植物生态学报 ›› 2021, Vol. 45 ›› Issue (10): 1094-1111.DOI: 10.17521/cjpe.2020.0154
所属专题: 全球变化与生态系统; 生态系统结构与功能; 生物多样性
收稿日期:
2020-05-18
接受日期:
2020-10-14
出版日期:
2021-10-20
发布日期:
2020-10-16
通讯作者:
井新
作者简介:
E-mail: jingxin0123@gmail.com基金资助:
JING Xin1,*(), HE Jin-Sheng2,3
Received:
2020-05-18
Accepted:
2020-10-14
Online:
2021-10-20
Published:
2020-10-16
Contact:
JING Xin
Supported by:
摘要:
近10年来, 生物多样性与生态系统多功能性(BEMF)的关系是生物多样性与生态系统功能领域新兴的热点研究方向。生态系统多功能性是指生态系统同时提供多重生态系统功能的能力, 受到群落和生态系统生态学研究者的广泛关注。该文简要回顾了生物多样性与生态系统多功能性关系研究历史, 侧重介绍了生态系统多功能性量化方法发展历程, 并总结了生物多样性与生态系统多功能性研究的主要趋势, 包括生物多样性维度、时空尺度和全球变化驱动因子等对生态系统多功能性的影响。同时, 回顾了近5年生物多样性与生态系统多功能性关系研究的新方法、新方向; 根据生态系统服务和生态系统功能的区别, 提出了生态系统多服务性(ecosystem multiserviceability, EMS)概念。最后简要介绍了生物多样性与生态系统多功能性、生物多样性与生态系统多服务性(BEMS)研究存在的不足及对未来的展望。
井新, 贺金生. 生物多样性与生态系统多功能性和多服务性的关系: 回顾与展望. 植物生态学报, 2021, 45(10): 1094-1111. DOI: 10.17521/cjpe.2020.0154
JING Xin, HE Jin-Sheng. Relationship between biodiversity, ecosystem multifunctionality and multiserviceability: literature overview and research advances. Chinese Journal of Plant Ecology, 2021, 45(10): 1094-1111. DOI: 10.17521/cjpe.2020.0154
序号 No. | 参考文献 Reference | 文献总结 Summary |
---|---|---|
Dooley et al., | 该文在多样性-种间关系模型(Kirwan et al., This study proposes a multivariate modelling framework (Multivariate Diversity-Interactions) based on the diversity- interaction approach (Kirwan et al., | |
Gamfeldt & Roger, | 该文研究了平均值法和阈值法在量化生物多样性和生态系统多功能性关系方面存在的缺陷, 提请研究者注意。 This study finds several limitations and pitfalls of the averaging and threshold-based approaches, which should be taken caution quantifying biodiversity and ecosystem multifunctionality relationships. | |
Manning et al., | 该文提出了区分生态系统功能-多功能性和生态系统服务-多功能性, 为多功能性量化方法的开发以及基础和应用生态学的结合提供了蓝图。 Ecosystem-function multifunctionality and ecosystem-service multifunctionality are proposed to redefine ecosystem multifunctionality, which provides a road map to develop multifunctionality indices that are more robust, quantifiable and relevant to both basic and applied ecology. | |
Mori et al., | 尤其是β多样性为理解多样性变化的因(群落构建过程)和果(生态系统功能)具有重要意义。 This study highlights the importance of β-diversity on ecosystem functioning, which provides a link between the processes of community assembly and ecosystem functioning due to biodiversity change. | |
Giling et al., | 该文提出了一个概念框架来加强全球变化和生态系统多功能性等方面的研究。 This work provides a conceptual framework to enhance global change research by incorporating the concept of ecosystem multifunctionality. | |
Hölting et al., | 该文系统综述了评估生态系统多功能性的文献, 主要对多功能性的概念、特征和量化方法进行了系统回顾。 This is a quantitative literature review, which systematically reviews the concept, characteristics and quantification in the literature. |
表1 近5年发表的生物多样性与生态系统多功能性综述类文献
Table 1 Key synthetic references in the field of biodiversity and ecosystem multifunctionality published in the past five years
序号 No. | 参考文献 Reference | 文献总结 Summary |
---|---|---|
Dooley et al., | 该文在多样性-种间关系模型(Kirwan et al., This study proposes a multivariate modelling framework (Multivariate Diversity-Interactions) based on the diversity- interaction approach (Kirwan et al., | |
Gamfeldt & Roger, | 该文研究了平均值法和阈值法在量化生物多样性和生态系统多功能性关系方面存在的缺陷, 提请研究者注意。 This study finds several limitations and pitfalls of the averaging and threshold-based approaches, which should be taken caution quantifying biodiversity and ecosystem multifunctionality relationships. | |
Manning et al., | 该文提出了区分生态系统功能-多功能性和生态系统服务-多功能性, 为多功能性量化方法的开发以及基础和应用生态学的结合提供了蓝图。 Ecosystem-function multifunctionality and ecosystem-service multifunctionality are proposed to redefine ecosystem multifunctionality, which provides a road map to develop multifunctionality indices that are more robust, quantifiable and relevant to both basic and applied ecology. | |
Mori et al., | 尤其是β多样性为理解多样性变化的因(群落构建过程)和果(生态系统功能)具有重要意义。 This study highlights the importance of β-diversity on ecosystem functioning, which provides a link between the processes of community assembly and ecosystem functioning due to biodiversity change. | |
Giling et al., | 该文提出了一个概念框架来加强全球变化和生态系统多功能性等方面的研究。 This work provides a conceptual framework to enhance global change research by incorporating the concept of ecosystem multifunctionality. | |
Hölting et al., | 该文系统综述了评估生态系统多功能性的文献, 主要对多功能性的概念、特征和量化方法进行了系统回顾。 This is a quantitative literature review, which systematically reviews the concept, characteristics and quantification in the literature. |
图1 全球变化因子对生物多样性和生态系统功能和服务关系的调控作用。生物多样性和生态系统多功能性研究者常关注: 多个全球变化因子, 如气候变化、土地利用变化和氮沉降等对不同维度的生物多样性(如分类、功能和谱系多样性)、 生态系统功能和服务直接和间接影响。
Fig. 1 A conceptual framework illustrating the influences of global change drivers on biodiversity-ecosystem functioning relationships and biodiversity-ecosystem service relationships. In the literature of biodiversity and ecosystem multifunctionality research, investigators often focus on the direct and indirect impacts of multiple global changes drivers (e.g., climate change, land use and nitrogen deposition) on multiple dimensions of biodiversity (taxonomic, functional, and phylogenetic diversity), ecosystem functions and services.
图3 生态系统多服务性的计算方法。参考Manning等(2018)的方案, 以草地4种生态系统服务为例, 分别是牧草供给服务(S1)、生物多样性保护(S2)、水保护(S3)和碳固持(S4)服务。其中, 生态系统供给按照图中给出的供给-收益关系转化为生态系统服务; 生态系统多服务性按照不同利益相关群体的权重加和得到。
Fig. 3 An example quantifying ecosystem multiserviceability. We show four grassland ecosystem services including forage provision (S1), biodiversity conservation (S2), water conservation (S3) and carbon sequestration (S4) (Referenced from Manning et al. (2018)). Ecosystem services are derived through the supply-benefit relationships and ecosystem service multifunctionality is then calculated based on different weighting scenarios of stakeholder groups.
[1] |
Allan E, Manning P, Alt F, Binkenstein J, Blaser S, Blüthgen N, Böhm S, Grassein F, Hölzel N, Klaus VH, Kleinebecker T, Morris EK, Oelmann Y, Prati D, Renner SC, et al. (2015). Land use intensification alters ecosystem multifunctionality via loss of biodiversity and changes to functional composition. Ecology Letters, 18, 834-843.
DOI PMID |
[2] |
Alsterberg C, Roger F, Sundbäck K, Juhanson J, Hulth S, Hallin S, Gamfeldt L (2017). Habitat diversity and ecosystem multifunctionality-The importance of direct and indirect effects. Science Advances, 3, e1601475. DOI: 10.1126/sciadv.1601475.
DOI URL |
[3] |
Alsterberg C, Sundbäck K, Gamfeldt L (2014). Multiple stressors and multifunctionality: limited effects on an illuminated benthic system. Biology Letters, 10, 20140640. DOI: 10.1098/rsbl.2014.0640.
DOI PMID |
[4] |
Antiqueira PAP, Petchey OL, Romero GQ (2018). Warming and top predator loss drive ecosystem multifunctionality. Ecology Letters, 21, 72-82.
DOI PMID |
[5] |
Anujan K, Heilpern SA, Prager CM, Weeks BC, Naeem S (2021). Trophic complexity alters the diversity- multifunctionality relationship in experimental grassland mesocosms. Ecology and Evolution, 11, 6471-6479.
DOI URL |
[6] |
Baeten L, Bruelheide H, van der Plas F, Kambach S, Ratcliffe S, Jucker T, Allan E, Ampoorter E, Barbaro L, Bastias CC, Bauhus J, Benavides R, Bonal D, Bouriaud O, Bussotti F, et al. (2019). Identifying the tree species compositions that maximize ecosystem functioning in European forests. Journal of Applied Ecology, 56, 733-744.
DOI URL |
[7] |
Barnes AD, Jochum M, Lefcheck JS, Eisenhauer N, Scherber C, O’Connor MI de Ruiter P, Brose U (2018). Energy flux: the link between multitrophic biodiversity and ecosystem functioning. Trends in Ecology & Evolution, 33, 186-197.
DOI URL |
[8] |
Bastida F, Torres IF, Moreno JL, Baldrian P, Ondoño S, Ruiz-Navarro A, Hernández T, Richnow HH, Starke R, García C, Jehmlich N (2016). The active microbial diversity drives ecosystem multifunctionality and is physiologically related to carbon availability in Mediterranean semi-arid soils. Molecular Ecology, 25, 4660-4673.
DOI PMID |
[9] |
Bengtsson J, Bullock JM, Egoh B, Everson C, Everson T, OʼConnor T, OʼFarrell PJ, Smith HG, Lindborg R (2019). Grasslands-More important for ecosystem services than you might think. Ecosphere, 10, e02582. DOI: 10.1002/ ecs2.2582.
DOI URL |
[10] |
Berdugo M, Kéfi S, Soliveres S, Maestre FT (2017). Plant spatial patterns identify alternative ecosystem multifunctionality states in global drylands. Nature Ecology & Evolution, 1, 0003. DOI: 10.1038/s41559-016-0003.
DOI |
[11] |
Blanchet FG, Cazelles K, Gravel D (2020). Co-occurrence is not evidence of ecological interactions. Ecology Letters, 23, 1050-1063.
DOI URL |
[12] |
Blesh J (2018). Functional traits in cover crop mixtures: biological nitrogen fixation and multifunctionality. Journal of Applied Ecology, 55, 38-48.
DOI URL |
[13] |
Bradford MA, Wood SA, Bardgett RD, Black HIJ, Bonkowski M, Eggers T, Grayston SJ, Kandeler E, Manning P, Setälä H, Jones TH (2014). Reply to Byrnes et al.: aggregation can obscure understanding of ecosystem multifunctionality. Proceedings of the National Academy of Sciences of the United States of America, 115, E5491. DOI: 10.1073/pnas.1421203112.
DOI |
[14] | Brandl SJ, Rasher DB, Côté IM, Casey JM, Darling ES, Lefcheck JS, Duffy JE (2019). Coral reef ecosystem functioning: eight core processes and the role of biodiversity. Frontiers in Ecology and the Environment, 17, 445-454. |
[15] |
Byers JE, Sotka EE (2019). Promoting invasive species to enhance multifunctionality in a native ecosystem still requires strong(er) scrutiny. Biological Invasions, 21, 277- 280.
DOI |
[16] |
Byrnes JEK, Gamfeldt L, Isbell F, Lefcheck JS, Griffin JN, Hector A, Cardinale BJ, Hooper DU, Dee LE, Emmett Duffy J (2014). Investigating the relationship between biodiversity and ecosystem multifunctionality: challenges and solutions. Methods in Ecology and Evolution, 5, 111- 124.
DOI URL |
[17] |
Cadotte MW, Livingstone SW, Yasui SLE, Dinnage R, Li JT, Marushia R, Santangelo J, Shu W (2017). Explaining ecosystem multifunction with evolutionary models. Ecology, 98, 3175-3187.
DOI PMID |
[18] | Cai Y, Lv GH, He XM, Jiang LM, Wang HF, Teng DX (2019). Study on the multifunctionality and species diversity of grassland ecosystem under different land-uses. Agricultural Research in the Arid Areas, 37, 200-210. |
[ 蔡艳, 吕光辉, 何学敏, 蒋腊梅, 王恒方, 滕德雄 (2019). 不同利用方式下草地生态系统的多功能性与物种多样性. 干旱地区农业研究, 37, 200-210.] | |
[19] | Cardinale BJ, Duffy JE, Gonzalez A, Hooper DU, Perrings C, Venail P, Narwani A, Mace GM, Tilman D, Wardle DA, Kinzig AP, Daily GC, Loreau M, Grace JB, Larigauderie A, Srivastava DS, Naeem S (2012). Biodiversity loss and its impact on humanity. Nature, 486, 59-67. |
[20] |
Chandregowda MH, Murthy K, Bagchi S (2018). Woody shrubs increase soil microbial functions and multifunctionality in a tropical semi-arid grazing ecosystem. Journal of Arid Environments, 155, 65-72.
DOI URL |
[21] |
Chase JM, McGill BJ, McGlinn DJ, May F, Blowes SA, Xiao X, Knight TM, Purschke O, Gotelli NJ (2018). Embracing scale-dependence to achieve a deeper understanding of biodiversity and its change across communities. Ecology Letters, 21, 1737-1751.
DOI URL |
[22] |
Chen QL, Ding J, Zhu D, Hu HW, Delgado-Baquerizo M, Ma YB, He JZ, Zhu YG (2020). Rare microbial taxa as the major drivers of ecosystem multifunctionality in long-term fertilized soils. Soil Biology & Biochemistry, 141, 107686. DOI: 10.1016/j.soilbio.2019.107686.
DOI URL |
[23] |
Cruz-Alonso V, Ruiz-Benito P, Villar-Salvador P, Rey-Benayas JM (2019). Long-term recovery of multifunctionality in Mediterranean forests depends on restoration strategy and forest type. Journal of Applied Ecology, 56, 745-757.
DOI |
[24] | Csardi G, Nepusz T (2006). The igraph software package for complex network research. InterJournal Complex Systems, 1695(5), 1-9. |
[25] |
de Bello F, Lavorel S, Díaz S, Harrington R, Cornelissen JHC, Bardgett RD, Berg MP, Cipriotti P, Feld CK, Hering D, Martins da Silva P, Potts SG, Sandin L, Sousa JP, Storkey J, Wardle DA, Harrison PA (2010). Towards an assessment of multiple ecosystem processes and services via functional traits. Biodiversity and Conservation, 19, 2873-2893.
DOI URL |
[26] |
Delgado-Baquerizo M, Maestre FT, Eldridge DJ, Bowker MA, Ochoa V, Gozalo B, Berdugo M, Val J, Singh BK (2016b). Biocrust-forming mosses mitigate the negative impacts of increasing aridity on ecosystem multifunctionality in drylands. New Phytologist, 209, 1540-1552.
DOI URL |
[27] |
Delgado-Baquerizo M, Maestre FT, Reich PB, Jeffries TC, Gaitan JJ, Encinar D, Berdugo M, Campbell CD, Singh BK (2016a). Microbial diversity drives multifunctionality in terrestrial ecosystems. Nature Communications, 7, 10541. DOI: 10.1038/ncomms10541.
DOI URL |
[28] |
Delgado-Baquerizo M, Trivedi P, Trivedi C, Eldridge DJ, Reich PB, Jeffries TC, Singh BK (2017). Microbial richness and composition independently drive soil multifunctionality. Functional Ecology, 31, 2330-2343.
DOI URL |
[29] |
Dooley Á, Isbell F, Kirwan L, Connolly J, Finn JA, Brophy C (2015). Testing the effects of diversity on ecosystem multifunctionality using a multivariate model. Ecology Letters, 18, 1242-1251.
DOI URL |
[30] |
Duffy JE, Godwin CM, Cardinale BJ (2017). Biodiversity effects in the wild are common and as strong as key drivers of productivity. Nature, 549, 261-264.
DOI URL |
[31] |
Durán J, Delgado-Baquerizo M, Dougill AJ, Guuroh RT, Linstädter A, Thomas AD, Maestre FT (2018). Temperature and aridity regulate spatial variability of soil multifunctionality in drylands across the globe. Ecology, 99, 1184-1193.
DOI URL |
[32] |
Eisenhauer N, Hines J, Isbell F, van der Plas F, Hobbie SE, Kazanski CE, Lehmann A, Liu M, Lochner A, Rillig MC, Vogel A, Worm K, Reich PB (2018). Plant diversity maintains multiple soil functions in future environments. eLife, 7, e41228. DOI: 10.7554/eLife.41228.
DOI URL |
[33] | Fanin N, Gundale MJ, Farrell M, Ciobanu M, Baldock JA, Nilsson MC, Kardol P, Wardle DA (2018). Consistent effects of biodiversity loss on multifunctionality across contrasting ecosystems. Nature Ecology & Evolution, 2, 269-278. |
[34] |
Fierer N, Leff JW, Adams BJ, Nielsen UN, Bates ST, Lauber CL, Owens S, Gilbert JA, Wall DH, Caporaso JG (2012). Cross-biome metagenomic analyses of soil microbial communities and their functional attributes. Proceedings of the National Academy of Sciences of the United States of America, 109, 21390-21395.
DOI PMID |
[35] |
Fry EL, Savage J, Hall AL, Oakley S, Pritchard WJ, Ostle NJ, Pywell RF, Bullock JM, Bardgett RD (2018). Soil multifunctionality and drought resistance are determined by plant structural traits in restoring grassland. Ecology, 99, 2260-2271.
DOI URL |
[36] |
Gaines LAG, Olds AD, Henderson CJ, Connolly RM, Schlacher TA, Jones TR, Gilby BL (2020). Linking ecosystem condition and landscape context in the conservation of ecosystem multifunctionality. Biological Conservation, 243, 108479. DOI: 10.1016/j.biocon.2020.108479.
DOI URL |
[37] |
Gamfeldt L, Hillebrand H, Jonsson PR (2008). Multiple functions increase the importance of biodiversity for overall ecosystem functioning. Ecology, 89, 1223-1231.
PMID |
[38] |
Gamfeldt L, Roger F (2017). Revisiting the biodiversity-ecosystem multifunctionality relationship. Nature Ecology & Evolution, 1, 0168. DOI: 10.1038/s41559-017-0168.
DOI |
[39] |
Giling DP, Beaumelle L, Phillips HRP, Cesarz S, Eisenhauer N, Ferlian O, Gottschall F, Guerra C, Hines J, Sendek A, Siebert J, Thakur MP, Barnes AD (2019). A niche for ecosystem multifunctionality in global change research. Global Change Biology, 25, 763-774.
DOI URL |
[40] |
Gonzalez A, Germain RM, Srivastava DS, Filotas E, Dee LE, Gravel D, Thompson PL, Isbell F, Wang S, Kéfi S, Montoya J, Zelnik YR, Loreau M (2020). Scaling-up biodiversity-ecosystem functioning research. Ecology Letters, 23, 757-776.
DOI PMID |
[41] |
Gossner MM, Lewinsohn TM, Kahl T, Grassein F, Boch S, Prati D, Birkhofer K, Renner SC, Sikorski J, Wubet T, Arndt H, Baumgartner V, Blaser S, Blüthgen N, Börschig C, et al. (2016). Land-use intensification causes multitrophic homogenization of grassland communities. Nature, 540, 266-269.
DOI URL |
[42] |
Gotelli NJ, Ulrich W, Maestre FT (2011). Randomization tests for quantifying species importance to ecosystem function. Methods in Ecology and Evolution, 2, 634-642.
DOI URL |
[43] |
Grass I, Kubitza C, Krishna VV, Corre MD, Mußhoff O, Pütz P, Drescher J, Rembold K, Ariyanti ES, Barnes AD, Brinkmann N, Brose U, Brümmer B, Buchori D, Daniel R, et al. (2020). Trade-offs between multifunctionality and profit in tropical smallholder landscapes. Nature Communications, 11, 1186. DOI: 10.1038/s41467-020-15013-5.
DOI PMID |
[44] |
Grman E, Zirbel CR, Bassett T, Brudvig LA (2018). Ecosystem multifunctionality increases with beta diversity in restored prairies. Oecologia, 188, 837-848.
DOI URL |
[45] |
Gross N, Le Bagousse-Pinguet Y, Liancourt P, Berdugo M, Gotelli NJ, Maestre FT (2017). Functional trait diversity maximizes ecosystem multifunctionality. Nature Ecology & Evolution, 1, 0132. DOI: 10.1038/s41559-017-0132.
DOI |
[46] | Hautier Y, Isbell F, Borer ET, Seabloom EW, Harpole WS, Lind EM, MacDougall AS, Stevens CJ, Adler PB, Alberti J, Bakker JD, Brudvig LA, Buckley YM, Cadotte M, Caldeira MC, et al. (2018). Local loss and spatial homogenization of plant diversity reduce ecosystem multifunctionality. Nature Ecology & Evolution, 2, 50-56. |
[47] |
He JZ, Ge Y, Xu ZH, Chen CR (2009). Linking soil bacterial diversity to ecosystem multifunctionality using backward-elimination boosted trees analysis. Journal of Soils and Sediments, 9, 547-554.
DOI URL |
[48] |
Hector A, Bagchi R (2007). Biodiversity and ecosystem multifunctionality. Nature, 448, 188-190.
DOI URL |
[49] |
Hector A, Schmid B, Beierkuhnlein C, Caldeira MC, Diemer M, Dimitrakopoulos PG, Finn JA, Freitas H, Giller PS, Good J, Harris R, Hӧgberg P, Huss-Danell K, Joshi J, Jumpponen A, et al. (1999). Plant diversity and productivity experiments in European grasslands. Science, 286, 1123-1127.
PMID |
[50] |
Hertzog LR, Boonyarittichaikij R, Dekeukeleire D de Groote SRE, van Schrojenstein Lantman IM, Sercu BK, Smith HK, de la Pena E, Vandegehuchte ML, Bonte D, Martel A, Verheyen K, Lens L, Baeten L (2019). Forest fragmentation modulates effects of tree species richness and composition on ecosystem multifunctionality. Ecology, 100, e02653. DOI: 10.1002/ecy.2653.
DOI |
[51] |
Hölting L, Beckmann M, Volk M, Cord AF (2019a). Multifunctionality assessments-More than assessing multiple ecosystem functions and services? A quantitative literature review. Ecological Indicators, 103, 226-235.
DOI URL |
[52] |
Hölting L, Jacobs S, Felipe-Lucia MR, Maes J, Norström AV, Plieninger T, Cord AF (2019b). Measuring ecosystem multifunctionality across scales. Environmental Research Letters, 14, 124083. DOI: 10.1088/1748-9326/ab5ccb.
DOI URL |
[53] |
Hooper DU, Adair EC, Cardinale BJ, Byrnes JEK, Hungate BA, Matulich KL, Gonzalez A, Duffy JE, Gamfeldt L, O’Connor MI (2012). A global synthesis reveals biodiversity loss as a major driver of ecosystem change. Nature, 486, 105-108.
DOI URL |
[54] |
Hooper DU, Chapin III FS, Ewel JJ, Hector A, Inchausti P, Lavorel S, Lawton JH, Lodge DM, Loreau M, Naeem S, Schmid B, Setälä H, Symstad AJ, Vandermeer J, Wardle DA (2005). Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecological Monographs, 75, 3-35.
DOI URL |
[55] |
Hooper DU, Vitousek PM (1998). Effects of plant composition and diversity on nutrient cycling. Ecological Monographs, 68, 121-149.
DOI URL |
[56] |
Hu A, Wang JJ, Sun H, Niu B, Si GC, Wang J, Yeh CF, Zhu XX, Lu XC, Zhou JZ, Yang YP, Ren ML, Hu YL, Dong HL, Zhang GX (2020). Mountain biodiversity and ecosystem functions: interplay between geology and contemporary environments. The ISME Journal, 14, 931-944.
DOI URL |
[57] |
Huang XB, Su JR, Li SF, Liu WD, Lang XD (2019). Functional diversity drives ecosystem multifunctionality in a Pinus yunnanensis natural secondary forest. Scientific Reports, 9, 6979. DOI: 10.1038/s41598-019-43475-1.
DOI URL |
[58] |
Isbell F, Calcagno V, Hector A, Connolly J, Stanley Harpole W, Reich PB, Scherer-Lorenzen M, Schmid B, Tilman D, van Ruijven J, Weigelt A, Wilsey BJ, Zavaleta ES, Loreau M (2011). High plant diversity is needed to maintain ecosystem services. Nature, 477, 199-202.
DOI URL |
[59] |
Isbell F, Cowles J, Dee LE, Loreau M, Reich PB, Gonzalez A, Hector A, Schmid B (2018). Quantifying effects of biodiversity on ecosystem functioning across times and places. Ecology Letters, 21, 763-778.
DOI URL |
[60] |
Isbell F, Gonzalez A, Loreau M, Cowles J, Díaz S, Hector A, Mace GM, Wardle DA, OʼConnor MI, Duffy JE, Turnbull LA, Thompson PL, Larigauderie A (2017). Linking the influence and dependence of people on biodiversity across scales. Nature, 546, 65-72.
DOI URL |
[61] |
Jiao S, Du N, Zai X, Gao X, Chen W, Wei G (2019). Temporal dynamics of soil bacterial communities and multifunctionality are more sensitive to introduced plants than to microbial additions in a multicontaminated soil. Land Degradation & Development, 30, 852-865.
DOI URL |
[62] |
Jing X, Prager CM, Classen AT, Maestre FT, He JS, Sanders NJ (2020). Variation in the methods leads to variation in the interpretation of biodiversity-ecosystem multifunctionality relationships. Journal of Plant Ecology, 13, 431-441.
DOI URL |
[63] |
Jing X, Sanders NJ, Shi Y, Chu HY, Classen AT, Zhao K, Chen LT, Shi Y, Jiang YX, He JS (2015). The links between ecosystem multifunctionality and above- and belowground biodiversity are mediated by climate. Nature Communications, 6, 8159. DOI: 10.1038/ncomms9159.
DOI PMID |
[64] |
Kirwan L, Connolly J, Finn JA, Brophy C, Lüscher A, Nyfeler D, Sebastià MT (2009). Diversity-interaction modeling: estimating contributions of species identities and interactions to ecosystem function. Ecology, 90, 2032-2038.
PMID |
[65] |
Kirwan L, Lüscher A, Sebastia M, Finn J, Collins R, Porqueddu C, Helgadottir A, Baadshaug O, Brophy C, Coran C (2007). Evenness drives consistent diversity effects in intensive grassland systems across 28 European sites. Journal of Ecology, 95, 530-539.
DOI URL |
[66] |
Kurtz ZD, Müller CL, Miraldi ER, Littman DR, Blaser MJ, Bonneau RA (2015). Sparse and compositionally robust inference of microbial ecological networks. PLOS Computational Biology, 11, e1004226. DOI: 10.1371/journal. pcbi.1004226.
DOI URL |
[67] |
Ladau J, Shi Y, Jing X, He JS, Chen L, Lin X, Fierer N, Gilbert JA, Pollard KS, Chu H (2018). Existing climate change will lead to pronounced shifts in the diversity of soil prokaryotes. mSystems, 3, e00167-18. DOI: 10.1128/mSystems.00167-18.
DOI |
[68] |
Lavorel S, Grigulis K, Lamarque P, Colace MP, Garden D, Girel J, Pellet G, Douzet R (2011). Using plant functional traits to understand the landscape distribution of multiple ecosystem services. Journal of Ecology, 99, 135-147.
DOI URL |
[69] |
Le Bagousse-Pinguet Y, Soliveres S, Gross N, Torices R, Berdugo M, Maestre FT (2019). Phylogenetic, functional, and taxonomic richness have both positive and negative effects on ecosystem multifunctionality. Proceedings of the National Academy of Sciences of the United States of America, 116, 8419-8424.
DOI PMID |
[70] |
Lefcheck JS, Byrnes JEK, Isbell F, Gamfeldt L, Griffin JN, Eisenhauer N, Hensel MJS, Hector A, Cardinale BJ, Duffy JE (2015). Biodiversity enhances ecosystem multifunctionality across trophic levels and habitats. Nature Communications, 6, 6936. DOI: 10.1038/ncomms7936.
DOI URL |
[71] |
Lei LJ, Kong DL, Li XM, Zhou ZX, Li GY (2016). Plant functional traits, functional diversity, and ecosystem functioning: current knowledge and perspectives. Biodiversity Science, 24, 922-931.
DOI URL |
[ 雷羚洁, 孔德良, 李晓明, 周振兴, 李国勇 (2016). 植物功能性状、功能多样性与生态系统功能: 进展与展望. 生物多样性, 24, 922-931.]
DOI |
|
[72] | Li H, Chen Y, Yu G, Rossi F, Huo D de Philippis R, Cheng X, Wang W, Li R (2019). Multifaceted diversity traits of crucial microbial groups in biological soil crusts promote soil multifunctionality. Global Ecology and Biogeography, 30, 1024-1217. |
[73] |
Li JP, Zheng ZR, Zhao NX, Gao YB (2016). Relationship between ecosystem multifunctionality and species diversity in grassland ecosystems under land-use types of clipping, enclosure and grazing. Chinese Journal of Plant Ecology, 40, 735-747.
DOI URL |
[ 李静鹏, 郑志荣, 赵念席, 高玉葆 (2016). 刈割、围封、放牧三种利用方式下草原生态系统的多功能性与植物物种多样性之间的关系. 植物生态学报, 40, 735-747.]
DOI |
|
[74] |
Liang YT, Pei M, Wang DD, Cao SN, Xiao X, Sun B (2017). Improvement of soil ecosystem multifunctionality by dissipating manure-induced antibiotics and resistance genes. Environmental Science & Technology, 51, 4988-4998.
DOI URL |
[75] |
Liu T, Chen XY, Gong X, Lubbers IM, Jiang YY, Feng W, Li XP, Whalen JK, Bonkowski M, Griffiths BS, Hu F, Liu MQ (2019). Earthworms coordinate soil biota to improve multiple ecosystem functions. Current Biology, 29, 3420- 3429.
DOI URL |
[76] | Liu Y (2015). Plant Diversity and Ecosystem Multifunctionality in Constructed Wetlands. Master degree dissertation, Zhejiang University, Hangzhou. |
[ 刘阳 (2015). 人工湿地中植物多样性与生态系统多功能性. 硕士学位论文, 浙江大学, 杭州.] | |
[77] |
Liu YR, Delgado-Baquerizo M, Trivedi P, He JZ, Wang JT, Singh BK (2017). Identity of biocrust species and microbial communities drive the response of soil multifunctionality to simulated global change. Soil Biology & Biochemistry, 107, 208-217.
DOI URL |
[78] |
Lohbeck M, Bongers F, Martinez-Ramos M, Poorter L (2016). The importance of biodiversity and dominance for multiple ecosystem functions in a human-modified tropical landscape. Ecology, 97, 2772-2779.
DOI URL |
[79] |
Loreau M, Naeem S, Inchausti P, Bengtsson J, Grime JP, Hector A, Hooper DU, Huston MA, Raffaelli D, Schmid B, Tilman D, Wardle DA (2001). Biodiversity and ecosystem functioning: current knowledge and future challenges. Science, 294, 804-808.
PMID |
[80] |
Luo GW, Rensing C, Chen H, Liu MQ, Wang M, Guo SW, Ling N, Shen QR (2018). Deciphering the associations between soil microbial diversity and ecosystem multifunctionality driven by long-term fertilization management. Functional Ecology, 32, 1103-1116.
DOI URL |
[81] |
Luo GW, Wang TT, Li KS, Li L, Zhang JW, Guo SW, Ling N, Shen QR (2019). Historical nitrogen deposition and straw addition facilitate the resistance of soil multifunctionality to drying-wetting cycles. Applied and Environmental Microbiology, 85, e02251-18. DOI: 10.1128/AEM.02251-18.
DOI |
[82] |
Ma WH, He JS, Yang YH, Wang XP, Liang CZ, Anwar M, Zeng H, Fang JY, Schmid B (2010). Environmental factors covary with plant diversity-productivity relationships among Chinese grassland sites. Global Ecology and Biogeography, 19, 233-243.
DOI URL |
[83] |
Maestre FT, Castillo-Monroy AP, Bowker MA, Ochoa-Hueso R (2012b). Species richness effects on ecosystem multifunctionality depend on evenness, composition and spatial pattern. Journal of Ecology, 100, 317-330.
DOI URL |
[84] |
Maestre FT, Quero JL, Gotelli NJ, Escudero A, Ochoa V, Delgado-Baquerizo M, Garcia-Gomez M, Bowker MA, Soliveres S, Escolar C, Garcia-Palacios P, Berdugo M, Valencia E, Gozalo B, Gallardo A, et al. (2012a). Plant species richness and ecosystem multifunctionality in global drylands. Science, 335, 214-218.
DOI URL |
[85] | Manning P, van der Plas F, Soliveres S, Allan E, Maestre FT, Mace G, Whittingham MJ, Fischer M (2018). Redefining ecosystem multifunctionality. Nature Ecology & Evolution, 2, 427-436. |
[86] |
Martinez-Almoyna C, Thuiller W, Chalmandrier L, Ohlmann M, Foulquier A, Clément JC, Zinger L, Münkemüller T (2019). Multi-trophic β-diversity mediates the effect of environmental gradients on the turnover of multiple ecosystem functions. Functional Ecology, 33, 2053-2064.
DOI |
[87] |
Maynard DS, Crowther TW, Bradford MA (2017). Competitive network determines the direction of the diversity-function relationship. Proceedings of the National Academy of Sciences of the United States of America, 114, 11464-11469.
DOI PMID |
[88] |
Melillo JM, Frey SD, DeAngelis KM, Werner WJ, Bernard MJ, Bowles FP, Pold G, Knorr MA, Grandy AS (2017). Long-term pattern and magnitude of soil carbon feedback to the climate system in a warming world. Science, 358, 101-105.
DOI PMID |
[89] | Meyer ST, Ptacnik R, Hillebrand H, Bessler H, Buchmann N, Ebeling A, Eisenhauer N, Engels C, Fischer M, Halle S, Klein AM, Oelmann Y, Roscher C, Rottstock T, Scherber C, et al. (2018). Biodiversity-multifunctionality relationships depend on identity and number of measured functions. Nature Ecology & Evolution, 2, 44-49. |
[90] |
Mori AS, Isbell F, Fujii S, Makoto K, Matsuoka S, Osono T (2016). Low multifunctional redundancy of soil fungal diversity at multiple scales. Ecology Letters, 19, 249-259.
DOI URL |
[91] |
Mori AS, Isbell F, Seidl R (2018). β-diversity, community assembly, and ecosystem functioning. Trends in Ecology & Evolution, 33, 549-564.
DOI URL |
[92] |
Mouillot D, Villéger S, Scherer-Lorenzen M, Mason NWH (2011). Functional structure of biological communities predicts ecosystem multifunctionality. PLOS ONE, 6, e17476. DOI: 10.1371/journal.pone.0017476.
DOI URL |
[93] |
Pan Y, Wu JX, Luo LM, Tu YL, Yu CQ, Zhang XZ, Miao YJ, Zhao Y, Yang JL (2017). Climatic and geographic factors affect ecosystem multifunctionality through biodiversity in the Tibetan alpine grasslands. Journal of Mountain Science, 14, 1604-1614.
DOI URL |
[94] |
Pasari JR, Levi T, Zavaleta ES, Tilman D (2013). Several scales of biodiversity affect ecosystem multifunctionality. Proceedings of the National Academy of Sciences of the United States of America, 110, 10219-10222.
DOI PMID |
[95] |
Peay KG, Dickie IA, Wardle DA, Bellingham PJ, Fukami T (2013). Rat invasion of islands alters fungal community structure, but not wood decomposition rates. Oikos, 122, 258-264.
DOI URL |
[96] |
Peay KG, Kennedy PG, Talbot JM (2016). Dimensions of biodiversity in the Earth mycobiome. Nature Reviews Microbiology, 14, 434-447.
DOI URL |
[97] |
Peco B, Navarro E, Carmona CP, Medina NG, Marques MJ (2017). Effects of grazing abandonment on soil multifunctionality: the role of plant functional traits. Agriculture, Ecosystems & Environment, 249, 215-225.
DOI URL |
[98] |
Perkins DM, Bailey R, Dossena M, Gamfeldt L, Reiss J, Trimmer M, Woodward G (2015). Higher biodiversity is required to sustain multiple ecosystem processes across temperature regimes. Global Change Biology, 21, 396-406.
DOI PMID |
[99] | Ramus AP, Silliman BR, Thomsen MS, Long ZT (2017). An invasive foundation species enhances multifunctionality in a coastal ecosystem. Proceedings of the National Academy of Sciences of the United States of America, 114, 8580- 8585. |
[100] |
Ratcliffe S, Wirth C, Jucker T, van der Plas F, Scherer-Lorenzen M, Verheyen K, Allan E, Benavides R, Bruelheide H, Ohse B (2017). Biodiversity and ecosystem functioning relations in European forests depend on environmental context. Ecology Letters, 20, 1414-1426.
DOI PMID |
[101] |
Ren HY, Eviner VT, Gui WY, Wilson GWT, Cobb AB, Yang GW, Zhang YJ, Hu SJ, Bai YF (2018). Livestock grazing regulates ecosystem multifunctionality in semi-arid grassland. Functional Ecology, 32, 2790-2800.
DOI URL |
[102] |
Robroek BJM, Jassey VEJ, Beltman B, Hefting MM (2017). Diverse fen plant communities enhance carbon-related multifunctionality, but do not mitigate negative effects of drought. Royal Society Open Science, 4, 170449. DOI: 10.1098/rsos.170449.
DOI PMID |
[103] |
Roger F, Bertilsson S, Langenheder S, Osman OA, Gamfeldt L (2016). Effects of multiple dimensions of bacterial diversity on functioning, stability and multifunctionality. Ecology, 97, 2716-2728.
DOI URL |
[104] |
Schuldt A, Assmann T, Brezzi M, Buscot F, Eichenberg D, Gutknecht J, Härdtle W, He JS, Klein AM, Kühn P, Liu XJ, Ma KP, Niklaus PA, Pietsch KA, Purahong W, et al. (2018). Biodiversity across trophic levels drives multifunctionality in highly diverse forests. Nature Communications, 9, 2989. DOI: 10.1038/s41467-018-05421-z.
DOI URL |
[105] |
Sircely J, Naeem S (2012). Biodiversity and ecosystem multi-functionality: observed relationships in smallholder fallows in western Kenya. PLOS ONE, 7, e50152. DOI: 10.1371/journal.pone.0050152.
DOI URL |
[106] |
Slade EM, Bagchi R, Keller N, Philipson CD (2019). When do more species maximize more ecosystem services? Trends in Plant Science, 24, 790-793.
DOI URL |
[107] |
Slade EM, Kirwan L, Bell T, Philipson CD, Lewis OT, Roslin T (2017). The importance of species identity and interactions for multifunctionality depends on how ecosystem functions are valued. Ecology, 98, 2626-2639.
DOI URL |
[108] |
Slade EM, Roslin T (2016). Dung beetle species interactions and multifunctionality are affected by an experimentally warmed climate. Oikos, 125, 1607-1616.
DOI URL |
[109] |
Soliveres S, Manning P, Prati D, Gossner MM, Alt F, Arndt H, Baumgartner V, Binkenstein J, Birkhofer K, Blaser S, Blüthgen N, Boch S, Bӧhm S, Bӧrschig C, Buscot F, et al. (2016a). Locally rare species influence grassland ecosystem multifunctionality. Philosophical Transactions of the Royal Society B: Biological Sciences, 371, 20150269. DOI: 10.1098/rstb.2015.0269.
DOI URL |
[110] |
Soliveres S, van der Plas F, Manning P, Prati D, Gossner MM, Renner SC, Alt F, Arndt H, Baumgartner V, Binkenstein J, Birkhofer K, Blaser S, Blüthgen N, Boch S, Bӧhm S, et al. (2016b). Biodiversity at multiple trophic levels is needed for ecosystem multifunctionality. Nature, 536, 456-459.
DOI URL |
[111] |
Sotka EE, Byers JE (2019). Not so fast: promoting invasive species to enhance multifunctionality in a native ecosystem requires strong(er) scrutiny. Biological Invasions, 21, 19-25.
DOI |
[112] |
Stürck J, Verburg PH (2017). Multifunctionality at what scale? A landscape multifunctionality assessment for the European union under conditions of land use change. Landscape Ecology, 32, 481-500.
DOI URL |
[113] | Talbot JM, Bruns TD, Taylor JW, Smith DP, Branco S, Glassman SI, Erlandson S, Vilgalys R, Liao HL, Smith ME, Peay KG (2014). Endemism and functional convergence across the north American soil mycobiome. Proceedings of the National Academy of Sciences of the United States of America, 111, 6341-6346. |
[114] |
Thompson PL, Gonzalez A (2016). Ecosystem multifunctionality in metacommunities. Ecology, 97, 2867-2879.
DOI PMID |
[115] |
Thomsen MS, Ramus AP, Long ZT, Silliman BR (2019). A seaweed increases ecosystem multifunctionality when invading bare mudflats. Biological Invasions, 21, 27-36.
DOI |
[116] |
Tilman D, Isbell F, Cowles JM (2014). Biodiversity and ecosystem functioning. Annual Review of Ecology, Evolution, and Systematics, 45, 471-493.
DOI URL |
[117] |
Valencia E, Gross N, Quero JL, Carmona CP, Ochoa V, Gozalo B, Delgado-Baquerizo M, Dumack K, Hamonts K, Singh BK, Bonkowski M, Maestre FT (2018). Cascading effects from plants to soil microorganisms explain how plant species richness and simulated climate change affect soil multifunctionality. Global Change Biology, 24, 5642-5654.
DOI PMID |
[118] | van der Plas F (2019). Biodiversity and ecosystem functioning in naturally assembled communities. Biological Reviews of the Cambridge Philosophical Society, 94, 1220-1245. |
[119] | van der Plas F, Manning P, Soliveres S, Allan E, Scherer- Lorenzen M, Verheyen K, Wirth C, Zavala MA, Ampoorter E, Baeten L, Barbaro L, Bauhus J, Benavides R, Benneter A, Bonal D, et al. (2016). Biotic homogenization can decrease landscape-scale forest multifunctionality. Proceedings of the National Academy of Sciences of the United States of America, 113, 3557-3562. |
[120] | Wagg C, Bender SF, Widmer F,van der Heijden MGA (2014). Soil biodiversity and soil community composition determine ecosystem multifunctionality. Proceedings of the National Academy of Sciences of the United States of America, 111, 5266-5270. |
[121] |
Wagg C, Schlaeppi K, Banerjee S, Kuramae EE,van der Heijden MGA (2019). Fungal-bacterial diversity and microbiome complexity predict ecosystem functioning. Nature Communications, 10, 4841. DOI: 10.1038/s41467-019- 12798-y.
DOI URL |
[122] | Wang L, Delgado-Baquerizo M, Wang D, Isbell F, Liu J, Feng C, Liu JS, Zhong ZW, Zhu H, Yuan X, Chang Q, Liu C (2019). Diversifying livestock promotes multidiversity and multifunctionality in managed grasslands. Proceedings of the National Academy of Sciences of the United States of America, 116, 6187-6192. |
[123] |
Wang X, Li FY, Wang Y, Liu X, Cheng J, Zhang J, Baoyin T, Bardgett RD (2020). High ecosystem multifunctionality under moderate grazing is associated with high plant but low bacterial diversity in a semi-arid steppe grassland. Plant and Soil, 448, 265-276.
DOI URL |
[124] |
Washbourne CL, Goddard MA, Le Provost G, Manning DAC, Manning P (2020). Trade-offs and synergies in the ecosystem service demand of urban brownfield stakeholders. Ecosystem Services, 42, 101074. DOI: 10.1016/j.ecoser. 2020.101074.
DOI URL |
[125] |
Wen Z, Zheng H, Zhao H, Xie SL, Liu L, Ouyang ZY (2020). Land-use intensity indirectly affects soil multifunctionality via a cascade effect of plant diversity on soil bacterial diversity. Global Ecology and Conservation, 23, e01061. DOI: 10.1016/j.gecco.2020.e01061.
DOI URL |
[126] | Xiong DP, Zhao GS, Wu JS, Shi PL, Zhang XZ (2016). The relationship between species diversity and ecosystem multifunctionality in alpine grasslands on the Tibetan Changtang Plateau. Acta Ecologica Sinica, 36, 3362-3371. |
[ 熊定鹏, 赵广帅, 武建双, 石培礼, 张宪洲 (2016). 羌塘高寒草地物种多样性与生态系统多功能关系格局. 生态学报, 36, 3362-3371.] | |
[127] |
Xu W, Jing X, Ma ZY, He JS (2016a). A review on the measurement of ecosystem multifunctionality. Biodiversity Science, 24, 72-84.
DOI URL |
[ 徐炜, 井新, 马志远, 贺金生 (2016a). 生态系统多功能性的测度方法. 生物多样性, 24, 72-84.] | |
[128] |
Xu W, Ma ZY, Jing X, He JS (2016b). Biodiversity and ecosystem multifunctionality: advances and perspectives. Biodiversity Science, 24, 55-71.
DOI URL |
[ 徐炜, 马志远, 井新, 贺金生 (2016b). 生物多样性与生态系统多功能性: 进展与展望. 生物多样性, 24, 55-71.] | |
[129] |
Yan YZ, Zhang Q, Buyantuev A, Liu QF, Niu JM (2020). Plant functional β diversity is an important mediator of effects of aridity on soil multifunctionality. The Science of the Total Environment, 726, 138529. DOI: 10.1016/j.scitotenv. 2020.138529.
DOI URL |
[130] |
Ye JS, Delgado-Baquerizo M, Soliveres S, Maestre FT (2019). Multifunctionality debt in global drylands linked to past biome and climate. Global Change Biology, 25, 2152-2161.
DOI URL |
[131] |
Yuan ZQ, Ali A, Ruiz-Benito P, Jucker T, Mori AS, Wang SP, Zhang XK, Li H, Hao ZQ, Wang XG, Loreau M (2020). Above- and belowground biodiversity jointly regulate temperate forest multifunctionality along a local-scale environmental gradient. Journal of Ecology, 108, 2012- 2024.
DOI URL |
[132] |
Zavaleta ES, Pasari JR, Hulvey KB, Tilman GD (2010). Sustaining multiple ecosystem functions in grassland communities requires higher biodiversity. Proceedings of the National Academy of Sciences of the United States of America, 107, 1443-1446.
DOI PMID |
[133] |
Zhang B, Liang AZ, Wei ZB, Ding XL (2019). No-tillage leads to a higher resistance but a lower resilience of soil multifunctionality than ridge tillage in response to dry-wet disturbances. Soil and Tillage Research, 195, 104376. DOI: 10.1016/j.still.2019.104376.
DOI URL |
[134] |
Zhang GZ, Kou XC, Zhang XK, Bai W, Liang WJ (2020). Effect of row spacings on soil nematode communities and ecosystem multifunctionality at an aggregate scale. Scientific Reports, 10, 4779. DOI: 10.1038/s41598-020- 61498-x.
DOI URL |
[135] |
Zhang J, Eldridge DJ, Delgado-Baquerizo M (2016a). Biotic communities cannot mitigate the negative effects of grazing on multiple ecosystem functions and services in an arid shrubland. Plant and Soil, 401, 381-395.
DOI URL |
[136] |
Zhang K, Shi Y, Jing X, He JS, Sun R, Yang Y, Shade A, Chu H (2016b). Effects of short-term warming and altered precipitation on soil microbial communities in alpine grassland of the Tibetan Plateau. Frontiers in Microbiology, 7, 1032. DOI: 10.3389/fmicb.2016.01032.
DOI |
[137] |
Zheng Q, Hu YT, Zhang SS, Noll L, Bӧckle T, Dietrich M, Herbold CW, Eichorst SA, Woebken D, Richter A, Wanek W (2019). Soil multifunctionality is affected by the soil environment and by microbial community composition and diversity. Soil Biology & Biochemistry, 136, 107521. DOI: 10.1016/j.soilbio.2019.107521.
DOI URL |
[138] |
Zirbel CR, Grman E, Bassett T, Brudvig LA (2019). Landscape context explains ecosystem multifunctionality in restored grasslands better than plant diversity. Ecology, 100, e02634. DOI: 10.1002/ecy.2634.
DOI |
[1] | 陈保冬, 付伟, 伍松林, 朱永官. 菌根真菌在陆地生态系统碳循环中的作用[J]. 植物生态学报, 2024, 48(1): 1-20. |
[2] | 张中扬, 宋希强, 任明迅, 张哲. 附生维管植物生境营建作用的生态学功能[J]. 植物生态学报, 2023, 47(7): 895-911. |
[3] | 杨佳绒, 戴冬, 陈俊芳, 吴宪, 刘啸林, 刘宇. 丛枝菌根真菌多样性对植物群落构建和稀有种维持的研究进展[J]. 植物生态学报, 2023, 47(6): 745-755. |
[4] | 吕自立, 刘彬, 常凤, 马紫荆, 曹秋梅. 巴音布鲁克高寒草甸植物功能多样性与生态系统多功能性关系沿海拔梯度的变化[J]. 植物生态学报, 2023, 47(6): 822-832. |
[5] | 张琦, 冯可, 常智慧, 何双辉, 徐维启. 灌丛化对林草交错带植物和土壤微生物的影响[J]. 植物生态学报, 2023, 47(6): 770-781. |
[6] | 王晓悦, 许艺馨, 李春环, 余海龙, 黄菊莹. 长期降水量变化下荒漠草原植物生物量、多样性的变化及其影响因素[J]. 植物生态学报, 2023, 47(4): 479-490. |
[7] | 冯可, 刘冬梅, 张琦, 安菁, 何双辉. 旅游干扰对松山油松林土壤微生物多样性及群落结构的影响[J]. 植物生态学报, 2023, 47(4): 584-596. |
[8] | 何敏, 许秋月, 夏允, 杨柳明, 范跃新, 杨玉盛. 植物磷获取机制及其对全球变化的响应[J]. 植物生态学报, 2023, 47(3): 291-305. |
[9] | 席念勋, 张原野, 周淑荣. 群落生态学中的植物-土壤反馈研究[J]. 植物生态学报, 2023, 47(2): 170-182. |
[10] | 李耀琪, 王志恒. 植物功能生物地理学的研究进展与展望[J]. 植物生态学报, 2023, 47(2): 145-169. |
[11] | 马和平, 王瑞红, 屈兴乐, 袁敏, 慕金勇, 李金航. 不同生境对藏东南地面生苔藓多样性和生物量的影响[J]. 植物生态学报, 2022, 46(5): 552-560. |
[12] | 田佳玉, 王彬, 张志明, 林露湘. 光谱多样性在植物多样性监测与评估中的应用[J]. 植物生态学报, 2022, 46(10): 1129-1150. |
[13] | 李孝龙, 周俊, 彭飞, 钟宏韬, Hans LAMBERS. 植物养分捕获策略随成土年龄的变化及生态学意义[J]. 植物生态学报, 2021, 45(7): 714-727. |
[14] | 孙浩哲, 王襄平, 张树斌, 吴鹏, 杨蕾. 阔叶红松林不同演替阶段凋落物产量及其稳定性的影响因素[J]. 植物生态学报, 2021, 45(6): 594-605. |
[15] | 秦文超, 陶至彬, 王永健, 刘艳杰, 黄伟. 资源脉冲对外来植物入侵影响的研究进展和展望[J]. 植物生态学报, 2021, 45(6): 573-582. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19