植物生态学报 ›› 2020, Vol. 44 ›› Issue (5): 553-564.DOI: 10.17521/cjpe.2019.0314
张扬建1,2,3,*(), 朱军涛1, 沈若楠1,4, 王荔5
收稿日期:
2019-11-18
接受日期:
2020-04-19
出版日期:
2020-05-20
发布日期:
2020-04-30
通讯作者:
ORCID: 张扬建: 0000-0001-6758-2453
基金资助:
ZHANG Yang-Jian1,2,3,*(), ZHU Jun-Tao1, SHEN Ruo-Nan1,4, WANG Li5
Received:
2019-11-18
Accepted:
2020-04-19
Online:
2020-05-20
Published:
2020-04-30
Contact:
ZHANG Yang-Jian
Supported by:
摘要:
全球草地占据30%左右的陆地面积, 在全球气候变化、碳氮及养分循环、保持水土、调节畜牧业生产等方面具有重要的作用。目前草地的主要利用方式之一就是放牧, 不同的牲畜种类、放牧强度、年限、历史和制度等, 会影响草地植物群落、生物多样性及土壤微生物, 进而影响草地生态系统结构、功能和过程。该文围绕放牧对草地生态系统结构、功能和过程的影响, 1)回顾了20世纪50年代到现在各个历史阶段放牧对草地生态系统影响的研究; 2)利用文献计量分析的方法, 剖析了放牧对草地影响研究的热点内容、重要区域和关键词等; 3)阐明了放牧对草地植物生长、群落特征、碳氮及养分循环、生产力及土壤质量等的各方面影响的研究进展及国内相关研究的优势及存在的主要问题和不足; 4)基于上述分析, 从草地放牧精准管理、经典假说验证、放牧和全球变化研究相结合等方面, 提出未来研究的前沿方向和优先领域。该文在系统总结放牧对草地生态系统影响的研究进展、研究优势及存在问题的基础上, 提出未来的研究应与全球变化相结合, 为我国的草地放牧生态学研究、适应性管理和可持续利用等提供科学基础。
张扬建, 朱军涛, 沈若楠, 王荔. 放牧对草地生态系统影响的研究进展. 植物生态学报, 2020, 44(5): 553-564. DOI: 10.17521/cjpe.2019.0314
ZHANG Yang-Jian, ZHU Jun-Tao, SHEN Ruo-Nan, WANG Li. Research progress on the effects of grazing on grassland ecosystem. Chinese Journal of Plant Ecology, 2020, 44(5): 553-564. DOI: 10.17521/cjpe.2019.0314
[1] | Aarons SR, O’Connor CR, Hosseini HM, Gourley CJP (2009). Dung pads increase pasture production, soil nutrients and microbial biomass carbon in grazed dairy systems. Nutrient Cycling in Agroecosystems, 84, 81-92. |
[2] | Arsenault R, Owen-Smith N (2002). Facilitation versus competition in grazing herbivore assemblages. Oikos, 97, 313-318. |
[3] | Bai WM, Fang Y, Zhou M, Xie T, Li LH, Zhang WH (2015). Heavily intensified grazing reduces root production in an Inner Mongolia temperate steppe. Agriculture, Ecosystems & Environment, 200, 143-150. |
[4] |
Bullock JM, Hill BC, Dale MP, Silvertown J (1994). An experimental study of the effects of sheep grazing on vegetation change in a species-poor grassland and the role of seedling recruitment into gaps. Journal of Applied Ecology, 31, 493-507.
URL PMID |
[5] | Cease AJ, Elser JJ, Ford CF, Hao S, Kang L, Harrison JF (2012). Heavy livestock grazing promotes locust outbreaks by lowering plant nitrogen content. Science, 335, 467-469. |
[6] |
Charles GK, Porensky LM, Riginos C, Veblen KE, Young TP (2017). Herbivore effects on productivity vary by guild: cattle increase mean productivity while wildlife reduce variability. Ecological Applications, 27, 143-155.
URL PMID |
[7] | Chen ZZ, Wang SP (2000). Typical Grassland Ecosystem in China. Science Press, Beijing. |
[ 陈佐忠, 汪诗平 (2000). 中国典型草原生态系统. 科学出版社, 北京.] | |
[8] |
Connell JH (1978). Diversity in tropical rain forests and coral reefs—High diversity of trees and corals is maintained only in a non-equilibrium state. Science, 199, 1302-1310.
URL PMID |
[9] | Dong QM, Zhao XQ, Ma YS, Shi JJ, Wang YL, Li SX, Yang SH, Wang LY, Sheng L (2012). Influence of grazing on biomass, growth ratio and compensatory effect of different plant groups in Kobresia parva meadow. Acta Ecologica Sinica, 32, 16-26. |
[ 董全民, 赵新全, 马玉寿, 施建军, 王彦龙, 李世雄, 杨时海, 王柳英, 盛丽 (2012). 放牧对小嵩草草甸生物量及不同植物类群生长率和补偿效应的影响. 生态学报, 32, 16-26.] | |
[10] | Du ZY, Cai YJ, Wang XD, Zhang B, Du Z (2019). Research progress on grazing livestock dung decomposition and its influence on the dynamics of grassland soil nutrients. Acta Ecologica Sinica, 39, 4627-4637. |
[ 杜子银, 蔡延江, 王小丹, 张斌, 杜忠 (2019). 放牧牲畜粪便降解及其对草地土壤养分动态的影响研究进展. 生态学报, 39, 4627-4637.] | |
[11] | Duan MJ, Gao QZ, Wan YF, Li YE, Guo YQ, Danjiu Luobu, Luosang Jiacuo (2010). Effect of grazing on community characteristics and species diversity of Stipa purpurea alpine grassland in Northern Tibet. Acta Ecologica Sinica, 30, 3892-3900. |
[ 段敏杰, 高清竹, 万运帆, 李玉娥, 郭亚奇, 旦久罗布, 洛桑加措 (2010). 放牧对藏北紫花针茅高寒草原植物群落特征的影响. 生态学报, 30, 3892-3900.] | |
[12] | Ellison L (1960). Influence of grazing on plant succession of Rangelands. The Botanical Review, 26, 1-78. |
[13] |
Evans R (2005). Curtailing grazing-induced erosion in a small catchment and its environs, the Peak District, Central England. Applied Geography, 25, 81-95.
DOI URL |
[14] |
Foster BL, Gross KL (1998). Species richness in a successional grassland: effects of nitrogen enrichment and plant litter. Ecology, 79, 2593-2602.
DOI URL |
[15] |
Greenwood KL, Hutchinson KJ (1998). Root characteristics of temperate pasture in New South Wales after grazing at three stocking rates for 30 years. Grass and Forage Science, 53, 120-128.
DOI URL |
[16] |
Hatch DJ, Lovell RD, Antil RS, Jarvis SC, Owen PM (2000). Nitrogen mineralization and microbial activity in permanent pastures amended with nitrogen fertilizer or dung. Biology and Fertility of Soils, 30, 288-293.
DOI URL |
[17] | Hodgson J (1990). Grazing Management: Science into Practice. Longman Scientific &Technical, New York . 1-2. |
[18] |
Holechek JL (1981). Livestock grazing impacts on public lands: a viewpoint. Journal of Range Management, 34, 251-254.
DOI URL |
[19] | Jatimliansky JR, Gimenez DO, Bujan A (1997). Herbage yield, tiller number and root system activity after defoliation of prairie grass (Bromus catharticus Vahl). Grass and Forage Science, 52, 52-62. |
[20] | Jiang XL, Zhang WG, Yang ZY, Wang G (2003). The influence of disturbance on community structure and plant diversity of alpine meadow. Acta Botanica Boreali-Occidentalia Sinica, 23, 1479-1485. |
[ 江小蕾, 张卫国, 杨振宇, 王刚 (2003). 不同干扰类型对高寒草甸群落结构和植物多样性的影响. 西北植物学报, 23, 1479-1485.] | |
[21] | Klein JA, Harte J, Zhao XQ (2004). Experimental warming causes large and rapid species loss, dampened by simulated grazing, on the Tibetan Plateau. Ecology Letters, 7, 1170-1179. |
[22] | Klein JA, Harte J, Zhao XQ (2005). Dynamic and complex microclimate responses to warming and grazing manipulations. Global Change Biology, 11, 1440-1451. |
[23] |
Laca EA, Sokolow S, Galli JR, Cangiano CA (2010). Allometry and spatial scales of foraging in mammalian herbivores. Ecology Letters, 13, 311-320.
DOI URL PMID |
[24] |
Le Roux X, Bardy M, Loiseau P, Louault F (2003). Stimulation of soil nitrification and denitrification by grazing in grasslands: Do changes in plant species composition matter? Oecologia, 137, 417-425.
URL PMID |
[25] | Li W, Wu GL, Zhang GF, Du GZ (2011). The maintenance of offspring diversity in response to land use: sexual and asexual recruitment in an alpine meadow on the Tibetan Plateau. Nordic Journal of Botany, 29, 81-86. |
[26] | Li YH (1993). Grazing dynamics of the species diversity in a new Rolepidium Chinese steppe and Stipa grandis steppe. Chinese Bulletin of Botany, 35, 877-884. |
[ 李永宏 (1993). 放牧影响下羊草草原和大针茅草原植物多样性的变化. 植物学通报, 35, 877-884.] | |
[27] | Li YH, Wang SP (1999). The effects of grazing on grassland plants. Acta Pratacultural Science, 3, 11-19. |
[ 李永宏, 汪诗平 (1999). 放牧对草原植物的影响. 中国草地学报, 3, 11-19.] | |
[28] | Li YM, Lin QY, Wang SP, Li XZ, Liu WT, Luo CY, Zhang ZH, Zhu XX, Jiang LL, Li XN (2016). Soil bacterial community responses to warming and grazing in a Tibetan alpine meadow. FEMS Microbiology Ecology, 92, 1-10. |
[29] | Liu C, Song XX, Wang L, Wang DL, Zhou XM, Liu J, Zhao X, Li J, Lin HJ (2016). Effects of grazing on soil nitrogen spatial heterogeneity depend on herbivore assemblage and pre-grazing plant diversity. Journal of Applied Ecology, 53, 242-250. |
[30] | Liu J, Feng C, Wang DL, Wang L, Wilsey BJ, Zhong ZW (2015). Impacts of grazing by different large herbivores in grassland depend on plant species diversity. Journal of Applied Ecology, 52, 1053-1062. |
[31] | Liu W, Zhou L, Wang X (1999). Responses of plant and rodents to different grazing intensity. Acta Ecologica Sinica, 19, 376-382. |
[ 刘伟, 周立, 王溪 (1999). 不同放牧强度对植物及啮齿动物作用的研究. 生态学报, 376-382.] | |
[32] | Lovell RD, Jarvis SC (1996). Effect of cattle dung on soil microbial biomass C and N in a permanent pasture soil. Soil Biology & Biochemistry, 28, 291-299. |
[33] | Lu XY, Kelsey KC, Yan Y, Sun J, Wang XD, Cheng GW, Neff JC (2017). Effects of grazing on ecosystem structure and function of alpine grasslands in Qinghai-Tibetan Plateau: a synthesis. Ecosphere, 8, e01656. DOI: . |
[34] | Ma L, Guo C, Lü X, Yuan S, Wang R (2015). Soil moisture and land use are major determinants of soil microbial community composition and biomass at a regional scale in northeastern China. Biogeosciences, 12, 2585-2596. |
[35] |
Ma XZ, Ambus P, Wang SP, Wang YF, Wang CJ (2013). Priming of soil carbon decomposition in two Inner Mongolia grassland soils following sheep dung addition: a study using13C natural abundance approach . PLOS ONE, 8, e78578. DOI: 10.1371/journal.pone.0078578.
URL PMID |
[36] | McNaughton SJ (1979). Grazing as an optimization process: grass ungulate relationships in the serengeti. The American Naturalist, 113, 691-703. |
[37] | Mitchell R, Allen V, Waller J, Ohlenbusch P (2004). A mobile classroom approach to graduate education in forage and range sciences. Journal of Natural Resources and Life Sciences Education, 33, 117-120. |
[38] | Moe SR, Wegge P (2008). Effects of deposition of deer dung on nutrient redistribution and on soil and plant nutrients on intensively grazed grasslands in lowland Nepal. Ecological Research, 23, 227-234. |
[39] | Morris JT, Jensen A (1998). The carbon balance of grazed and non-grazed Spartina anglica saltmarshes at Skallingen, Denmark. Journal of Ecology, 86, 229-242. |
[40] | Niu KC, He JS, Lechowicz MJ (2016). Grazing-induced shifts in community functional composition and soil nutrient availability in Tibetan alpine meadows. Journal of Applied Ecology, 53, 1554-1564. |
[41] | Peng JT, Liang CZ, Niu YM, Jiang W, Wang W, Wang LX (2015). Moderate grazing promotes genetic diversity of Stipa species in the Inner Mongolian steppe. Landscape Ecology, 30, 1783-1794. |
[42] | Pietola L, Horn R, Yli-Halla M (2005). Effects of trampling by cattle on the hydraulic and mechanical properties of soil. Soil and Tillage Research, 82, 99-108. |
[43] | Pucheta E, Bonamici I, Cabido M, Díaz S (2004). Below- ground biomass and productivity of a grazed site and a neighbouring ungrazed exclosure in a grassland in central Argentina. Austral Ecology, 29, 201-208. |
[44] |
Qi Q, Zhao MX, Wang SP, Ma XY, Wang YX, Gao Y, Lin QY, Li XZ, Gu BH, Li GX, Zhou JZ, Yang YF (2017). The biogeographic pattern of microbial functional genes along an altitudinal gradient of the Tibetan pasture. Frontiers in Microbiology, 8, 976-988.
URL PMID |
[45] |
Schimel JP, Bennett J (2004). Nitrogen mineralization: challenges of a changing paradigm. Ecology, 85, 591-602.
DOI URL |
[46] |
Socher SA, Prati D, Boch S, Müller J, Baumbach H, Gockel S, Hemp A, Schöning I, Wells K, Buscot F, Kalko EKV, Linsenmair KE, Schulze ED, Weisser WW, Fischer M (2013). Interacting effects of fertilization, mowing and grazing on plant species diversity of 1500 grasslands in Germany differ between regions. Basic and Applied Ecology, 14, 126-136.
DOI URL |
[47] |
Sousa WP (1984). The role of disturbance in natural communities. Annual Review of Ecology and Systematics, 15, 353-391.
DOI URL |
[48] |
Sun DS, Wesche K, Chen DD, Zhang SH, Wu GL, Du GZ, Comerford NB (2011). Grazing depresses soil carbon storage through changing plant biomass and composition in a Tibetan alpine meadow. Plant, Soil and Environment, 57, 271-278.
DOI URL |
[49] |
Tilman D, Wedin D, Knops J (1996). Productivity and sustainability influenced by biodiversity in grassland ecosystems. Nature, 379, 718-720.
DOI URL |
[50] |
van der Plas F, Howison RA, Mpanza N, Cromsigt JPGM, Olff H (2016). Different-sized grazers have distinctive effects on plant functional composition of an African savannah. Journal of Ecology, 104, 864-875.
DOI URL |
[51] | van Klink R, Nolte S, Mandema FS, Lagendijk DDG, WallisDeVries MF, Bakker JP, Esselink P, Smit C (2016). Effects of grazing management on biodiversity across trophic levels—The importance of livestock species and stocking density in salt marshes. Agriculture Ecosystems Environment, 235, 329-339. |
[52] |
Wachendorf C, Lampe C, Taube F, Dittert K (2008). Nitrous oxide emissions and dynamics of soil nitrogen under15N-labeled cow urine and dung patches on a sandy grassland soil. Journal of Plant Nutrition and Soil Science, 171, 171-180.
DOI URL |
[53] |
Wan HW, Bai YF, Hooper DU, Schönbach P, Gierus M, Schiborra A, Taube F (2015). Selective grazing and seasonal precipitation play key roles in shaping plant community structure of semi-arid grasslands. Landscape Ecology, 30, 1767-1782.
DOI URL |
[54] | Wang DL, Du J, Zhang BT, Ba L, Hodgkinson KC (2017). Grazing intensity and phenotypic plasticity in the clonal grass Leymus chinensis. Rangeland Ecology Management, 70, 740-747. |
[55] |
Wang DL, Wang L, Liu JS, Zhu H, Zhong ZW (2018). Grassland ecology in China: perspectives and challenges. Frontiers of Agricultural Science and Engineering, 5, 24-43.
DOI URL |
[56] |
Wang L, Wang DL, Bai YG, Huang Y, Fan M, Liu JS, Li YX (2010a). Spatially complex neighboring relationships among grassland plant species as an effective mechanism of defense against herbivory. Oecologia, 164, 193-200.
DOI URL |
[57] |
Wang L, Wang DL, He ZB, Liu GF, Hodgkinson KC (2010b). Mechanisms linking plant species richness to foraging of a large herbivore. Journal of Applied Ecology, 47, 868-875.
DOI URL |
[58] |
Wang L, Wang DL, Liu JS, Huang Y, Hodgkinson KC (2011). Diet selection variation of a large herbivore in a feeding experiment with increasing species numbers and different plant functional group combinations. Acta Oecologica, 37, 263-268.
DOI URL |
[59] | Wang MJ, Wan XR, Zhong WQ (2001). The interaction between the vegetarian and the plant. Chinese Journal of Ecology, 20, 39-43. |
[ 王梦军, 宛新荣, 钟文勤 (2001). 食草动物与植物的相互关系. 生态学杂志, 20, 39-43.] | |
[60] | Wang RZ (1996). Effect of disturbances on species diversity in grassland ecosystems. Journal of Northeast Normal University (Natural Science Edition), 3, 112-116. |
[ 王仁忠 (1996). 干扰对草地生态系统生物多样性的影响. 东北师大学报(自然科学版), 3, 112-116.] | |
[61] | Wang SP, Li YH, Wang YF, Chen ZZ (2001). Influence of different stocking rates on plant diversity of Artemisia frigida community in Inner Mongolia steppe. Acta Botanica Sinica, 43, 89-96. |
[ 汪诗平, 李永宏, 王艳芬, 陈佐忠 (2001). 不同放牧率对内蒙古冷蒿草原植物多样性的影响. 植物学报, 43, 89-96.] | |
[62] | Wang SP, Li YH, Wang YF, Han YH (1998). The succession of Artemisia frigida rangeland and multivariation analysis under different stocking rates in Inner Mongolia. Acta Agrestia Sinica, 6, 299-305. |
[ 汪诗平, 李永宏, 王艳芬, 韩苑鸿 (1998). 不同放牧率下冷蒿小禾草草原放牧演替规律与数量分析. 草地学报, 6, 299-305.] | |
[63] |
Wang XD, Yan Y, Cao YZ (2012). Impact of historic grazing on steppe soils on the northern Tibetan Plateau. Plant and Soil, 354, 173-183.
DOI URL |
[64] | Wei ZJ, Han GD, Yang J, Lü X (2000). The response of Stipa breviflora community to stocking rate. Grassland of China, (6), 2-6. |
[ 卫智军, 韩国栋, 杨静, 吕雄 (2000). 短花针茅荒漠草原植物群落特征对不同载畜率水平的响应. 中国草地, (6), 2-6.] | |
[65] | Wei ZJ, Wu RT, Dabu X, Su JA, Yang SM (2005). The influence of different grazing systems on soil physical and chemical properties in desert steppe. Grassland of China, 27, 6-10. |
[ 卫智军, 乌日图, 达布希拉图, 苏吉安, 杨尚明 (2005). 荒漠草原不同放牧制度对土壤理化性质的影响. 中国草地, 27, 6-10.] | |
[66] |
Williams PH, Haynes RJ (1995). Effect of sheep, deer and cattle dung on herbage production and soil nutrient content. Grass and Forage Science, 50, 263-271.
DOI URL |
[67] |
Wilson PJ, Thompson K, Hodgson JG (1999). Specific leaf area and leaf dry matter content as alternative predictors of plant strategies. New Phytologist, 143, 155-162.
DOI URL |
[68] | Wu X, Chen WM, Luo YC, Wu FM, Yu Z (2006). Research on the influence of different grazing system on vegetation characteristics in Ningxia typical grassland. Pruataculture & Animal Husbandry, (12), 5-7, 14. |
[ 武新, 陈卫民, 罗有仓, 武芳梅, 于钊 (2006). 宁夏干草原不同放牧方式对植被特征影响的研究. 草业与畜牧,(12), 5-7, 14.] | |
[69] | Yan RR, Xin XP, Yan YC, Wang X, Zhang BH, Yang GX, Liu SM, Deng Y, Li LH (2015). Impacts of differing grazing rates on canopy structure and species composition in Hulunber Meadow Steppe. Rangeland Ecology & Management, 68, 54-64. |
[70] | Yang DL, Han GD, Hu YG, Wuyung erle (2006). Effects of grazing intensity on plant diversity and aboveground biomass of Stipa baicalensis grassland. Chinese Journal of Ecology, 25, 1470-1475. |
[ 杨殿林, 韩国栋, 胡跃高, 乌云格日勒 (2006). 放牧对贝加尔针茅草原群落植物多样性和生产力的影响. 生态学杂志, 25, 1470-1475.] | |
[71] | Yang LM, Zhou GS, Li JD (2002). Relationship between productivity and plant species diversity of grassland communities in Songnen Plain of Northeast China. Acta Phytoecologica Sinica, 26, 589-593. |
[ 杨利民, 周广胜, 李建东 (2002). 松嫩平原草地群落物种多样性与生产力关系的研究. 植物生态学报, 26, 589-593.] | |
[72] |
Yang YF, Wu LW, Lin QY, Yuan MT, Xu DP, Yu H, Hu YG, Duan JC, Li XZ, He ZL, Xue K, van Nostrand J, Wang SP, Zhou JZ (2013). Responses of the functional structure of soil microbial community to livestock grazing in the Tibetan alpine grassland. Global Change Biology, 19, 637-648.
DOI URL |
[73] |
Yu Q, Chen QS, Elser JJ, He NP, Wu HH, Zhang GM, Wu JG, Bai YF, Han XG (2010). Linking stoichiometric homoeostasis with ecosystem structure, functioning and stability. Ecology Letters, 13, 1390-1399.
DOI URL PMID |
[74] |
Zhang CX, Nan ZB (2010). Research progress on effects of grazing on physical and chemical characteristics of grassland soil. Acta Prataculturae Sinica, 19, 204-211.
DOI URL |
[ 张成霞, 南志标 (2010). 放牧对草地土壤理化特性影响的研究进展. 草业学报, 19, 204-211.] | |
[75] |
Zhao HL, Zhao XY, Zhou RL, Zhang TH, Drake S (2005). Desertification processes due to heavy grazing in sandy rangeland, Inner Mongolia. Journal of Arid Environment, 62, 309-319.
DOI URL |
[76] |
Zheng SX, Ren HY, Lan ZC, Li WH, Wang KB, Bai YF (2010). Effects of grazing on leaf traits and ecosystem functioning in Inner Mongolia grasslands: scaling from species to community. Biogeosciences, 7, 1117-1132.
DOI URL |
[77] | Zhong ZW, Li XF, Pearson D, Wang DL, Sanders D, Zhu Y, Wang L (2017). Ecosystem engineering strengthens bottom- up and weakens top-down effects via trait-mediated indirect interactions. Proceedings of the Royal Society: Biological Sciences, 284, 20170894. DOI: 10.1098/rspb.2017.0894. |
[78] |
Zhou GY, Zhou XH, He YH, Shao JJ, Hu ZH, Liu RQ, Zhou HM, Hosseinibai S (2017). Grazing intensity significantly affects belowground carbon and nitrogen cycling in grassland ecosystems: a meta-analysis. Global Change Biology, 23, 1167-1179.
URL PMID |
[79] | Zhu SH, Xu CL, Fang QE, Liu FY (2006). Effect of white yak grazing intensity on species diversity of plant communities in alpine grassland. Journal of Gansu Agricultural University,(4), 71-75. |
[ 朱绍宏, 徐长林, 方强恩, 刘发央 (2006). 白牦牛放牧强度对高寒草原植物群落物种多样性的影响. 甘肃农业大学学报, (4), 71-75.] |
[1] | 江康威 张青青 王亚菲 李宏 丁雨 杨永强 吐尔逊娜依·热依木. 放牧干扰下天山北坡中段植物功能群特征及其与土壤环境因子的关系[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[2] | 陈科宇 邢森 唐玉 孙佳慧 任世杰 张静 纪宝明. 不同草地型土壤丛枝菌根真菌群落特征及其驱动因素[J]. 植物生态学报, 2024, 48(5): 660-674. |
[3] | 萨其拉, 张霞, 朱琳, 康萨如拉. 长期不同放牧强度下荒漠草原优势种无芒隐子草叶片解剖结构变化[J]. 植物生态学报, 2024, 48(3): 331-340. |
[4] | 黄玲, 王榛, 马泽, 杨发林, 李岚, SEREKPAYEV Nurlan, NOGAYEV Adilbek, 侯扶江. 长期放牧和氮添加对黄土高原典型草原长芒草种群生长的影响[J]. 植物生态学报, 2024, 48(3): 317-330. |
[5] | 茹雅倩, 薛建国, 葛萍, 李钰霖, 李东旭, 韩鹏, 杨天润, 储伟, 陈章, 张晓琳, 李昂, 黄建辉. 高频轮牧对典型草原生产生态效果的影响[J]. 植物生态学报, 2024, 48(2): 171-179. |
[6] | 陈保冬, 付伟, 伍松林, 朱永官. 菌根真菌在陆地生态系统碳循环中的作用[J]. 植物生态学报, 2024, 48(1): 1-20. |
[7] | 李娜, 唐士明, 郭建英, 田茹, 王姗, 胡冰, 罗永红, 徐柱文. 放牧对内蒙古草地植物群落特征影响的meta分析[J]. 植物生态学报, 2023, 47(9): 1256-1269. |
[8] | 吕自立, 刘彬, 常凤, 马紫荆, 曹秋梅. 巴音布鲁克高寒草甸植物功能多样性与生态系统多功能性关系沿海拔梯度的变化[J]. 植物生态学报, 2023, 47(6): 822-832. |
[9] | 王晓悦, 许艺馨, 李春环, 余海龙, 黄菊莹. 长期降水量变化下荒漠草原植物生物量、多样性的变化及其影响因素[J]. 植物生态学报, 2023, 47(4): 479-490. |
[10] | 何敏, 许秋月, 夏允, 杨柳明, 范跃新, 杨玉盛. 植物磷获取机制及其对全球变化的响应[J]. 植物生态学报, 2023, 47(3): 291-305. |
[11] | 席念勋, 张原野, 周淑荣. 群落生态学中的植物-土壤反馈研究[J]. 植物生态学报, 2023, 47(2): 170-182. |
[12] | 王德利, 梁存柱. 退化草原的恢复状态: 气候顶极或干扰顶极?[J]. 植物生态学报, 2023, 47(10): 1464-1470. |
[13] | 杨元合, 张典业, 魏斌, 刘洋, 冯雪徽, 毛超, 徐玮婕, 贺美, 王璐, 郑志虎, 王媛媛, 陈蕾伊, 彭云峰. 草地群落多样性和生态系统碳氮循环对氮输入的非线性响应及其机制[J]. 植物生态学报, 2023, 47(1): 1-24. |
[14] | 董全民, 赵新全, 刘玉祯, 冯斌, 俞旸, 杨晓霞, 张春平, 曹铨, 刘文亭. 放牧方式影响高寒草地矮生嵩草种子大小与数量的关系[J]. 植物生态学报, 2022, 46(9): 1018-1026. |
[15] | 白悦, 刘晨, 黄月, 董亚楠, 王露. 科尔沁沙质草地植物群落高度空间异质性对不同放牧方式的响应[J]. 植物生态学报, 2022, 46(4): 394-404. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19