植物生态学报 ›› 2019, Vol. 43 ›› Issue (5): 447-457.DOI: 10.17521/cjpe.2018.0228
所属专题: 植物功能性状
王进1,朱江1,*(),艾训儒1,姚兰1,黄小1,吴漫玲1,朱强1,洪建峰2
收稿日期:
2018-09-17
接受日期:
2019-03-20
出版日期:
2019-05-20
发布日期:
2019-10-18
通讯作者:
朱江
基金资助:
WANG Jin1,ZHU Jiang1,*(),AI Xun-Ru1,YAO Lan1,HUANG Xiao1,WU Man-Ling1,ZHU Qiang1,HONG Jian- Feng2
Received:
2018-09-17
Accepted:
2019-03-20
Online:
2019-05-20
Published:
2019-10-18
Contact:
ZHU Jiang
Supported by:
摘要:
探究地形变化对不同生活型植物叶功能性状的影响有助于深入理解森林群落物种组成的维持特征。该研究以湖北星斗山常绿落叶阔叶混交林为研究对象, 测量了50个样地中224种木本植物的叶面积、叶厚度、叶干质量、叶干物质含量和比叶面积, 运用单因素方差分析揭示了乔木、灌木和木质藤本的叶功能性状变异特征, 并采用偏曼特尔检验分别从群落水平和物种水平分析了地形变化对不同生活型木本植物叶功能性状的影响。研究发现: 不同生活型植物叶性状变异系数分布范围为23.42%-110.45%; 不同生活型之间的植物叶功能性状差异明显。群落水平上, 海拔与乔木叶干质量、灌木叶面积和木质藤本叶厚度显著正相关, 坡度仅对灌木和木质藤本比叶面积具有显著影响, 坡向与灌木叶厚度、叶干质量和比叶面积显著正相关。物种水平上, 海拔比坡度和坡向对植物叶功能性状影响更为显著, 且不同物种对地形变化的敏感度不一致; 在控制空间结构影响后, 地形因子对植物叶功能性状的影响降低。该研究结果表明, 不同生活型植物的叶功能性状对地形变化的响应格局不同, 这可能是星斗山常绿落叶阔叶混交林植物多样性的主要维持机制。
王进, 朱江, 艾训儒, 姚兰, 黄小, 吴漫玲, 朱强, 洪建峰. 湖北星斗山地形变化对不同生活型植物叶功能性状的影响. 植物生态学报, 2019, 43(5): 447-457. DOI: 10.17521/cjpe.2018.0228
WANG Jin, ZHU Jiang, AI Xun-Ru, YAO Lan, HUANG Xiao, WU Man-Ling, ZHU Qiang, HONG Jian- Feng. Effects of topography on leaf functional traits across plant life forms in Xingdou Mountain, Hubei, China. Chinese Journal of Plant Ecology, 2019, 43(5): 447-457. DOI: 10.17521/cjpe.2018.0228
图1 星斗山50个样地地形基本情况。海拔和坡度为实际观测值, 坡向为正弦化数据。
Fig. 1 Basic topography status of 50 plots in Xingdou Moutain. The altitude and slope were presented as the actual observation data, and the aspects were sinusoidally transformed.
图2 星斗山50个样地不同生活型植物的物种多样性。箱体中“□”为平均值、“—”为中位数; “○”为异常值。
Fig. 2 Species diversity of plants from different life forms in 50 plots of Xingdou Mountain. In the box, “□” is the average, “—” is the median. “○” is the abnormal value.
图3 群落水平3种生活型植物叶功能性状变异。图中百分数据为变异系数(CV); 箱体中“█”为平均值、“—”为中位数; “○”为异常值。**, p < 0.01; *, p < 0.05; ns, p > 0.05。
Fig. 3 Variation of leaf functional traits across three life forms of plants at community level. The figures on top of the boxed are the coefficients of variation (CV) of that trait across all plots. In the box, “█” is the average, “—” is the median. “○” is the abnormal value. LA, leaf area; LT, leaf thickness; LDM, leaf dry mass; LDMC, leaf dry matter content; SLA, specific leaf area. **, p < 0.01; *, p < 0.05; ns, p > 0.05.
图4 优势种植物叶功能性状变异(物种水平)。图中百分数据为变异系数(CV); 箱体中“█”为平均值、“—”为中位数; “○”为异常值。横坐标1-6代表物种: 1, 川陕鹅耳枥; 2, 齿缘吊钟花; 3, 翅柃; 4, 红果树; 5, 大金刚藤; 6, 中华猕猴桃。
Fig. 4 Variation in leaf functional traits across dominant species (species level). LA, leaf area; LT, leaf thickness; LDM, leaf dry mass; LDMC, leaf dry matter content; SLA, specific leaf area. The figures on top of the boxes are the coefficients of variation of each trait for a species across all sampled plots. In the box, “█” is the average, “—” is the median. “○” is the abnormal value. 1-6 represent species in the abscissa: 1, Carpinus fargesiana; 2, Enkianthus serrulatus; 3, Eurya alata; 4, Stranvaesia davidiana; 5, Dalbergia dyeriana; 6, Actinidia chinensis.
生活型 Life form | 性状 Trait | 空间结构 Spatial structure | 未控制空间结构影响 Uncontrolled spatial structure effect | 控制空间结构影响 Controlling the influence of spatial structure | ||||
---|---|---|---|---|---|---|---|---|
海拔 Altitude | 坡度 Slope | 坡向 Slope aspect | 海拔 Altitude | 坡度 Slope | 坡向 Slope aspect | |||
乔木 Tree | LA (cm2) | 0.26* | 0.27* | 0.07 | 0.15* | 0.10 | 0.00 | 0.09 |
LT (mm) | -0.02 | -0.02 | -0.02 | 0.00 | -0.01 | -0.02 | 0.01 | |
LDM (g) | 0.15 | 0.20* | 0.02 | 0.12 | 0.15* | -0.02 | 0.09 | |
LDMC (g·g-1) | 0.13* | 0.08 | -0.00 | 0.05 | -0.09 | -0.04 | 0.02 | |
SLA (cm2·g-1) | 0.06 | 0.07 | 0.01 | 0.09 | 0.04 | -0.01 | 0.08 | |
灌木 Shrub | LA (cm2) | 0.18* | 0.23** | 0.05 | 0.13* | 0.15* | -0.00 | 0.09 |
LT (mm) | 0.39** | 0.36** | 0.02 | 0.19** | 0.03 | -0.09 | 0.11* | |
LDM (g) | 0.32** | 0.31** | 0.19* | 0.34** | 0.07 | 0.12 | 0.29** | |
LDMC (g·g-1) | 0.15 | 0.11 | 0.12 | 0.02 | -0.04 | 0.08 | -0.01 | |
SLA (cm2·g-1) | 0.30** | 0.31** | 0.23** | 0.19** | 0.10 | 0.16* | 0.13* | |
木质藤本Woody liana | LA (cm2) | -0.02 | -0.03 | -0.07 | 0.01 | -0.02 | -0.07 | 0.02 |
LT (mm) | 0.23 | 0.39* | 0.21 | 0.11 | 0.40** | 0.14 | 0.05 | |
LDM (g) | -0.15 | -0.16* | -0.04 | -0.05 | -0.05 | 0.01 | -0.02 | |
LDMC (g·g-1) | -0.07 | -0.08 | 0.04 | -0.09 | -0.05 | 0.06 | -0.07 | |
SLA (cm2·g-1) | 0.16 | 0.20 | -0.06 | 0.02 | 0.12 | -0.12* | -0.02 |
表1 群落水平上不同生活型植物叶功能性状与地形因子的偏曼特尔检验
Table 1 Partial Mantel tests for the relationships between leaf functional traits of different life forms and topographic factors at community level
生活型 Life form | 性状 Trait | 空间结构 Spatial structure | 未控制空间结构影响 Uncontrolled spatial structure effect | 控制空间结构影响 Controlling the influence of spatial structure | ||||
---|---|---|---|---|---|---|---|---|
海拔 Altitude | 坡度 Slope | 坡向 Slope aspect | 海拔 Altitude | 坡度 Slope | 坡向 Slope aspect | |||
乔木 Tree | LA (cm2) | 0.26* | 0.27* | 0.07 | 0.15* | 0.10 | 0.00 | 0.09 |
LT (mm) | -0.02 | -0.02 | -0.02 | 0.00 | -0.01 | -0.02 | 0.01 | |
LDM (g) | 0.15 | 0.20* | 0.02 | 0.12 | 0.15* | -0.02 | 0.09 | |
LDMC (g·g-1) | 0.13* | 0.08 | -0.00 | 0.05 | -0.09 | -0.04 | 0.02 | |
SLA (cm2·g-1) | 0.06 | 0.07 | 0.01 | 0.09 | 0.04 | -0.01 | 0.08 | |
灌木 Shrub | LA (cm2) | 0.18* | 0.23** | 0.05 | 0.13* | 0.15* | -0.00 | 0.09 |
LT (mm) | 0.39** | 0.36** | 0.02 | 0.19** | 0.03 | -0.09 | 0.11* | |
LDM (g) | 0.32** | 0.31** | 0.19* | 0.34** | 0.07 | 0.12 | 0.29** | |
LDMC (g·g-1) | 0.15 | 0.11 | 0.12 | 0.02 | -0.04 | 0.08 | -0.01 | |
SLA (cm2·g-1) | 0.30** | 0.31** | 0.23** | 0.19** | 0.10 | 0.16* | 0.13* | |
木质藤本Woody liana | LA (cm2) | -0.02 | -0.03 | -0.07 | 0.01 | -0.02 | -0.07 | 0.02 |
LT (mm) | 0.23 | 0.39* | 0.21 | 0.11 | 0.40** | 0.14 | 0.05 | |
LDM (g) | -0.15 | -0.16* | -0.04 | -0.05 | -0.05 | 0.01 | -0.02 | |
LDMC (g·g-1) | -0.07 | -0.08 | 0.04 | -0.09 | -0.05 | 0.06 | -0.07 | |
SLA (cm2·g-1) | 0.16 | 0.20 | -0.06 | 0.02 | 0.12 | -0.12* | -0.02 |
物种 Species | 性状 Trait | 空间结构 Spatial structure | 未控制空间结构影响 Uncontrolled spatial structure effect | 控制空间结构影响 Controlling the influence of spatial structure | ||||
---|---|---|---|---|---|---|---|---|
海拔 Altitude | 坡度 Slope | 坡向 Slope aspect | 海拔 Altitude | 坡度 Slope | 坡向 Slope aspect | |||
川陕鹅耳枥 Carpinus fargesiana | LA (cm2) | 0.27* | 0.34* | 0.16 | 0.20 | 0.24* | 0.07 | 0.12 |
LT (mm) | 0.40** | 0.43** | 0.09 | 0.29** | 0.15 | -0.07 | 0.20* | |
LDM (g) | 0.37** | 0.38** | 0.19* | 0.16* | 0.12 | 0.06 | 0.07 | |
LDMC (g·g-1) | 0.21* | 0.12 | -0.05 | 0.17* | -0.16 | -0.14* | 0.11 | |
SLA (cm2·g-1) | 0.35* | 0.38* | 0.21* | 0.15 | 0.16 | 0.09 | 0.06 | |
齿缘吊钟花 Enkianthus serrulatus | LA (cm2) | 0.18* | 0.17* | -0.01 | -0.03 | 0.03 | -0.02 | -0.09 |
LT (mm) | -0.10 | -0.10 | 0.04 | -0.06 | -0.03 | 0.04 | -0.03 | |
LDM (g) | 0.29* | 0.30* | 0.03 | 0.05 | 0.11 | 0.02 | -0.04 | |
LDMC (g·g-1) | 0.17 | 0.06 | 0.02 | 0.04 | -0.17* | 0.02 | -0.01 | |
SLA (cm2·g-1) | 0.06 | 0.08 | -0.01 | -0.06 | 0.07 | -0.01 | -0.08 | |
翅柃 Eurya alata | LA (cm2) | 0.38** | 0.40** | 0.12 | 0.04 | 0.17* | 0.02 | -0.06 |
LT (mm) | 0.02 | 0.05 | -0.02 | 0.07 | 0.08 | -0.03 | 0.07 | |
LDM (g) | 0.15* | 0.18* | 0.01 | 0.07 | 0.12 | -0.03 | 0.04 | |
LDMC (g·g-1) | 0.22** | 0.20* | -0.02 | 0.02 | 0.01 | -0.08 | -0.04 | |
SLA (cm2·g-1) | 0.11 | 0.07 | 0.02 | 0.20** | -0.07 | -0.01 | 0.18** | |
红果树 Stranvaesia davidiana | LA (cm2) | 0.15 | 0.24* | 0.16* | 0.03 | 0.21* | 0.13 | -0.02 |
LT (mm) | -0.03 | -0.08 | -0.05 | 0.05 | -0.10 | -0.04 | 0.07 | |
LDM (g) | 0.30* | 0.37* | 0.00 | 0.39** | 0.23* | -0.08 | 0.32** | |
LDMC (g·g-1) | 0.09 | 0.16 | 0.03 | 0.11 | 0.15 | 0.01 | 0.09 | |
SLA (cm2·g-1) | 0.29* | 0.36* | 0.02 | 0.32** | 0.23* | -0.05 | 0.25** | |
大金刚藤 Dalbergia dyeriana | LA (cm2) | 0.21 | 0.38** | -0.14 | 0.62** | 0.33* | -0.14* | 0.60* |
LT (mm) | 0.37* | 0.07 | -0.14 | 0.05 | -0.13 | -0.15 | -0.12 | |
LDM (g) | -0.05 | 0.00 | -0.08 | -0.13 | 0.03 | -0.08 | -0.12 | |
LDMC (g·g-1) | 0.27 | -0.15 | -0.05 | -0.09 | -0.32** | -0.05 | -0.23* | |
SLA (cm2·g-1) | 0.01 | 0.27* | 0.01 | 0.12 | 0.29* | 0.01 | 0.12 | |
中华猕猴桃 Actinidia chinensis | LA (cm2) | 0.43** | 0.50** | 0.06 | -0.01 | 0.29* | -0.25** | -0.10 |
LT (mm) | -0.08 | -0.08 | -0.07 | 0.01 | -0.02 | -0.03 | 0.02 | |
LDM (g) | 0.21 | 0.11 | 0.07 | -0.01 | -0.17 | -0.06 | -0.05 | |
LDMC (g·g-1) | -0.20* | -0.17* | -0.17** | -0.16 | 0.03 | -0.07 | -0.13 | |
SLA (cm2·g-1) | 0.12 | 0.28* | -0.12 | 0.11 | 0.40** | -0.23** | 0.09 |
表2 物种水平上不同生活型植物叶功能性状与地形因子的偏曼特尔检验
Table 2 Partial Mantel tests for the relationships between leaf functional traits of different life forms and topographic factors at species level across
物种 Species | 性状 Trait | 空间结构 Spatial structure | 未控制空间结构影响 Uncontrolled spatial structure effect | 控制空间结构影响 Controlling the influence of spatial structure | ||||
---|---|---|---|---|---|---|---|---|
海拔 Altitude | 坡度 Slope | 坡向 Slope aspect | 海拔 Altitude | 坡度 Slope | 坡向 Slope aspect | |||
川陕鹅耳枥 Carpinus fargesiana | LA (cm2) | 0.27* | 0.34* | 0.16 | 0.20 | 0.24* | 0.07 | 0.12 |
LT (mm) | 0.40** | 0.43** | 0.09 | 0.29** | 0.15 | -0.07 | 0.20* | |
LDM (g) | 0.37** | 0.38** | 0.19* | 0.16* | 0.12 | 0.06 | 0.07 | |
LDMC (g·g-1) | 0.21* | 0.12 | -0.05 | 0.17* | -0.16 | -0.14* | 0.11 | |
SLA (cm2·g-1) | 0.35* | 0.38* | 0.21* | 0.15 | 0.16 | 0.09 | 0.06 | |
齿缘吊钟花 Enkianthus serrulatus | LA (cm2) | 0.18* | 0.17* | -0.01 | -0.03 | 0.03 | -0.02 | -0.09 |
LT (mm) | -0.10 | -0.10 | 0.04 | -0.06 | -0.03 | 0.04 | -0.03 | |
LDM (g) | 0.29* | 0.30* | 0.03 | 0.05 | 0.11 | 0.02 | -0.04 | |
LDMC (g·g-1) | 0.17 | 0.06 | 0.02 | 0.04 | -0.17* | 0.02 | -0.01 | |
SLA (cm2·g-1) | 0.06 | 0.08 | -0.01 | -0.06 | 0.07 | -0.01 | -0.08 | |
翅柃 Eurya alata | LA (cm2) | 0.38** | 0.40** | 0.12 | 0.04 | 0.17* | 0.02 | -0.06 |
LT (mm) | 0.02 | 0.05 | -0.02 | 0.07 | 0.08 | -0.03 | 0.07 | |
LDM (g) | 0.15* | 0.18* | 0.01 | 0.07 | 0.12 | -0.03 | 0.04 | |
LDMC (g·g-1) | 0.22** | 0.20* | -0.02 | 0.02 | 0.01 | -0.08 | -0.04 | |
SLA (cm2·g-1) | 0.11 | 0.07 | 0.02 | 0.20** | -0.07 | -0.01 | 0.18** | |
红果树 Stranvaesia davidiana | LA (cm2) | 0.15 | 0.24* | 0.16* | 0.03 | 0.21* | 0.13 | -0.02 |
LT (mm) | -0.03 | -0.08 | -0.05 | 0.05 | -0.10 | -0.04 | 0.07 | |
LDM (g) | 0.30* | 0.37* | 0.00 | 0.39** | 0.23* | -0.08 | 0.32** | |
LDMC (g·g-1) | 0.09 | 0.16 | 0.03 | 0.11 | 0.15 | 0.01 | 0.09 | |
SLA (cm2·g-1) | 0.29* | 0.36* | 0.02 | 0.32** | 0.23* | -0.05 | 0.25** | |
大金刚藤 Dalbergia dyeriana | LA (cm2) | 0.21 | 0.38** | -0.14 | 0.62** | 0.33* | -0.14* | 0.60* |
LT (mm) | 0.37* | 0.07 | -0.14 | 0.05 | -0.13 | -0.15 | -0.12 | |
LDM (g) | -0.05 | 0.00 | -0.08 | -0.13 | 0.03 | -0.08 | -0.12 | |
LDMC (g·g-1) | 0.27 | -0.15 | -0.05 | -0.09 | -0.32** | -0.05 | -0.23* | |
SLA (cm2·g-1) | 0.01 | 0.27* | 0.01 | 0.12 | 0.29* | 0.01 | 0.12 | |
中华猕猴桃 Actinidia chinensis | LA (cm2) | 0.43** | 0.50** | 0.06 | -0.01 | 0.29* | -0.25** | -0.10 |
LT (mm) | -0.08 | -0.08 | -0.07 | 0.01 | -0.02 | -0.03 | 0.02 | |
LDM (g) | 0.21 | 0.11 | 0.07 | -0.01 | -0.17 | -0.06 | -0.05 | |
LDMC (g·g-1) | -0.20* | -0.17* | -0.17** | -0.16 | 0.03 | -0.07 | -0.13 | |
SLA (cm2·g-1) | 0.12 | 0.28* | -0.12 | 0.11 | 0.40** | -0.23** | 0.09 |
1 | Aem W, Fule PZ, Covington WW, Moore MM (2003). Diversity in ponderosa pine forest structure following ecological restoration treatments. Forest Science, 49, 885-900. |
2 | Cantón Y, Barrio GD, Solé-Benet A, Lázaro R (2004). Topographic controls on the spatial distribution of ground cover in the Tabernas badlands of SE Spain. Catena, 55, 341-365. |
3 | Chen C, Liu DH, Wu JJ, Kang MY, Zhang JT, Liu QR, Liang Y (2015). Leaf traits of Quercus wutaishanica and their relationship with topographic factors in Mount Dongling. Chinese Journal of Ecology, 34, 2131-2139. |
[ 陈晨, 刘丹辉, 吴键军, 康慕谊, 张金屯, 刘全儒, 梁钰 (2015). 东灵山地区辽东栎叶性状与地形因子关系. 生态学杂志, 34, 2131-2139.] | |
4 | Condit R (1998). Tropical Forest Census Plots: Methods and Results from Barro Colorado Island, Panama and A Comparison with Other Plots. Springer-Verlag, Berlin Heidelberg, New York. |
5 | Cornelissen JHC, Cerabolini B, Castrodíez P, Villarsalvador P, Montserratmartí G, Puyravaud JP, Maestro M, Werger MJA, Aerts R (2003a). Functional traits of woody plants: Correspondence of species rankings between field adults and laboratory-grown seedlings? Journal of Vegetation Science, 14, 311-322. |
6 | Cornelissen JHC, Lavorel S, Garnier E, Buchmann N, Gurvich DE, Reich PB, Steege HT, Morgan HD, Heijden MGAV (2003b). A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Australian Journal of Botany, 51, 335-380. |
7 | Cornwell WK, Ackerly DD (2009). Community assembly and shifts in plant trait distributions across an environmental gradient in coastal California. Ecological Monographs, 79, 109-126. |
8 | Cornwell WK, Schwilk LDW, Ackerly DD (2006). A trait- based test for habitat filtering: Convex hull volume. Ecology, 87, 1465-1471. |
9 | Dai N, Hirabuki Y, Mochida Y (2010). Influence of micro- landforms on forest structure, tree death and recruitment in a Japanese temperate mixed forest. Ecological Research, 18, 533-547. |
10 | Dang JJ, Zhao CZ, Li Y, Hou ZJ, Dong XG (2014). Variations with slope in stem and leaf traits of Melica przewalskyi in alpine grassland. Chinese Journal of Plant Ecology, 38, 1307-1314. |
[ 党晶晶, 赵成章, 李钰, 侯兆疆, 董小刚 (2014). 高寒草地甘肃臭草茎-叶性状的坡度差异性. 植物生态学报, 38, 1307-1314.] | |
11 | Dı́az S, Cabido M (2001). Vive la difference: Plant functional diversity matters to ecosystem processes. Trends in Ecology & Evolution, 16, 646-655. |
12 | Ding J, Wu Q, Yan H, Zhang SR (2011). Effects of topographic variations and soil characteristics on plant functional traits in a subtropical ever green broad-leaved forest. Biodiversity Science, 19, 158-167. |
[ 丁佳, 吴茜, 闫慧, 张守仁 (2011). 地形和土壤特性对亚热带常绿阔叶林内植物功能性状的影响. 生物多样性, 19, 158-167.] | |
13 | Editorial Board of Forest in China (2000). Forest in China. Vol. 3, Broad-leaved Forest. China Forestry Publishing House, Beijing |
中国森林编辑委员会(2000). 中国森林第三卷: 阔叶森林. 中国林业出版社, 北京.] | |
14 | Fang JY, Shen ZH, Cui HT (2004). Ecological characteristics of mountains and research issues of mountain ecology. Biodiversity Science, 12, 10-19. |
[ 方精云, 沈泽昊, 崔海亭 (2004). 试论山地的生态特征及山地生态学的研究内容. 生物多样性, 12, 10-19.] | |
15 | Gao XM, Chen LZ (1998). The revision of plant life form system and an analysis of the life-form spectrum of forest plants in the warm temperate zone of China. Acta Botanica Sinica, 40, 553-559. |
[ 高贤明, 陈灵芝 (1998). 植物生活型分类系统的修订及中国暖温带森林植物生活型谱分析. 植物学报, 40, 553-559.] | |
16 | Hara M, Hirata K, Fujihara M, Oono K (1996). Vegetation structure in relation to micro-landform in an evergreen broad-leaved forest on Amami Ohshima Island, south-west Japan. Ecological Research, 11, 325-337. |
17 | Harrod RJ, Mcrae BH, Hartl WE (1999). Historical stand reconstruction in ponderosa pine forests to guide silvicultural prescriptions. Forest Ecology and Management, 114, 433-446. |
18 | He D, Yan ER (2018). Size-dependent variations in individual traits and trait scaling relationships within a shade-tolerant evergreen tree species. American Journal of Botany, 105, 1165-1174. |
19 | Homyack JA, Harrison DJ, Krohn WB (2004). Structural differences between precommercially thinned and unthinned conifer stands. Forest Ecology and Management, 194, 131-143. |
20 | Huang HX, Yang XD, Sun BW, Zhang ZH, Yan ER (2013). Variability and association of leaf traits between current- year and former-year leaves in evergreen trees in Tiantong, Zhejiang, China. Chinese Journal of Plant Ecology, 37, 912-921. |
[ 黄海侠, 杨晓东, 孙宝伟, 张志浩, 阎恩荣 (2013). 浙江天童常绿植物当年生与往年生叶片性状的变异与关联. 植物生态学报, 37, 912-921.] | |
21 | Huang YT, Yao L, Ai XR, Lü SA, Ding Y (2015). Quantitative classification of the subtropical evergreen-deciduous broadleaved mixed forest and the deciduous and evergreen species composition structure across two national nature reserves in the southwest of Hubei, China. Chinese Journal of Plant Ecology, 39, 990-1002. |
[ 黄永涛, 姚兰, 艾训儒, 吕世安, 丁易 (2015). 鄂西南两个自然保护区亚热带常绿落叶阔叶混交林类型及其常绿和落叶物种组成结构分析. 植物生态学报, 39, 990-1002.] | |
22 | Kayama M, Sasa K, Koike T (2002). Needle life span, photosynthetic rate and nutrient concentration of Picea glehnii, P. jezoensis and P. abies planted on serpentine soil in northern Japan. Tree Physiology, 22, 707-716. |
23 | Kenzo T, Inoue Y, Yoshimura M, Yamashita M, Tanakaoda A, Ichie T (2015). Height-related changes in leaf photosynthetic traits in diverse Bornean tropical rain forest trees. Oecologia, 177, 191-202. |
24 | Li HW, Wang XA, Guo H (2012). Leaf functional traits of different forest communities in Ziwuling Mountains of Loess Plateau. Chinese Journal of Ecology, 31, 544-550. |
[ 李宏伟, 王孝安, 郭华 (2012). 黄土高原子午岭不同森林群落叶功能性状. 生态学杂志, 31, 544-550.] | |
25 | Li JX, Xu WT, Xiong GM, Wang Y, Zhao CM, Lu ZJ, Li YL, Xie ZQ (2017). Leaf nitrogen and phosphorus concentration and the empirical regulations in dominant woody plants of shrublands across southern China. Chinese Journal of Plant Ecology, 41, 31-42. |
[ 李家湘, 徐文婷, 熊高明, 王杨, 赵常明, 卢志军, 李跃林, 谢宗强 (2017). 中国南方灌丛优势木本植物叶的氮、磷含量及其影响因素. 植物生态学报, 41, 31-42.] | |
26 | Li Y, Zhao CZ, Dong XG, Hou ZJ, Ma XL, Zhang Q (2013a). Twig and leaf trait differences in Stellera chamaejasme with slope in alpine grassland. Chinese Journal of Plant Ecology, 37, 709-717. |
[ 李钰, 赵成章, 董小刚, 侯兆疆, 马小丽, 张茜 (2013a). 高寒草地狼毒枝-叶性状的坡度差异性. 植物生态学报, 37, 709-717.] | |
27 | Li Y, Zhao CZ, Dong XG, Hou ZJ, Ma XL, Zhang Q (2013b). Responses of Stellera chamaejasme twig and leaf traits to slope aspect in alpine grassland of Northwest China. Chinese Journal of Ecology, 32, 3145-3151. |
[ 李钰, 赵成章, 董小刚, 侯兆疆, 马小丽, 张茜 (2013b). 高寒草地狼毒枝-叶性状对坡向的响应. 生态学杂志, 32, 3145-3151.] | |
28 | Liu XJ, Ma KP (2015). Plant functional traits-concepts, applications and future directions. Science China: Life Science, 45, 325-339. |
[ 刘晓娟, 马克平 (2015). 植物功能性状研究进展. 中国科学: 生命科学, 45, 325-339.] | |
29 | Liu YP, Liu GF, Baiyila DF, Cheng WY, Chen ZJ, Jiang LL (2017). Effects of topographic factors on leaf traits of dominant species in different forest communities in Daqinggou Nature Reserves. Scientia Silvae Sinicae, 53(3), 154-162. |
[ 刘玉平, 刘贵峰, 达福白乙拉, 程伟燕, 陈志婧, 姜丽丽 (2017). 地形因子对大青沟自然保护区不同森林群落叶性状的影响. 林业科学, 53(3), 154-162.] | |
30 | Mark AF, Dickinson KJM, Allen J, Smith R, West CJ (2010). Vegetation patterns, plant distribution and life forms across the alpine zone in southern Tierra del Fuego, Argentina. Austral Ecology, 26, 423-440. |
31 | Meng TT, Ni J, Wang GH (2007). Plant functional traits, environments and ecosystem functioning. Journal of Plant Ecology (Chinese Version), 31, 150-165. |
[ 孟婷婷, 倪健, 王国宏 (2007). 植物功能性状与环境和生态系统功能. 植物生态学报, 31, 150-165.] | |
32 | Pérezharguindeguy N, Díaz S, Garnier E, Lavorel S, Poorter H, Jaureguiberry P, Bretharte MS, Cornwell WK, Craine JM, Gurvich DE, Urcelay C, Veneklaas EJ, Reich PB, Poorter L, Wright IJ, Ray P, Enrico L, Pausas JG, Vos AC, Buchmann N, Funes G, Quétier F, Hodgson JG, Thompson K, Morgan HD, Steege H, Heijden MGA, Sack L, Blonder B, Poschlod P, Vaieretti MV, Conti G, Staver AC, Aquino S, Cornelissen JHC (2013). New handbook for standardised measurement of plant functional traits worldwide. Australian Journal of Botany, 61, 167-234. |
33 | Poorter L, Wright SJ, Paz H, Ackerly DD, Condit R, Ibarra-manríquez G, Harms KE, Licona JC, Martínez-ramos M, Mazer SJ (2008). Are functional traits good predictors of demographic rates? Evidence from five neotropical forests. Ecology, 89, 1908-1920. |
34 | Putz FE (1984). How trees avoid and shed liana. Biotropica, 1, 19-23. |
35 | Reich PB (2003). The evolution of plant functional variation: Traits, spectra, and strategies. International Journal of Plant Sciences, 164, S143-S164. |
36 | Sakai A, Ohsawa M (1994). Topographical pattern of the forest vegetation on a river basin in a warm-temperate hilly region, central Japan. Ecological Research, 9, 269-280. |
37 | Schnitzer SA, Bongers F (2002). The ecology of lianas and their role in forests. Trends in Ecology & Evolution, 5, 223-230. |
38 | Shen ZH (2002). A multi-scale study on the vegetation-environment relationship of a mountain forest transect. Acta Ecologica Sinica, 22, 461-470. |
[ 沈泽昊 (2002). 山地森林样带植被-环境关系的多尺度研究. 生态学报, 22, 461-470.] | |
39 | Shen ZH, Zhang XS, Jin YX (2000). Gradient analysis of the influence of mountain topography on vegetation pattern. Acta Phytoecologica Sinica, 24, 430-435. |
[ 沈泽昊, 张新时, 金义兴 (2000). 地形对亚热带山地景观尺度植被格局影响的梯度分析. 植物生态学报, 24, 430-435.] | |
40 | Song YC (2001). Vegetation Ecology. East China Normal University Press, Shanghai. |
[ 宋永昌 (2001). 植被生态学. 华东师范大学出版社, 上海.] | |
41 | Song YC (2004). Tentative classification scheme of evergreen broad-leaved forests of China. Acta Phytoecologica Sinica, 28, 435-448. |
[ 宋永昌 (2004). 中国常绿阔叶林分类试行方案. 植物生态学报, 28, 435-448.] | |
42 | Toledo M, Poorter L, Claros MP, Alarcón A, Balcázar J, Leaño C, Licona JC, Llanque O, Vroomans V, Zuidema P, Bongers F (2011). Climate is a stronger driver of tree and forest growth rates than soil and disturbance. Journal of Ecology, 99, 254-264. |
43 | Waltz AEM, Fulé PZ, Covington WW, Moore MM (2003). Diversity in ponderosa pine forest structure following ecological restoration treatments. Forest Science, 49, 885-900. |
44 | Wang CS, Wang SP (2015). A review of research on responses of leaf traits to climate change. Chinese Journal of Plant Ecology, 39, 206-216. |
[ 王常顺, 汪诗平 (2015). 植物叶片性状对气候变化的响应研究进展. 植物生态学报, 39, 206-216.] | |
45 | Wang HY, Chen H (2013). Plant functional groups based on vegetative and reproductive traits in a subtropical forest community. Journal of Forest Research, 18, 482-490. |
46 | Westoby M, Wright IJ (2006). Land-plant ecology on the basis of functional traits. Trends in Ecology & Evolution, 21, 261-268. |
47 | Wu ZY (1980). Chinese Vegetation. Science Press, Beijing. 279-306. |
[ 吴征镒 (1980). 中国植被. 科学出版社, 北京. 279-306.] | |
48 | Zhang L, Luo TX (2004). Advances in ecological studies on leaf lifespan and associated leaf traits. Acta Ecologica Sinica, 28, 844-852. |
[ 张林, 罗天祥 (2004). 植物叶寿命及其相关叶性状的生态学研究进展. 植物生态学报, 28, 844-852.] | |
49 | Zhang QP (2011). Differentiation Patterns of Leaf Traits of Main Trees Along Altitudinal and Micro-Topographical Gradients on Tianmushan Mountain. Master degree dissertation, East China Normal University, Shanghai. |
[ 张奇平 (2011). 天目山主要树种叶性状在海拔梯度和微地形上的分异格局. 硕士学位论文, 华东师范大学, 上海.] | |
50 | Zhong QL, Liu LB, Xu X, Yang Y, Guo YM, Xu HY, Cai XL, Ni J (2018). Variations of plant functional traits and adaptive strategy of woody species in a karst forest of central Guizhou Province, southwestern China. Chinese Journal of Plant Ecology, 42, 562-572. |
[ 钟巧连, 刘立斌, 许鑫, 杨勇, 郭银明, 许海洋, 蔡先立, 倪健 (2018). 黔中喀斯特木本植物功能性状变异及其适应策略. 植物生态学报, 42, 562-572.] | |
51 | Zhou L, Zhang WQ, Tang HH, Chen WG, Pan LJ (2014). Ecological stoichiometry characteristics of young-and-middle aged conifer-broadleaved plantation in Southern Subtropical Region. Ecology and Environmental Sciences, 23, 1732-1738. |
[ 周丽, 张卫强, 唐洪辉, 陈伟光, 盘李军 (2014). 南亚热带中幼龄针阔混交林生态化学计量特征. 生态环境学报, 23, 1732-1738.] | |
52 | Zhu JD, Meng TT, Ni J, Su HX, Xie ZQ, Zhang SR, Zheng YR, Xiao CW (2011). Within-leaf allometric relationships of mature forests in different bioclimatic zones vary with plant functional types. Chinese Journal of Plant Ecology, 35, 687-698. |
[ 祝介东, 孟婷婷, 倪健, 苏宏新, 谢宗强, 张守仁, 郑元润, 肖春旺 (2011). 不同气候带间成熟林植物叶性状间异速生长关系随功能型的变异. 植物生态学报, 35, 687-698.] |
[1] | 文佳 张新娜 王娟 赵秀海 张春雨. 性状调节幼苗存活率对邻体竞争和环境的响应 [J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[2] | 汤璐瑶, 方菁, 钱海蓉, 张博纳, 上官方京, 叶琳峰, 李姝雯, 童金莲, 谢江波. 落羽杉和池杉功能性状随高度的变异与协同[J]. 植物生态学报, 2023, 47(11): 1561-1575. |
[3] | 余秋伍, 杨菁, 沈国春. 浙江天童常绿阔叶林林冠结构与群落物种组成的关系[J]. 植物生态学报, 2022, 46(5): 529-538. |
[4] | 江蓝, 魏晨思, 何中声, 朱静, 邢聪, 王雪琳, 刘金福, 沈彩霞, 施友文. 格氏栲天然林林窗植物群落功能性状的变异[J]. 植物生态学报, 2022, 46(3): 267-279. |
[5] | 高思涵, 葛珏希, 周李奕, 朱宝琳, 葛星宇, 李凯, 倪健. 测定森林树木叶面积的最适叶片数是多少?[J]. 植物生态学报, 2018, 42(9): 917-925. |
[6] | 马明哲, 申国珍, 熊高明, 赵常明, 徐文婷, 周友兵, 谢宗强. 神农架自然遗产地植被垂直带谱的特点和代表性[J]. 植物生态学报, 2017, 41(11): 1127-1139. |
[7] | 黄永涛, 姚兰, 艾训儒, 吕世安, 丁易. 鄂西南两个自然保护区亚热带常绿落叶阔叶混交林类型及其常绿和落叶物种组成结构分析[J]. 植物生态学报, 2015, 39(10): 990-1002. |
[8] | 胡志伟, 沈泽昊, 吕楠, 赵俊, 李道兴, 陈华, 王功芳. 地形对森林群落年龄及其空间格局的影响[J]. 植物生态学报, 2007, 31(5): 814-824. |
[9] | 刘振国, 李镇清. 植物群落中物种小尺度空间结构研究[J]. 植物生态学报, 2005, 29(6): 1020-1028. |
[10] | 沈泽昊, 李道兴, 王功芳. 三峡大老岭地区山地常绿落叶阔叶混交林林隙干扰研究 I. 林隙基本特征[J]. 植物生态学报, 2001, 25(3): 276-282. |
[11] | 郝日明, 魏宏图. 紫金山森林植被性质与常绿阔叶林混交林混交林重建可能性的探讨[J]. 植物生态学报, 1999, 23(2): 108-115. |
[12] | 孙雪峰, 张振万, 雍世鹏. 内蒙古锡林郭勒草原植被结构的遥感图象分析[J]. 植物生态学报, 1990, 14(3): 247-257. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19