植物生态学报 ›› 2023, Vol. 47 ›› Issue (4): 479-490.DOI: 10.17521/cjpe.2022.0211
所属专题: 全球变化与生态系统; 生态系统结构与功能; 生物多样性
王晓悦1, 许艺馨2, 李春环2, 余海龙2, 黄菊莹1,*()
收稿日期:
2022-05-23
接受日期:
2022-08-06
出版日期:
2023-04-20
发布日期:
2022-08-06
通讯作者:
*ORCID:黄菊莹: 0000-0002-1351-7282 (juyinghuang@163.com)
基金资助:
WANG Xiao-Yue1, XU Yi-Xin2, LI Chun-Huan2, YU Hai-Long2, HUANG Ju-Ying1,*()
Received:
2022-05-23
Accepted:
2022-08-06
Online:
2023-04-20
Published:
2022-08-06
Contact:
*(juyinghuang@163.com)
Supported by:
摘要:
植物多样性是植物群落维持生态系统稳定的基础。虽然荒漠草原植被稀少, 但其在防风固沙等方面仍发挥着不可替代的生态服务功能, 然而对荒漠植物多样性如何响应长期极端降水量变化尚缺乏深入理解。该研究依托2014年在宁夏荒漠草原设立的降水量变化(减少50%、减少30%、自然、增加30%和增加50%)的野外实验样地, 研究了2020年5-10月植物生物量和物种多样性的变化特征, 分析了二者与土壤性质的关系。随着生长季推移, 植物群落生物量、Patrick丰富度指数和Shannon-Wiener多样性指数呈先增加后降低的时间动态, Pielou均匀度指数和Simpson优势度指数无明显的变化规律。与自然降水量相比, 降水量减少对植物生物量和多样性影响较小, 尤其是降水量减少30%的处理下; 多数情况下, 降水量增加刺激了苦豆子(Sophora alopecuroides)、短花针茅(Stipa breviflora)、白草(Pennisetum centrasiaticum)等物种生长, 提高了植物生物量, 但亦未明显改变植物多样性(尤其是降水量增加30%的处理下)。对植物生物量影响显著的土壤因子包括脲酶活性、温度、含水量、pH、磷酸酶活性和蔗糖酶活性, 对植物多样性影响显著的土壤因子包括含水量、电导率和脲酶活性。该研究结果意味着, 连续7年降水量变化下, 研究区植物对适度甚至极端干旱有强的适应性; 降水量适度增加提高了土壤水分有效性, 增强了离子移动性, 刺激了酶活性, 促进了植物生长。然而, 降水量持续增加导致植物生物量增加, 植物耗水增大, 使得生长季后期土壤水分不足, 导致部分植物提前完成生命周期。
王晓悦, 许艺馨, 李春环, 余海龙, 黄菊莹. 长期降水量变化下荒漠草原植物生物量、多样性的变化及其影响因素. 植物生态学报, 2023, 47(4): 479-490. DOI: 10.17521/cjpe.2022.0211
WANG Xiao-Yue, XU Yi-Xin, LI Chun-Huan, YU Hai-Long, HUANG Ju-Ying. Changes of plant biomass, species diversity, and their influencing factors in a desert steppe of northwestern China under long-term changing precipitation. Chinese Journal of Plant Ecology, 2023, 47(4): 479-490. DOI: 10.17521/cjpe.2022.0211
图1 2014-2020年与2020年研究区月降水量、平均风速和气温。 气象数据来源于中国气象数据网(https://data.cma.cn/), 气象站点为盐池站点(52723)。
Fig. 1 Monthly average precipitation, wind speed and air temperature in the research area from 2014 to 2020 and in 2020. Meteorological data are from China Meteorological Data Network (https://data.cma.cn/), the weather station is Yanchi station (52723).
变异来源 Sources of variation | 自由度 Degree of freedom | F |
---|---|---|
降水量 Precipitation (α) | 4 | 38.988** |
月份 Month (β) | 5 | 5.608** |
降水量×月份 Interaction of α and β | 20 | 0.951 |
表1 降水量变化对荒漠草原植物群落生物量的两因素方差分析
Table 1 Two-way ANOVA of plant community biomass in the studied desert steppe under long-term changing precipitation
变异来源 Sources of variation | 自由度 Degree of freedom | F |
---|---|---|
降水量 Precipitation (α) | 4 | 38.988** |
月份 Month (β) | 5 | 5.608** |
降水量×月份 Interaction of α and β | 20 | 0.951 |
图2 降水量变化对荒漠草原5-10月份植物群落生物量的影响(平均值±标准误, n = 3)。 不同小写字母表示相同月份下植物群落生物量在降水量处理间的差异显著(p < 0.05)。W1, 降水量减少50%; W2, 降水量减少30%; W3, 自然降水量; W4, 降水量增加30%; W5, 降水量增加50%。
Fig. 2 Effects of long-term changing precipitation on plant community biomass from May to October in the studied desert steppe (mean ± SE, n = 3). Different lowercase letters indicate significant differences in plant community biomass between the precipitation treatments under the same month (p < 0.05). W1, 50% reduction in precipitation; W2, 30% reduction in precipitation; W3, natural precipitation; W4, 30% increase in precipitation; W5, 50% increase in precipitation.
图3 降水量变化对荒漠草原7月份植物种群生物量的影响(平均值±标准误, n = 3)。 不同小写字母表示植物种群生物量在降水量处理间的差异显著(p < 0.05)。W1, 降水量减少50%; W2, 降水量减少30%; W3, 自然降水量; W4, 降水量增加30%; W5, 降水量增加50%。
Fig. 3 Effects of long-term changing precipitation on plant population biomass in July in the studied desert steppe (mean ± SE, n = 3). Different lowercase letters indicate significant differences in plant population biomass between the precipitation treatments (p < 0.05). W1, 50% reduction in precipitation; W2, 30% reduction in precipitation; W3, natural precipitation; W4, 30% increase in precipitation; W5, 50% increase in precipitation.
变异来源 Sources of variation | 自由度 Degree of freedom | F (R) | F (H′) | F (D) | F (E) |
---|---|---|---|---|---|
降水量 Precipitation (α) | 4 | 2.705* | 1.617 | 1.810 | 2.807* |
月份 Month (β) | 5 | 5.700** | 18.841** | 1.888 | 22.071** |
降水量×月份 Interaction of α and β | 20 | 0.532 | 0.632 | 0.714 | 0.918 |
表2 降水量变化对荒漠草原植物多样性的两因素方差分析
Table 2 Two-way ANOVA of plant diversity in a desert steppe under long-term changing precipitation
变异来源 Sources of variation | 自由度 Degree of freedom | F (R) | F (H′) | F (D) | F (E) |
---|---|---|---|---|---|
降水量 Precipitation (α) | 4 | 2.705* | 1.617 | 1.810 | 2.807* |
月份 Month (β) | 5 | 5.700** | 18.841** | 1.888 | 22.071** |
降水量×月份 Interaction of α and β | 20 | 0.532 | 0.632 | 0.714 | 0.918 |
图4 降水量变化对荒漠草原5-10月份植物多样性的影响(平均值±标准误, n = 3)。 不同小写字母表示相同月份下植物多样性在降水量处理间的差异显著(p < 0.05)。W1, 降水量减少50%; W2, 降水量减少30%; W3, 自然降水量; W4, 降水量增加30%; W5, 降水量增加50%。
Fig. 4 Effects of long-term changing precipitation on plant diversity from May to October in the studied desert steppe (mean ± SE, n = 3). Different lowercase letters indicate significant differences in plant diversity between the precipitation treatments under the same month (p < 0.05). W1, 50% reduction in precipitation; W2, 30% reduction in precipitation; W3, natural precipitation; W4, 30% increase in precipitation; W5, 50% increase in precipitation.
图5 降水量变化下荒漠草原植物生物量与土壤因子的冗余分析。 Am, 草木樨状黄耆种群生物量; As, 猪毛蒿种群生物量; Ha, 阿尔泰狗娃花种群生物量; Lp, 牛枝子种群生物量; Pc, 白草种群生物量; PCB, 植物群落生物量。AP, 速效磷含量; C:Ps, 土壤碳含量:磷含量; MBP, 微生物生物量磷含量; NH4+-N, 铵态氮含量; NO3?-N, 硝态氮含量; PA, 磷酸酶活性; SA, 蔗糖酶活性; T, 温度; TN, 全氮含量; UA, 脲酶活性; WC, 含水量。
Fig. 5 Redundancy analysis of plant biomass and soil factor in the studied desert steppe under long-term changing precipitation. Am, Astragalus melilotoides population biomass; As, Artemisia scoparia population biomass; Ha, Heteropappus altaicus population biomass; Lp, Lespedeza potaninii population biomass; Pc, Pennisetum centrasiaticum population biomass; PCB, plant community biomass. AP, available phosphorus content; C:Ps, soil carbon content: phosphorus content; MBP, microbial biomass phosphorus content; NH4+-N, ammonium nitrogen content; NO3?-N, nitrate nitrogen content; PA, phosphatase activity; SA, sucrase activity; T, temperature; TN, total nitrogen content; UA, urease activity; WC, water content.
指标 Index | UA | T | WC | pH | PA | SA | C:Ps | AP | NH+ 4-N | MBP | TN | NO-3-N |
---|---|---|---|---|---|---|---|---|---|---|---|---|
F | 10.1 | 6.9 | 6.9 | 4.7 | 4.1 | 3.0 | 2.7 | 1.4 | 1.2 | 1.0 | 0.9 | 0.7 |
p | 0.002 | 0.004 | 0.006 | 0.006 | 0.014 | 0.048 | 0.076 | 0.264 | 0.270 | 0.368 | 0.444 | 0.518 |
表3 降水量变化下荒漠草原植物生物量与土壤因子冗余分析中各土壤因子的条件效应
Table 3 Conditional effects of soil factors in redundancy analysis of plant biomass with soil factors in the studied desert steppe under long-term changing precipitation
指标 Index | UA | T | WC | pH | PA | SA | C:Ps | AP | NH+ 4-N | MBP | TN | NO-3-N |
---|---|---|---|---|---|---|---|---|---|---|---|---|
F | 10.1 | 6.9 | 6.9 | 4.7 | 4.1 | 3.0 | 2.7 | 1.4 | 1.2 | 1.0 | 0.9 | 0.7 |
p | 0.002 | 0.004 | 0.006 | 0.006 | 0.014 | 0.048 | 0.076 | 0.264 | 0.270 | 0.368 | 0.444 | 0.518 |
图6 降水量变化下荒漠草原植物多样性与土壤因子的冗余分析。 D, Simpson优势度指数; H′, Shannon-Wiener多样性指数; R, Patrick丰富度指数; E, Pielou均匀度指数。AP, 速效磷含量; C:Nm, 微生物生物量碳含量:氮含量; EC, 电导率; MBP, 微生物生物量磷含量; NH+4-N, 铵态氮含量; NO-3-N, 硝态氮含量; N:Pm, 微生物生物量氮含量:磷含量; SA, 蔗糖酶活性; T, 温度; UA, 脲酶活性; WC, 含水量。
Fig. 6 Redundancy analysis of plant diversity and soil factors in the studied desert steppe under long-term changing precipitation. D, Simpson dominance index; H′, Shannon-Wiener diversity index; R, Patrick richness index; E, Pielou evenness index. AP, available phosphorus content; C:Nm, microbial biomass carbon content:nitrogen content; EC, electrical conductivity; MBP, microbial biomass phosphorus content; NH+4-N, ammonium nitrogen content; NO-3-N, nitrate nitrogen content; N:Pm, microbial biomass nitrogen content: phosphorus content; SA, sucrase activity; T, temperature; UA, urease activity; WC, water content.
指标 Index | WC | EC | UA | T | NH4+-N | pH | MBP | NO3?-N | AP | C:Nm | SA | N:Pm |
---|---|---|---|---|---|---|---|---|---|---|---|---|
F | 8.0 | 6.7 | 6.0 | 3.8 | 3.7 | 3.7 | 1.7 | 1.5 | 1.5 | 0.4 | 0.4 | 0.3 |
p | 0.008 | 0.028 | 0.028 | 0.058 | 0.068 | 0.086 | 0.212 | 0.248 | 0.252 | 0.548 | 0.562 | 0.578 |
表4 降水量变化下荒漠草原植物多样性与土壤因子的冗余分析中各土壤因子的条件效应
Table 4 Conditional effects of soil factors in redundancy analysis of plant diversity and soil factors in the studied desert steppe under long-term changing precipitation
指标 Index | WC | EC | UA | T | NH4+-N | pH | MBP | NO3?-N | AP | C:Nm | SA | N:Pm |
---|---|---|---|---|---|---|---|---|---|---|---|---|
F | 8.0 | 6.7 | 6.0 | 3.8 | 3.7 | 3.7 | 1.7 | 1.5 | 1.5 | 0.4 | 0.4 | 0.3 |
p | 0.008 | 0.028 | 0.028 | 0.058 | 0.068 | 0.086 | 0.212 | 0.248 | 0.252 | 0.548 | 0.562 | 0.578 |
[1] | An FB, Zhang DK, Zhao JM, Chai CW, Zhao YL, Sun T (2019). Soil physical and chemical properties of different types of Gobi deserts in Hexi Corridor. Soil and Water Conservation in China, (6), 42-47. |
[安富博, 张德魁, 赵锦梅, 柴成武, 赵艳丽, 孙涛 (2019). 河西走廊不同类型戈壁土壤理化性质分析. 中国水土保持, (6), 42-47.] | |
[2] |
Bai XH, Zhao WW, Wang J, Ferreira CSS (2021). Precipitation drives the floristic composition and diversity of temperate grasslands in China. Global Ecology and Conservation, 32, e01933. DOI: 10.1016/j.gecco.2021.e01933.
DOI |
[3] | Bunting EL, Munson SM, Villarreal ML (2017). Climate legacy and lag effects on dryland plant communities in the southwestern US. Ecological Indicators, 74, 216-229. |
[4] |
Chelmeg, Liu XP, He YH, Sun SS, Wang MM (2020). Response of herbaceous plant community characteristics to short-term precipitation change in semi-arid sandy land. Acta Prataculturae Sinica, 29(4), 19-28.
DOI |
[车力木格, 刘新平, 何玉惠, 孙姗姗, 王明明 (2020). 半干旱沙地草本植物群落特征对短期降水变化的响应. 草业学报, 29(4), 19-28.]
DOI |
|
[5] |
Chen ML, Zhang BW, Ren TT, Wang SS, Chen SP (2016). Responses of soil moisture to precipitation pattern change in semiarid grasslands in Nei Mongol, China. Chinese Journal of Plant Ecology, 40, 658-668.
DOI URL |
[陈敏玲, 张兵伟, 任婷婷, 王姗姗, 陈世苹 (2016). 内蒙古半干旱草原土壤水分对降水格局变化的响应. 植物生态学报, 40, 658-668.]
DOI |
|
[6] | Cheng LL, Guo H, Lu Q (2013). Review on the valuation of desert ecosystem service values. Journal of Desert Research, 33(1), 281-287. |
[程磊磊, 郭浩, 卢琦 (2013). 荒漠生态系统服务价值评估研究进展. 中国沙漠, 33(1), 281-287.]
DOI |
|
[7] |
Copeland SM, Harrison SP, Latimer AM, Damschen EI, Eskelinen AM, Fernandez-Going B, Spasojevic MJ, Anacker BL, Thorne JH (2016). Ecological effects of extreme drought on Californian herbaceous plant communities. Ecological Monographs, 86, 295-311.
DOI URL |
[8] | Cui D, Li YL, Wang XY, Zhao XY, Zhang TH (2011). Spatial distribution of aboveground biomass of grassland in desert and desertified regions in Northern China. Journal of Desert Research, 31, 868-872. |
[崔夺, 李玉霖, 王新源, 赵学勇, 张铜会 (2011). 北方荒漠及荒漠化地区草地地上生物量空间分布特征. 中国沙漠, 31, 868-872.] | |
[9] | Du Y, Wang DY, Ruan YL, Mo CX, Wang DG (2020). Study on temporal and spatial variation characteristics of precipitation structure in China in recent 40 years. Water Power, 46(8), 19-23. |
[杜懿, 王大洋, 阮俞理, 莫崇勋, 王大刚 (2020). 中国地区近40年降水结构时空变化特征研究. 水力发电, 46(8), 19-23.] | |
[10] |
Elser JJ, Fagan WF, Kerkhoff AJ, Swenson NG, Enquist BJ (2010). Biological stoichiometry of plant production: metabolism, scaling and ecological response to global change. New Phytologist, 186, 593-608.
DOI PMID |
[11] |
Eze S, Palmer SM, Chapman PJ (2018). Negative effects of climate change on upland grassland productivity and carbon fluxes are not attenuated by nitrogen status. Science of the Total Environment, 637-638, 398-407.
DOI URL |
[12] | Gao JP, Zhao RF, Zhang LH, Wang JF, Xie ZK (2021). Effects of precipitation changes on plant community diversity and soil C:N:P ecological stoichiometric characteristics in a desert steppe of China. Environmental Science, 42, 977-987. |
[高江平, 赵锐锋, 张丽华, 王军锋, 谢忠奎 (2021). 降雨变化对荒漠草原植物群落多样性与土壤C:N:P生态化学计量特征的影响. 环境科学, 42, 977-987.] | |
[13] |
Gherardi LA, Sala OE (2015). Enhanced precipitation variability decreases grass- and increases shrub-productivity. Proceedings of the National Academy of Sciences of the United States of America, 112, 12735-12740.
DOI PMID |
[14] |
Hautier Y, Tilman D, Isbell F, Seabloom EW, Borer ET, Reich PB (2015). Anthropogenic environmental changes affect ecosystem stability via biodiversity. Science, 348, 336-340.
DOI PMID |
[15] |
He YZ, Huang WD, Zhao X, Lv P, Wang HH (2021). Review on the impact of climate change on plant diversity. Journal of Desert Research, 41(1), 59-66.
DOI |
[何远政, 黄文达, 赵昕, 吕朋, 王怀海 (2021). 气候变化对植物多样性的影响研究综述. 中国沙漠, 41(1), 59-66.]
DOI |
|
[16] | Hu D, Lü GH, Wang HF, Yang Q, Cai Y (2021). Response of desert plant diversity and stability to soil factors based on water gradient. Acta Ecologica Sinica, 41, 6738-6748. |
[胡冬, 吕光辉, 王恒方, 杨启, 蔡艳 (2021). 水分梯度下荒漠植物多样性与稳定性对土壤因子的响应. 生态学报, 41, 6738-6748.] | |
[17] | Hu XW, Wang YR, Wu YP (2004). Research progress on eco-physiological responses of desert grassland plants to drought conditions. Acta Prataculturae Sinica, 13(3), 9-15. |
[胡小文, 王彦荣, 武艳培 (2004). 荒漠草原植物抗旱生理生态学研究进展. 草业学报, 13(3), 9-15.] | |
[18] | Huang JY, Yu HL, Liu JL, Ma F, Han L (2018). Effects of precipitation levels on the C:N:P stoichiometry in plants, microbes, and soils in a desert steppe in China. Acta Ecologica Sinica, 38, 5362-5373. |
[黄菊莹, 余海龙, 刘吉利, 马飞, 韩磊 (2018). 控雨对荒漠草原植物、微生物和土壤C、N、P化学计量特征的影响. 生态学报, 38, 5362-5373.] | |
[19] | IPCC Intergovernmental Panel on Climate Change (2021). Climate Change: the Physical Science Basis. Cambridge University Press, Cambridge, UK. |
[20] |
Jia YY, Sun Y, Zhang T, Shi ZY, Maimaitiaili B, Tian CY, Feng G (2020). Elevated precipitation alters the community structure of spring ephemerals by changing dominant species density in Central Asia. Ecology and Evolution, 10, 2196-2212.
DOI PMID |
[21] | Jing GH, Chen ZK, Lu QQ, Zhang Z, Zhao N, He LY, Mao ZX, Li W (2021). Response of grassland community struction to short-term nitrogen addition and water addition with different management practices in the semi- arid loess region. Acta Ecologica Sinica, 41, 8192-8201. |
[井光花, 陈智坤, 路强强, 张昭, 赵宁, 贺丽燕, 毛祝新, 李伟 (2021). 半干旱黄土区不同管理措施下草地群落结构对短期氮、水添加的响应. 生态学报, 41, 8192-8201.] | |
[22] | Li CB, Peng YF, Zhao DZ, Ning Y, Zhou GY (2016). Effects of precipitation change and nitrogen addition on community structure and plant diversity in an alpine steppe on the Qinghai-Tibetan Plateau. Research of Soil and Water Conservation, 23(6), 185-191. |
[李长斌, 彭云峰, 赵殿智, 宁祎, 周国英 (2016). 降水变化和氮素添加对青藏高原高寒草原群落结构和物种多样性的影响. 水土保持研究, 23(6), 185-191.] | |
[23] | Li HQ, Li YN, Zhang FW, Liu XQ, Wu QH, Mao SJ (2013). Water consumption of alpine meadow and the influence of the meteorological factors on the vegetation biomass accumulation. Journal of Arid Land Resources and Environment, 27(9), 176-181. |
[李红琴, 李英年, 张法伟, 刘晓琴, 吴启华, 毛绍娟 (2013). 高寒草甸植被耗水量及生物量积累与气象因子的关系. 干旱区资源与环境, 27(9), 176-181.] | |
[24] | Liang L, Lü SH, Liu YP (2006). Numerical simulation of effect of vegetation changes of Loess Plateau on environment. Plateau Meteorology, 25, 575-582. |
[梁玲, 吕世华, 柳媛普 (2006). 黄土高原植被变化对环境影响的数值模拟. 高原气象, 25, 575-582.] | |
[25] |
Liu K, Nie GG, Zhang S (2020). Study on the spatiotemporal evolution of temperature and precipitation in China from 1951 to 2018. Advances in Earth Science, 35, 1113-1126.
DOI |
[刘凯, 聂格格, 张森 (2020). 中国1951-2018年气温和降水的时空演变特征研究. 地球科学进展, 35, 1113-1126.]
DOI |
|
[26] | Lu S, Hu ZY, Wang BP, Qin P, Wang L (2020). Spatio- temporal patterns of extreme precipitation events over China in recent 56 years. Plateau Meteorology, 39, 683-693. |
[卢珊, 胡泽勇, 王百朋, 秦佩, 王丽 (2020). 近56年中国极端降水事件的时空变化格局. 高原气象, 39, 683-693.]
DOI |
|
[27] | Ningxia Agricultural Exploration and Design Institute, Ningxia Animal Husbandry Bureau, Ningxia Agricultural College (1988). Ningxia Vegetation. Ningxia People’s Publishing House, Yinchuan. |
[宁夏农业勘查设计院, 宁夏畜牧局, 宁夏农学院 (1988). 宁夏植被. 宁夏人民出版社, 银川.] | |
[28] |
Niu SL, Wu MY, Han Y, Xia JY, Li LH, Wan SQ (2008). Water-mediated responses of ecosystem carbon fluxes to climatic change in a temperate steppe. New Phytologist, 177, 209-219.
DOI PMID |
[29] | Shang SS, Lian LS, Ma T, Zhang K, Han T (2018). Spatiotemporal variation of temperature and precipitation in northwest China in recent 54 years. Arid Zone Research, 35, 68-76. |
[商沙沙, 廉丽姝, 马婷, 张琨, 韩拓 (2018). 近54 a中国西北地区气温和降水的时空变化特征. 干旱区研究, 35, 68-76.] | |
[30] |
Spinoni J, Vogt JV, Naumann G, Barbosa P, Dosio A (2018). Will drought events become more frequent and severe in Europe? International Journal of Climatology, 38, 1718-1736.
DOI URL |
[31] | Sun XL, Kang S, Zhang Q, Chang CM, Ma WJ, Niu JM (2015). Relationship between species diversity, productivity, climatic factors and soil nutrients in the desert steppe. Acta Prataculturae Sinica, 24(12), 10-19. |
[孙小丽, 康萨如拉, 张庆, 常昌明, 马文静, 牛建明 (2015). 荒漠草原物种多样性、生产力与气候因子和土壤养分之间关系的研究. 草业学报, 24(12), 10-19.]
DOI |
|
[32] | Sun Y, He MZ, Wang L (2018). Effects of precipitation control on plant diversity and biomass in a desert region. Acta Ecologica Sinica, 38, 2425-2433. |
[孙岩, 何明珠, 王立 (2018). 降水控制对荒漠植物群落物种多样性和生物量的影响. 生态学报, 38, 2425-2433.] | |
[33] | Tuo YF, Shen FY, Yang CP, Ma JM, Guo SN, Zhang D, Wu YZ (2020). Effects of rainfall on phosphorus, organic matter and pH in different land use types in middle Yunnan Plateau. Ecology and Environmental Sciences, 29, 942-950. |
[脱云飞, 沈方圆, 杨翠萍, 马继敏, 郭锁娜, 张岛, 吴耀中 (2020). 滇中高原降雨对不同地类土壤磷素、有机质和pH变化的影响. 生态环境学报, 29, 942-950.]
DOI |
|
[34] |
Wang CH, Zhang SN, Zhang FM, Li KC, Yang K (2021). On the increase of precipitation in the Northwestern China under the global warming. Advances in Earth Science, 36, 980-989.
DOI |
[王澄海, 张晟宁, 张飞民, 李课臣, 杨凯 (2021). 论全球变暖背景下中国西北地区降水增加问题. 地球科学进展, 36, 980-989.]
DOI |
|
[35] | Wang CT, Wang QJ, Shen ZX, Peng HC, Li HY (2003). A preliminary study of the effect of simulated precipitation on an alpine Kobresia humilis meadow. Acta Prataculturae Sinica, 12(2), 25-29. |
[王长庭, 王启基, 沈振西, 彭红春, 李海英 (2003). 模拟降水对高寒矮嵩草草甸群落影响的初步研究. 草业学报, 12(2), 25-29.] | |
[36] | Wang LJ, Wang P, Sheng MY (2018). Stoichiometric characteristics of soil nutrient elements and its influencing factors in typical karst rocky desertification ecosystems, Southwest China. Acta Ecologica Sinica, 38, 6580-6593. |
[王霖娇, 汪攀, 盛茂银 (2018). 西南喀斯特典型石漠化生态系统土壤养分生态化学计量特征及其影响因素. 生态学报, 38, 6580-6593.] | |
[37] | Wang LL (2016). Dynamic of Ecological Environment of Fenced Grassland and Its Management in Yanchi County. PhD dissertation, Beijing Forestry University, Beijing. |
[王黎黎 (2016). 盐池县封育条件下草地生态环境演变态势及草场管理. 博士学位论文, 北京林业大学, 北京.] | |
[38] | Wang YH, Wang ZW, Pan ZL, Yan BL, Han MQ, Kang J, Han GD (2018). Effects of stocking rate and simulated precipitation on the plant diversity of desert steppe. Chinese Journal of Grassland, 40(2), 89-94. |
[王悦骅, 王忠武, 潘占磊, 闫宝龙, 韩梦琪, 康静, 韩国栋 (2018). 载畜率和模拟降水对荒漠草原植物物种多样性的影响. 中国草地学报, 40(2), 89-94.] | |
[39] | Wei JM, Jiang Y, Fu MM, Zhang YG, Xu ZW (2011). Effects of water addition and fertilization on soil nutrient contents and pH value of typical grassland in Inner Mongolia. Chinese Journal of Ecology, 30, 1642-1646. |
[魏金明, 姜勇, 符明明, 张玉革, 徐柱文 (2011). 水、肥添加对内蒙古典型草原土壤碳、氮、磷及pH的影响. 生态学杂志, 30, 1642-1646.] | |
[40] |
Wu ZT, Dijkstra P, Koch GW, Peñuelas J, Hungate BA (2011). Responses of terrestrial ecosystems to temperature and precipitation change: a meta-analysis of experimental manipulation. Global Change Biology, 17, 927-942.
DOI URL |
[41] |
Yang CY, Li EG, Chen HY, Zhang JH, Huang YM (2017). Biodiversity of natural vegetation and influencing factors in western Inner Mongolia. Biodiversity Science, 25, 1303-1312.
DOI |
[杨崇曜, 李恩贵, 陈慧颖, 张景慧, 黄永梅 (2017). 内蒙古西部自然植被的物种多样性及其影响因素. 生物多样性, 25, 1303-1312.]
DOI |
|
[42] |
Yang Y, Zhang N, Jiang LL, Chen KL (2021). Effects of simulated precipitation on soil edaphic physicochemical factors and microbial community characteristics in Bird Island of Qinghai Lake on the Tibetan Plateau. Acta Agrestia Sinica, 29, 1043-1052.
DOI |
[杨阳, 章妮, 蒋莉莉, 陈克龙 (2021). 青海湖高寒草地土壤理化性质及微生物群落特征对模拟降水的响应. 草地学报, 29, 1043-1052.]
DOI |
|
[43] | Yao XY, Zhang MJ, Zhang Y, Wang JX, Xiao HY (2022). New understanding of climate transition in northwest China. Arid Land Geography, 45, 671-683. |
[姚旭阳, 张明军, 张宇, 王家鑫, 肖涵余 (2022). 中国西北地区气候转型的新认识. 干旱区地理, 45, 671-683.] | |
[44] | Zhang LM, Liu XP, Zhao XY, Zhang TH, Yue XF, Yun JY (2014). Response of sandy vegetation characteristics to precipitation change in Horqin Sandy Land. Acta Ecologica Sinica, 34, 2737-2745. |
[张腊梅, 刘新平, 赵学勇, 张铜会, 岳祥飞, 云建英 (2014). 科尔沁固定沙地植被特征对降雨变化的响应. 生态学报, 34, 2737-2745.] | |
[45] |
Zhang RY, Schellenberg MP, Tian DS, Ma FF, Zhang TY, Wang H, Wu Q, Bai YT, Han GD, Niu SL (2021a). Shifting community composition determines the biodiversity-productivity relationship under increasing precipitation and N deposition. Journal of Vegetation Science, 32, e12998. DOI: 10.1111/jvs12998.
DOI |
[46] |
Zhang Y, Xie YZ, Ma HB, Zhang J, Jing L, Wang YT, Li JP (2021b). The influence of climate warming and humidity on plant diversity and soil bacteria and fungi diversity in desert grassland. Plants, 10, 2580. DOI: 10.3390/ plants10122580.
DOI |
[47] |
Zhong MX, Song J, Zhou ZX, Ru JY, Zheng MM, Li Y, Hui DF, Wan SQ (2019). Asymmetric responses of plant community structure and composition to precipitation variabilities in a semi-arid steppe. Oecologia, 191, 697-708.
DOI PMID |
[48] | Zhu GD, Guo N, Han YJ, Lv GY, Wang ZY, Wang CJ (2021). Effects of extreme drought on plant diversity and soil properties of Inner Mongolian desert steppe. Chinese Journal of Grassland, 43(3), 52-59. |
[朱国栋, 郭娜, 韩勇军, 吕广一, 王占义, 王成杰 (2021). 极端干旱对内蒙古荒漠草原植物群落物种多样性和土壤性质的影响. 中国草地学报, 43(3), 52-59.] | |
[49] |
Zhu WW, Wang P, Xu YX, Li CH, Yu HL, Huang JY (2021). Soil enzyme activities and their influencing factors in a desert steppe of northwestern China under changing precipitation regimes and nitrogen addition. Chinese Journal of Plant Ecology, 45, 309-320.
DOI URL |
[朱湾湾, 王攀, 许艺馨, 李春环, 余海龙, 黄菊莹 (2021). 降水量变化与氮添加下荒漠草原土壤酶活性及其影响因素. 植物生态学报, 45, 309-320.] | |
[50] |
Zuo XA, Cheng H, Zhao SL, Yue P, Liu XP, Wang SK, Liu LX, Xu C, Luo WT, Knops JMH, Medina-Roldán E (2020). Observational and experimental evidence for the effect of altered precipitation on desert and steppe communities. Global Ecology and Conservation, 21, e00864. DOI: 10.1016/j.gecco.2019.e00864.
DOI |
[1] | 李冰, 朱湾湾, 韩翠, 余海龙, 黄菊莹. 降水量变化下荒漠草原土壤呼吸及其影响因素[J]. 植物生态学报, 2023, 47(9): 1310-1321. |
[2] | 吕自立, 刘彬, 常凤, 马紫荆, 曹秋梅. 巴音布鲁克高寒草甸植物功能多样性与生态系统多功能性关系沿海拔梯度的变化[J]. 植物生态学报, 2023, 47(6): 822-832. |
[3] | 席念勋, 张原野, 周淑荣. 群落生态学中的植物-土壤反馈研究[J]. 植物生态学报, 2023, 47(2): 170-182. |
[4] | 林雍, 陈智, 杨萌, 陈世苹, 高艳红, 刘冉, 郝彦宾, 辛晓平, 周莉, 于贵瑞. 中国干旱半干旱区生态系统光合参数的时空变异及其影响因素[J]. 植物生态学报, 2022, 46(12): 1461-1472. |
[5] | 杨萌, 于贵瑞. 中国干旱半干旱区土壤CO2与CH4通量的耦联解耦及其对温度的响应[J]. 植物生态学报, 2022, 46(12): 1497-1507. |
[6] | 黄杰, 李晓玲, 王雪松, 杨进, 黄成名. 三峡库区不同消落带下中华蚊母树群落特征及其与土壤环境因子的关系[J]. 植物生态学报, 2021, 45(8): 844-859. |
[7] | 王毅, 孙建, 叶冲冲, 曾涛. 气候因子通过土壤微生物生物量氮促进青藏高原高寒草地地上生态系统功能[J]. 植物生态学报, 2021, 45(5): 434-443. |
[8] | 朱湾湾, 王攀, 许艺馨, 李春环, 余海龙, 黄菊莹. 降水量变化与氮添加下荒漠草原土壤酶活性及其影响因素[J]. 植物生态学报, 2021, 45(3): 309-320. |
[9] | 潘权, 郑华, 王志恒, 文志, 杨延征. 植物功能性状对生态系统服务影响研究进展[J]. 植物生态学报, 2021, 45(10): 1140-1153. |
[10] | 李海东, 吴新卫, 肖治术. 种间互作网络的结构、生态系统功能及稳定性机制研究[J]. 植物生态学报, 2021, 45(10): 1049-1063. |
[11] | 井新, 贺金生. 生物多样性与生态系统多功能性和多服务性的关系: 回顾与展望[J]. 植物生态学报, 2021, 45(10): 1094-1111. |
[12] | 张扬建, 朱军涛, 沈若楠, 王荔. 放牧对草地生态系统影响的研究进展[J]. 植物生态学报, 2020, 44(5): 553-564. |
[13] | 丁威,王玉冰,向官海,迟永刚,鲁顺保,郑淑霞. 小叶锦鸡儿灌丛化对典型草原群落结构与生态系统功能的影响[J]. 植物生态学报, 2020, 44(1): 33-43. |
[14] | 汤永康, 武艳涛, 武魁, 郭之伟, 梁存柱, 王敏杰, 常佩静. 放牧对草地生态系统服务和功能权衡关系的影响[J]. 植物生态学报, 2019, 43(5): 408-417. |
[15] | 张俪文, 韩广轩. 植物遗传多样性与生态系统功能关系的研究进展[J]. 植物生态学报, 2018, 42(10): 977-989. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19