBH (cm) |
---|---|---|---|---|---|---|---|---|
CHK01 | 5.71 | 874.84 | 黄花落叶松 L. olgensis | 77 | 好 Well | 570 | 294.56 | 22.72 |
CHK02 | 5.57 | 880.13 | 黄花落叶松 L. olgensis | 78 | 差 Poor | 990 | 324.91 | 19.72 |
CHK03 | 5.90 | 867.84 | 日本落叶松 L. kaempferi | 24 | 中 Good | 680 | 105.02 | 15.56 |
CHK04 | 5.97 | 865.17 | 日本落叶松 L. kaempferi | 25 | 差 Poor | 880 | 122.57 | 15.23 |
CHK05 | 5.78 | 869.58 | 日本落叶松 L. kaempferi | 69 | 中 Good | 540 | 442.54 | 26.93 |
CHK06 | 5.82 | 868.24 | 日本落叶松 L. kaempferi | 71 | 中 Good | 300 | 373.81 | 33.89 |
CHK07 | 6.15 | 858.84 | 日本落叶松 L. kaempferi | 21 | 好 Well | 580 | 108.62 | 17.14 |
CHK08 | 6.08 | 861.56 | 日本落叶松 L. kaempferi | 24 | 好 Well | 520 | 107.55 | 18.05 |
CHK09 | 5.89 | 868.66 | 黄花落叶松 L. olgensis | 21 | 好 Well | 620 | 157.50 | 18.95 |
CHK10 | 5.86 | 869.79 | 黄花落叶松 L. olgensis | 21 | 好 Well | 620 | 111.31 | 17.36 |
WDZ01 | 4.19 | 832.08 | 黄花落叶松 L. olgensis | 49 | 中 Good | 520 | 353.52 | 25.97 |
WDZ02 | 3.97 | 839.94 | 黄花落叶松 L. olgensis | 50 | 差 Poor | 540 | 322.13 | 26.26 |
WDZ03 | 3.74 | 848.05 | 日本落叶松 L. kaempferi | 73 | 好 Well | 1490 | 761.10 | 23.66 |
WDZ04 | 3.73 | 848.42 | 日本落叶松 L. kaempferi | 72 | 中 Good | 1090 | 608.39 | 24.09 |
WDZ05 | 3.74 | 844.35 | 日本落叶松 L. kaempferi | 23 | 好 Well | 1030 | 272.70 | 17.58 |
WDZ06 | 3.52 | 852.33 | 日本落叶松 L. kaempferi | 23 | 好 Well | 960 | 263.49 | 18.67 |
WDZ07 | 3.91 | 838.52 | 黄花落叶松 L. olgensis | 20 | 差 Poor | 1290 | 169.18 | 15.04 |
Table 1 Basic information of the study sites and stand structural characteristics of Larix olgensis and Larix kaempferi in Caohekou (CHK) and Wandianzi (WDZ)
样地编号 Plot ID | 年平均气温 Annual mean air temperature (℃) | 年降水量 Annual precipitation (mm) | 树种 Tree species | 林龄 Stand age | 立地条件 Site quality | 林分密度 Stem density (tree·hm-2) | 蓄积量 Wood volume (m3·hm-2) | 平均胸径 Mean DBH (cm) |
---|---|---|---|---|---|---|---|---|
CHK01 | 5.71 | 874.84 | 黄花落叶松 L. olgensis | 77 | 好 Well | 570 | 294.56 | 22.72 |
CHK02 | 5.57 | 880.13 | 黄花落叶松 L. olgensis | 78 | 差 Poor | 990 | 324.91 | 19.72 |
CHK03 | 5.90 | 867.84 | 日本落叶松 L. kaempferi | 24 | 中 Good | 680 | 105.02 | 15.56 |
CHK04 | 5.97 | 865.17 | 日本落叶松 L. kaempferi | 25 | 差 Poor | 880 | 122.57 | 15.23 |
CHK05 | 5.78 | 869.58 | 日本落叶松 L. kaempferi | 69 | 中 Good | 540 | 442.54 | 26.93 |
CHK06 | 5.82 | 868.24 | 日本落叶松 L. kaempferi | 71 | 中 Good | 300 | 373.81 | 33.89 |
CHK07 | 6.15 | 858.84 | 日本落叶松 L. kaempferi | 21 | 好 Well | 580 | 108.62 | 17.14 |
CHK08 | 6.08 | 861.56 | 日本落叶松 L. kaempferi | 24 | 好 Well | 520 | 107.55 | 18.05 |
CHK09 | 5.89 | 868.66 | 黄花落叶松 L. olgensis | 21 | 好 Well | 620 | 157.50 | 18.95 |
CHK10 | 5.86 | 869.79 | 黄花落叶松 L. olgensis | 21 | 好 Well | 620 | 111.31 | 17.36 |
WDZ01 | 4.19 | 832.08 | 黄花落叶松 L. olgensis | 49 | 中 Good | 520 | 353.52 | 25.97 |
WDZ02 | 3.97 | 839.94 | 黄花落叶松 L. olgensis | 50 | 差 Poor | 540 | 322.13 | 26.26 |
WDZ03 | 3.74 | 848.05 | 日本落叶松 L. kaempferi | 73 | 好 Well | 1490 | 761.10 | 23.66 |
WDZ04 | 3.73 | 848.42 | 日本落叶松 L. kaempferi | 72 | 中 Good | 1090 | 608.39 | 24.09 |
WDZ05 | 3.74 | 844.35 | 日本落叶松 L. kaempferi | 23 | 好 Well | 1030 | 272.70 | 17.58 |
WDZ06 | 3.52 | 852.33 | 日本落叶松 L. kaempferi | 23 | 好 Well | 960 | 263.49 | 18.67 |
WDZ07 | 3.91 | 838.52 | 黄花落叶松 L. olgensis | 20 | 差 Poor | 1290 | 169.18 | 15.04 |
样地 Plot | 树芯/株数 Number of cores/trees | 样芯长度 Length of series (a) | 用于气候分析 的年表长度 Chronology length for climate analysis (a) | 平均敏感度 Mean sensitivity | 标准偏差 Standard deviation | R1样本间平均相关系数 Mean correlations among all radii | 一阶自相 关系数 Autocorrelation order 1 | 信噪比 Signal-to- noise ratio | 样本总体 代表性 Express population signal | 第一主成分所占方差量 PCA1 (%) |
---|---|---|---|---|---|---|---|---|---|---|
CHK01 | 39/23 | 1950-2016 | 1986-2016 | 0.170 | 0.217 | 0.340 | 0.610 | 18.064 | 0.948 | 0.411 |
CHK02 | 63/34 | 1950-2016 | 1986-2016 | 0.199 | 0.250 | 0.431 | 0.586 | 38.694 | 0.975 | 0.463 |
CHK03 | 43/23 | 1996-2016 | 1996-2016 | 0.160 | 0.142 | 0.324 | -0.054 | 14.382 | 0.935 | 0.396 |
CHK04 | 46/23 | 1996-2016 | 1996-2016 | 0.165 | 0.151 | 0.395 | 0.244 | 20.857 | 0.954 | 0.432 |
CHK05 | 38/20 | 1956-2016 | 1986-2016 | 0.147 | 0.212 | 0.307 | 0.680 | 13.743 | 0.932 | 0.368 |
CHK06 | 49/27 | 1956-2016 | 1986-2016 | 0.154 | 0.167 | 0.242 | 0.449 | 13.431 | 0.931 | 0.283 |
CHK07 | 39/20 | 2002-2016 | 2002-2016 | 0.213 | 0.217 | 0.475 | 0.409 | 33.504 | 0.971 | 0.524 |
CHK08 | 38/20 | 2000-2016 | 2000-2016 | 0.151 | 0.145 | 0.285 | 0.142 | 15.149 | 0.938 | 0.354 |
CHK09 | 46/26 | 1989-2016 | 1989-2016 | 0.161 | 0.186 | 0.493 | 0.392 | 36.937 | 0.974 | 0.535 |
CHK10 | 40/22 | 1996-2016 | 1996-2016 | 0.181 | 0.239 | 0.603 | 0.491 | 51.739 | 0.981 | 0.639 |
WDZ01 | 40/22 | 1968-2016 | 1986-2016 | 0.200 | 0.199 | 0.414 | 0.267 | 24.718 | 0.961 | 0.464 |
WDZ02 | 41/21 | 1967-2016 | 1986-2016 | 0.225 | 0.220 | 0.501 | 0.246 | 36.094 | 0.973 | 0.533 |
WDZ03 | 62/36 | 1944-2016 | 1986-2016 | 0.204 | 0.211 | 0.313 | 0.349 | 26.460 | 0.964 | 0.347 |
WDZ04 | 44/24 | 1945-2016 | 1986-2016 | 0.166 | 0.178 | 0.284 | 0.247 | 11.489 | 0.920 | 0.329 |
WDZ05 | 64/34 | 1994-2016 | 1994-2016 | 0.143 | 0.150 | 0.278 | 0.273 | 20.824 | 0.954 | 0.332 |
WDZ06 | 42/28 | 1994-2016 | 1994-2016 | 0.154 | 0.155 | 0.430 | 0.100 | 26.446 | 0.964 | 0.470 |
WDZ07 | 81/43 | 1971-2016 | 1986-2016 | 0.253 | 0.278 | 0.247 | 0.448 | 20.714 | 0.954 | 0.308 |
样地 Plot | 树芯/株数 Number of cores/trees | 样芯长度 Length of series (a) | 用于气候分析 的年表长度 Chronology length for climate analysis (a) | 平均敏感度 Mean sensitivity | 标准偏差 Standard deviation | R1样本间平均相关系数 Mean correlations among all radii | 一阶自相 关系数 Autocorrelation order 1 | 信噪比 Signal-to- noise ratio | 样本总体 代表性 Express population signal | 第一主成分所占方差量 PCA1 (%) |
---|---|---|---|---|---|---|---|---|---|---|
CHK01 | 39/23 | 1950-2016 | 1986-2016 | 0.170 | 0.217 | 0.340 | 0.610 | 18.064 | 0.948 | 0.411 |
CHK02 | 63/34 | 1950-2016 | 1986-2016 | 0.199 | 0.250 | 0.431 | 0.586 | 38.694 | 0.975 | 0.463 |
CHK03 | 43/23 | 1996-2016 | 1996-2016 | 0.160 | 0.142 | 0.324 | -0.054 | 14.382 | 0.935 | 0.396 |
CHK04 | 46/23 | 1996-2016 | 1996-2016 | 0.165 | 0.151 | 0.395 | 0.244 | 20.857 | 0.954 | 0.432 |
CHK05 | 38/20 | 1956-2016 | 1986-2016 | 0.147 | 0.212 | 0.307 | 0.680 | 13.743 | 0.932 | 0.368 |
CHK06 | 49/27 | 1956-2016 | 1986-2016 | 0.154 | 0.167 | 0.242 | 0.449 | 13.431 | 0.931 | 0.283 |
CHK07 | 39/20 | 2002-2016 | 2002-2016 | 0.213 | 0.217 | 0.475 | 0.409 | 33.504 | 0.971 | 0.524 |
CHK08 | 38/20 | 2000-2016 | 2000-2016 | 0.151 | 0.145 | 0.285 | 0.142 | 15.149 | 0.938 | 0.354 |
CHK09 | 46/26 | 1989-2016 | 1989-2016 | 0.161 | 0.186 | 0.493 | 0.392 | 36.937 | 0.974 | 0.535 |
CHK10 | 40/22 | 1996-2016 | 1996-2016 | 0.181 | 0.239 | 0.603 | 0.491 | 51.739 | 0.981 | 0.639 |
WDZ01 | 40/22 | 1968-2016 | 1986-2016 | 0.200 | 0.199 | 0.414 | 0.267 | 24.718 | 0.961 | 0.464 |
WDZ02 | 41/21 | 1967-2016 | 1986-2016 | 0.225 | 0.220 | 0.501 | 0.246 | 36.094 | 0.973 | 0.533 |
WDZ03 | 62/36 | 1944-2016 | 1986-2016 | 0.204 | 0.211 | 0.313 | 0.349 | 26.460 | 0.964 | 0.347 |
WDZ04 | 44/24 | 1945-2016 | 1986-2016 | 0.166 | 0.178 | 0.284 | 0.247 | 11.489 | 0.920 | 0.329 |
WDZ05 | 64/34 | 1994-2016 | 1994-2016 | 0.143 | 0.150 | 0.278 | 0.273 | 20.824 | 0.954 | 0.332 |
WDZ06 | 42/28 | 1994-2016 | 1994-2016 | 0.154 | 0.155 | 0.430 | 0.100 | 26.446 | 0.964 | 0.470 |
WDZ07 | 81/43 | 1971-2016 | 1986-2016 | 0.253 | 0.278 | 0.247 | 0.448 | 20.714 | 0.954 | 0.308 |
Fig. 2 The trends of relationships between the radial growth of larch and air temperature in different seasons with increasing age of Caohekou and Wandianzi. A, Air temperature in summer of the previous year. B, Air temperature in autumn of the previous year. C, Air temperature in summer of the current year. D, Air temperature in autumn of the current year.
Fig. 3 Principal component analysis of ring width index of larch and air temperature (T), palmer drought severity index (PDSI) of Caohekou and Wandianzi. P designates the previous year, and C the current year. Spr, Sum, Aut and Win are abbreviations for spring, summer, autumn and winter, respectively.
变量 Variable | Comp. 1 | Comp. 2 | Comp. 3 | Comp. 4 |
---|---|---|---|---|
P_Sum_T | -0.253 | 0.361 | -0.318 | 0.233 |
P_Aut_T | -0.115 | 0.507 | -0.048 | 0.084 |
P_Win_T | -0.330 | -0.035 | 0.426 | 0.005 |
C_Spr_T | -0.310 | 0.134 | -0.427 | 0.167 |
C_Sum_T | -0.171 | 0.381 | 0.440 | -0.555 |
C_Aut _T | 0.146 | 0.427 | -0.353 | -0.445 |
P_Sum_PDSI | 0.219 | 0.405 | 0.212 | 0.475 |
P_Aut_PDSI | 0.291 | 0.261 | 0.363 | 0.356 |
P_Win_PDSI | 0.365 | 0.105 | -0.053 | -0.133 |
C_Spr_PDSI | 0.359 | 0.102 | 0.002 | -0.183 |
C_Sum_PDSI | 0.374 | -0.066 | -0.052 | -0.022 |
C_Aut_PDSI | 0.364 | -0.092 | -0.178 | 0.019 |
Table 3 Loading of seasonal climatic factors in each axis of the principal components of ring width index and air temperature, palmer drought severity index
变量 Variable | Comp. 1 | Comp. 2 | Comp. 3 | Comp. 4 |
---|---|---|---|---|
P_Sum_T | -0.253 | 0.361 | -0.318 | 0.233 |
P_Aut_T | -0.115 | 0.507 | -0.048 | 0.084 |
P_Win_T | -0.330 | -0.035 | 0.426 | 0.005 |
C_Spr_T | -0.310 | 0.134 | -0.427 | 0.167 |
C_Sum_T | -0.171 | 0.381 | 0.440 | -0.555 |
C_Aut _T | 0.146 | 0.427 | -0.353 | -0.445 |
P_Sum_PDSI | 0.219 | 0.405 | 0.212 | 0.475 |
P_Aut_PDSI | 0.291 | 0.261 | 0.363 | 0.356 |
P_Win_PDSI | 0.365 | 0.105 | -0.053 | -0.133 |
C_Spr_PDSI | 0.359 | 0.102 | 0.002 | -0.183 |
C_Sum_PDSI | 0.374 | -0.066 | -0.052 | -0.022 |
C_Aut_PDSI | 0.364 | -0.092 | -0.178 | 0.019 |
变量 Variable | 年降水量 Mean annual precipitation | 潜在蒸发量 Potential evapotranspiration | 林龄 Stand age | 林分密度 Stem density | 蓄积量 Wood volume | 立地条件 Site quality | 树种 Tree species |
---|---|---|---|---|---|---|---|
PCA1 | -0.522** | -0.722*** | 0.091 | 0.287* | 0.512** | 0.013 | 0.007 |
PCA2 | -0.087 | 0.000 | -0.660*** | 0.011 | -0.197 | 0.090 | 0.056 |
Table 4 The explanatory power of environmental factors and stand structural characteristics on the scores of PCA axes 1 and 2 of ring width index and air temperature, palmer drought severity index (R2)
变量 Variable | 年降水量 Mean annual precipitation | 潜在蒸发量 Potential evapotranspiration | 林龄 Stand age | 林分密度 Stem density | 蓄积量 Wood volume | 立地条件 Site quality | 树种 Tree species |
---|---|---|---|---|---|---|---|
PCA1 | -0.522** | -0.722*** | 0.091 | 0.287* | 0.512** | 0.013 | 0.007 |
PCA2 | -0.087 | 0.000 | -0.660*** | 0.011 | -0.197 | 0.090 | 0.056 |
PCA1 | PCA2 | |||||
---|---|---|---|---|---|---|
df | % SS | p | df | % SS | p | |
树种 Tree species | 1 | 0.729 | 0.535 | 1 | 5.567 | 0.167 |
林分密度 Stem density | 1 | 28.043 | 0.004** | 1 | 0.625 | 0.625 |
林龄 Stand age | 1 | 8.225 | 0.061 | 1 | 64.605 | 0.000*** |
蓄积量 Wood volume | 1 | 34.052 | 0.002** | 1 | 4.956 | 0.190 |
潜在蒸发量Potential evapotranspiration | 1 | 11.502 | 0.032* | 1 | 1.905 | 0.400 |
年降水量 Annual precipitation | 1 | 2.555 | 0.260 | 1 | 0.662 | 0.615 |
立地条件 Site quality | 2 | 1.012 | 0.755 | 2 | 2.356 | 0.631 |
残差 Residuals | 8 | 13.882 | 8 | 19.323 |
Supplement I Multiple regression analysis of the scores for PCA axes 1 and 2 of ring width index and air temperature, palmer drought severity index with environmental factors and stand structural characteristics
PCA1 | PCA2 | |||||
---|---|---|---|---|---|---|
df | % SS | p | df | % SS | p | |
树种 Tree species | 1 | 0.729 | 0.535 | 1 | 5.567 | 0.167 |
林分密度 Stem density | 1 | 28.043 | 0.004** | 1 | 0.625 | 0.625 |
林龄 Stand age | 1 | 8.225 | 0.061 | 1 | 64.605 | 0.000*** |
蓄积量 Wood volume | 1 | 34.052 | 0.002** | 1 | 4.956 | 0.190 |
潜在蒸发量Potential evapotranspiration | 1 | 11.502 | 0.032* | 1 | 1.905 | 0.400 |
年降水量 Annual precipitation | 1 | 2.555 | 0.260 | 1 | 0.662 | 0.615 |
立地条件 Site quality | 2 | 1.012 | 0.755 | 2 | 2.356 | 0.631 |
残差 Residuals | 8 | 13.882 | 8 | 19.323 |
PCA1 | PCA2 | |||||
---|---|---|---|---|---|---|
df | % SS | p | df | % SS | p | |
潜在蒸发量 Potential evapotranspiration | 1 | 72.170 | 0.000 2*** | 1 | 0.003 | 0.973 |
年降水量 Mean annual precipitation | 1 | 0.884 | 0.496 | 1 | 21.646 | 0.017* |
立地条件 Site quality | 2 | 1.122 | 0.733 | 2 | 13.291 | 0.123 |
树种 Tree species | 1 | 0.591 | 0.576 | 1 | 10.129 | 0.075 |
林分密度 Stem density | 1 | 0.212 | 0.736 | 1 | 1.219 | 0.498 |
林龄 Stand age | 1 | 7.990 | 0.064 | 1 | 27.443 | 0.009** |
蓄积量 Wood volume | 1 | 3.150 | 0.215 | 1 | 6.945 | 0.128 |
残差 Residuals | 8 | 13.881 | 8 | 19.323 |
Table 5 Multiple regression analysis of the scores for the PCA axes 1 and 2 of ring width index and air temperature, palmer drought severity index with environmental factors and stand structural characteristics
PCA1 | PCA2 | |||||
---|---|---|---|---|---|---|
df | % SS | p | df | % SS | p | |
潜在蒸发量 Potential evapotranspiration | 1 | 72.170 | 0.000 2*** | 1 | 0.003 | 0.973 |
年降水量 Mean annual precipitation | 1 | 0.884 | 0.496 | 1 | 21.646 | 0.017* |
立地条件 Site quality | 2 | 1.122 | 0.733 | 2 | 13.291 | 0.123 |
树种 Tree species | 1 | 0.591 | 0.576 | 1 | 10.129 | 0.075 |
林分密度 Stem density | 1 | 0.212 | 0.736 | 1 | 1.219 | 0.498 |
林龄 Stand age | 1 | 7.990 | 0.064 | 1 | 27.443 | 0.009** |
蓄积量 Wood volume | 1 | 3.150 | 0.215 | 1 | 6.945 | 0.128 |
残差 Residuals | 8 | 13.881 | 8 | 19.323 |
[1] |
Chang JF, Wang XP, Zhang XP, Lin X ( 2009). Alpine timberline dynamics in relation to climatic variability in the northern Daxing’an Mountains. Mountain Research, 6, 703-711.
DOI URL |
[ 常锦峰, 王襄平, 张新平, 林鑫 ( 2009). 大兴安岭北部大白山高山林线动态与气候变化的关系. 山地学报, 6, 703-711.]
DOI URL |
|
[2] |
D’Amato AW, Palik BJ ( 2013). Effects of thinning on drought vulnerability and climate response in north temperate forest ecosystems. Ecological Applications, 23, 1735-1742.
DOI URL PMID |
[3] | Dong HD ( 2011). Vegetation and Vegetation Division of Liaoning Province. Liaoning University Press, Shenyang. |
[ 董厚德 ( 2011). 辽宁植被与植被区划. 辽宁大学出版社, 沈阳.] | |
[4] | Fang JY ( 1992). Study on the geographic elements affecting temperature distribution in China. Acta Ecologica Sinica, 12, 97-104. |
[ 方精云 ( 1992). 地理要素对我国气温分布影响的数量评价. 生态学报, 12, 97-104.] | |
[5] |
Fang JY, Wang XP, Shen ZH, Tang ZY, He JS, Yu D, Jiang Y, Wang ZH, Zheng CY, Zhu JL, Guo ZD ( 2009). Methods and protocols for plant community inventory. Biodiversity Science, 17, 533-548.
DOI URL |
[ 方精云, 王襄平, 沈泽昊, 唐志尧, 贺金生, 于丹, 江源, 王志恒, 郑成洋, 朱江玲, 郭兆迪 ( 2009). 植物群落清查的主要内容、方法和技术规范. 生物多样性, 17, 533-548.]
DOI URL |
|
[6] |
Ferrero ME, Villalba R, Membiela MD, Ripalta A, Delgado S, Paolini L ( 2013). Tree-growth responses across environmental gradients in subtropical Argentinean forests. Plant Ecology, 214, 1321-1334.
DOI URL |
[7] | Fritts HC ( 1976). Tree rings and climate. Scientific American, 226, 95-99. |
[8] |
Goldblum D, Rigg LS ( 2005). Tree growth response to climate change at the deciduous boreal forest ecotone, Ontario, Canada. Canadian Journal of Forest Research, 35, 2709-2718.
DOI URL |
[9] | Holmes RL ( 1983). Computer-assisted quality control in tree-ring dating and measurement. Tree-Ring Bulletin, 43, 69-75. |
[10] |
Hu FS, Lee BY, Kaufman DS, Yoneji S, Nelson DM, Henne PD ( 2002). Response of tundra ecosystem in southwestern Alaska to Younger-Dryas climatic oscillation. Global Change Biology, 8, 1156-1163.
DOI URL |
[11] | Huang QX, Zhao Y, He Q ( 2013). Climatic characteristics in Central Asia based on CRU data. Arid Zone Research, 30, 396-403. |
[ 黄秋霞, 赵勇, 何清 ( 2013). 基于CRU资料的中亚地区气候特征. 干旱区研究, 30, 396-403.] | |
[12] |
Kramer K, Leinonen I, Loustau D ( 2000). The importance of phenology for the evaluation of impact of climate change on growth of boreal, temperate and Mediterranean forests ecosystems: An overview. International Journal of Biometeorology, 44, 67-75.
DOI URL PMID |
[13] |
Leal S, Melvin TM, Grabner M, Wimmer R, Briffa KR ( 2007). Tree-ring growth variability in the Austrian Alps: The influence of site, altitude, tree species and climate. Boreas, 36, 426-440.
DOI URL |
[14] |
Lévesque M, Siegwolf R, Saurer M, Eilmann B, Rigling A ( 2014). Increased water-use efficiency does not lead to enhanced tree growth under xeric and mesic conditions. New Phytologist, 203, 94-109.
DOI URL PMID |
[15] | Li JF ( 2000). Research and Application of Dendrohydrology. Science Press, Beijing. |
[ 李江风 ( 2000). 树木年轮水文学研究与应用. 科学出版社, 北京.] | |
[16] |
Liang PH, Wang XP, Wu YL, Xu K, Wu P, Guo X ( 2016). Growth responses of broad-leaf and Korean pine mixed forests at different successional stages to climate change in the Shengshan Nature Reserve of Heilongjiang Province, China. Chinese Journal of Plant Ecology, 40, 425-435.
DOI URL |
[ 梁鹏鸿, 王襄平, 吴玉莲, 徐凯, 吴鹏, 郭鑫 ( 2016). 黑龙江胜山保护区阔叶红松林不同演替阶段径向生长与气候变化的关系. 植物生态学报, 40, 425-435.]
DOI URL |
|
[17] |
Liu M, Mao ZY, Li Y, Sun T, Li XH, Huang W, Liu RP, Li YH ( 2016). Response of radial growth of Pinus koraiensis in broad-leaved Korean pine forests with different latitudes to climatical factors. Chinese Journal of Applied Ecology, 27, 1341-1352.
DOI URL |
[ 刘敏, 毛子军, 厉悦, 孙涛, 李兴欢, 黄唯, 刘瑞鹏, 李元昊 ( 2016). 不同纬度阔叶红松林红松径向生长对气候因子的响应. 应用生态学报, 27, 1341-1352.]
DOI URL |
|
[18] |
Mérian P, Lebourgeois F ( 2011). Size-mediated climat-growth relationships in temperate forests: A multi-species analysis. Forest Ecology & Management, 261, 1382-1391.
DOI URL |
[19] |
Mitchell TD, Jones PD ( 2005). An improved method of constructing a database of monthly climate observations and associated high-resolution grids. International Journal of Climatology, 25, 693-712.
DOI URL |
[20] | Primicia I, Camarero JJ, Janda P, Čada V ( 2015). Age, competition, disturbance and elevation effects on tree and stand growth response of primary Picea abies forest to climate. Forest Ecology and Management, 354, 77-86. |
[21] | Qi Y, Wang B, Huang JB ( 2014). Application of CRU dataset to calculation of ET0 of Heilongjiang Province. Journal of Hehai University (Natural Sciences), 42, 367-371. |
[ 戚颖, 王斌, 黄金柏 ( 2014). CRU数据集在黑龙江省ET0计算中的应用. 河海大学学报(自然科学版), 42, 367-371.] | |
[22] | Rais A, Kuilen JWGV, Pretzsch H ( 2014 a). Growth reaction patterns of tree height, diameter, and volume of Douglas-?fir (Pseudotsuga menziesii( Mirb.) Franco) under acute drought stress in Southern Germany. European Journal of Forest Research, 133, 1043-1056. |
[23] | Rais A, Poschenrieder W, Pretzsch H, Kuilen JWGV ( 2014 b). Influence of initial plant density on sawn timber properties for Douglas-fir (Pseudotsuga menziesii( Mirb.) Franco). Annals of Forest Science, 71, 617-626. |
[24] |
Ryan MG, Yoder BJ ( 1997). Hydraulic limits to tree height and tree growth. Bioscience, 47, 235-242.
DOI URL |
[25] |
Schuster R, Oberhuber W ( 2013). Drought sensitivity of three co-occurring conifers within a dry inner alpine environment. Trees, 27, 61-69.
DOI URL |
[26] | Stokes MA ( 1996). An Introduction to Tree-Ring Dating. University of Arizona Press, Tucson, USA. |
[27] | Wang XC, Zhang YD, Mcrae DJ ( 2009). Spatial and age-?dependent tree-ring growth responses of Larix gmelinii to climate in northeastern China. Trees, 23, 875-885. |
[28] | Wang XP, Fang JY, Tang ZY, Zhu B ( 2006). Climatic control of primary forest structure and DBH-height allometry in Northeast China. Forest Ecology & Management, 234, 264-274. |
[29] |
Webb II T ( 2001). Past global changes and their significance for the future. Journal of Paleolimnology, 26, 227-229.
DOI URL |
[30] | Wu XD ( 1990). Application of tree ring analysis to the study on environment variation. Quaternary Sciences, 2, 188-196. |
[ 吴祥定 ( 1990). 树木年轮分析在环境变化研究中的应用. 第四纪研究, 2, 188-196.] | |
[31] | Wu YL, Wang XP, Ouyang S, Xu K, Hawkins BA, Sun OJ ( 2017). A test of BIOME-BGC with dendrochronology for forests along the altitudinal gradient of Mt. Changbai in Northeast China. Journal of Plant Ecology, 10, 415-425. |
[32] |
Xu K, Wang XP, Liang PH, An HL, Sun H, Han W, Li QY ( 2017). Tree-ring widths are good proxies of annual variation in forest productivity in temperate forests. Scientific Report, 7, 1945. DOI: 10.1038/s41598-017-02022-6.
DOI URL |
[33] | Yu GR, Liu YB, Wang XC, Ma KP ( 2008). Age-dependent tree-ring growth responses to climate in Qilian juniper (Sabina przewalskii Kom.). Trees, 22, 197-204. |
[34] | Zeng FP, Chi GY, Chen X, Shi Y ( 2016). The stoichiometric characteristics of C, N and P in soil and root of larch (Larix spp.) plantation at different stand ages in mountainous region of eastern Liaoning Province, China. Chinese Journal of Ecology, 35, 1819-1825. |
[ 曾凡鹏, 迟光宇, 陈欣, 史奕 ( 2016). 辽东山区不同林龄落叶松人工林土壤-根系C:N:P生态化学计量特征. 生态学杂志, 35, 1819-1825.] | |
[35] | Zeng LB, Wang XP, Chang JF, Lin X, Wu YL, Yin WL ( 2012). Alpine timberline ecotone tree growth in relation to climatic variability for Picea crassifolia forests in the middle Qilian Mountains, northwestern China. Journal of Beijing Forestry University, 34(5), 50-56. |
[ 曾令兵, 王襄平, 常锦峰, 林鑫, 吴玉莲, 尹伟伦 ( 2012). 祁连山中段青海云杉高山林线交错区树轮宽度与气候变化的关系. 北京林业大学学报, 34(5), 50-56.] |
[1] | HU Wan,ZHANG Zhi-Yong,CHEN Lu-Dan,PENG Yan-Song,WANG Xu. Changes in potential geographical distribution of Tsoongiodendron odorum since the Last Glacial Maximum [J]. Chin J Plant Ecol, 2020, 44(1): 44-55. |
[2] | FANG Wen-Jing, CAI Qiong, ZHU Jiang-Ling, JI Cheng-Jun, YUE Ming, GUO Wei-Hua, ZHANG Feng, GAO Xian-Ming, TANG Zhi-Yao, FANG Jing-Yun. Distribution, community structures and species diversity of larch forests in North China [J]. Chin J Plant Ecol, 2019, 43(9): 742-752. |
[3] | Ya-Lin XIE, Hai-Yan WANG, Xiang-Dong LEI. Effects of climate change on net primary productivity in Larix olgensis plantations based on process modeling [J]. Chin J Plan Ecolo, 2017, 41(8): 826-839. |
[4] | Yao LI, Xing-Wang ZHANG, Yan-Ming FANG. Responses of the distribution pattern of Quercus chenii to climate change following the Last Glacial Maximum [J]. Chin J Plant Ecol, 2016, 40(11): 1164-1178. |
[5] | YU Jian,XU Qian-Qian,LIU Wen-Hui,LUO Chun-Wang,YANG Jun-Long,LI Jun-Qing,LIU Qi-Jing. Response of radial growth to climate change for Larix olgensis along an altitudinal gradient on the eastern slope of Changbai Mountain, Northeast China [J]. Chin J Plan Ecolo, 2016, 40(1): 24-35. |
[6] | ZHANG Yan,ZHANG Dan-Ju,ZHANG Jian,YANG Wan-Qin,DENG Chang-Chun,LI Jian-Ping,LI Xun,TANG Shi-Shan,ZHANG Ming-Jin. Effects of forest gap size on litter recalcitrant components of two tree species in Pinus massoniana plantations [J]. Chin J Plan Ecolo, 2015, 39(8): 785-796. |
[7] | MA Song-Mei, NIE Ying-Bin, GENG Qing-Long, WANG Rong-Xue. Impact of climate change on suitable distribution range and spatial pattern in Amygdalus mongolica [J]. Chin J Plant Ecol, 2014, 38(3): 262-269. |
[8] | LENG Wen-Fang, HE Hong-Shi, BU Ren-Cang, HU Yuan-Man. SENSITIVITY ANALYSIS OF THE IMPACTS OF CLIMATE CHANGE ON POTENTIAL DISTRIBUTION OF THREE LARCH (LARIX) SPECIES IN NORTHEASTERN CHINA [J]. Chin J Plant Ecol, 2007, 31(5): 825-833. |
[9] | SUN Zhi-Hu, MU Chang-Cheng. THE ESTIMATE OF FINE ROOT BIOMASS IN UPPER SOIL LAYER OF LARIX OLGENSIS PLANTATION BY GEOSTATISTICS METHOD [J]. Chin J Plant Ecol, 2006, 30(5): 771-779. |
[10] | LEI Bo, BAO Wei-Kai, JIA Yu. GROUND BRYOPHYTE COMPOSITION AND SYNUSIA STRUCTURE UNDER SIX TYPES OF YOUNG CONIFEROUS FOREST PLANTATIONS IN THE UPPER MINJIANG RIVER [J]. Chin J Plan Ecolo, 2004, 28(5): 594-600. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn