植物生态学报 ›› 2023, Vol. 47 ›› Issue (11): 1561-1575.DOI: 10.17521/cjpe.2022.0308
所属专题: 植物功能性状
汤璐瑶, 方菁, 钱海蓉, 张博纳, 上官方京, 叶琳峰, 李姝雯, 童金莲, 谢江波()
收稿日期:
2022-07-25
接受日期:
2023-02-15
出版日期:
2023-11-20
发布日期:
2023-12-22
通讯作者:
谢江波(基金资助:
TANG Lu-Yao, FANG Jing, QIAN Hai-Rong, ZHANG Bo-Na, SHANGGUAN Fang-Jing, YE Lin-Feng, LI Shu-Wen, TONG Jin-Lian, XIE Jiang-Bo()
Received:
2022-07-25
Accepted:
2023-02-15
Online:
2023-11-20
Published:
2023-12-22
Contact:
XIE Jiang-Bo(Supported by:
摘要:
高大树木木质部水分运输阻力和叶片蒸腾速率随树高的增加导致高度梯度水分供需矛盾。量化分析相关功能性状随高度的变异与性状协同关系, 有助于深入理解植物的水分供需机制。该研究选取了生长在湿生同质园中的落羽杉(Taxodium distichum)及其变种池杉(T. distichum var. imbricatum), 采用回归分析、单因素方差分析、通径分析等方法探究其水力(枝比导率(Ks)、叶比导率(Kl)、导水率损失50%时的水势(P50)、最大蒸腾速率(Tr)、正午叶水势(ψMD)、胡伯尔值(Hv)等)、光合(最大净光合速率(Pn))和碳经济性状(比叶质量(LMA)、木质部密度(WD))随高度的变异规律、协同关系以及种间性状差异。结果发现: (1)落羽杉和池杉Kl、Hv、Pn和LMA随高度增加, 其中Pn的增加可能与中冠层的Tr和最大气孔导度(Gs)下降有关。(2)种内性状间协同关系: 落羽杉和池杉Ks与Hv显著负相关, 落羽杉WD与Ks显著正相关, 池杉WD与Hv极显著负相关。(3)落羽杉和池杉高冠层存在水分限制, 由达西定律和Tr计算的理论水分供需比(r)量化了水分供需能力的下降, 且它们r = 0时的理论最大高度(落羽杉: 32 m (95%置信区间上限: 57 m); 池杉: 21 m (95%置信区间上限: 27 m))在历史记载的最大高度范围内。(4)池杉各个冠层高度Kl、Hv和LMA显著高于落羽杉, 而Pn、Tr和Gs显著更低; 池杉中、高冠层水力安全边界(HSM)显著更高, P50显著更低: 池杉保守的水力策略与低资源获取能力导致其最大理论高度较低, 而落羽杉激进的水力策略与高资源获取能力导致其最大理论高度较高。
汤璐瑶, 方菁, 钱海蓉, 张博纳, 上官方京, 叶琳峰, 李姝雯, 童金莲, 谢江波. 落羽杉和池杉功能性状随高度的变异与协同. 植物生态学报, 2023, 47(11): 1561-1575. DOI: 10.17521/cjpe.2022.0308
TANG Lu-Yao, FANG Jing, QIAN Hai-Rong, ZHANG Bo-Na, SHANGGUAN Fang-Jing, YE Lin-Feng, LI Shu-Wen, TONG Jin-Lian, XIE Jiang-Bo. Variation and coordination in functional traits along the tree height of Taxodium distichum and Taxodium distichum var. imbricatum. Chinese Journal of Plant Ecology, 2023, 47(11): 1561-1575. DOI: 10.17521/cjpe.2022.0308
树种 Species | 海拔 Altitude (m) | 坡向 Slope direction | 土壤水分状况 Soil moisture status | 树高 Tree height (m) | 胸径 DBH (cm) | 冠幅 Crown (m) |
---|---|---|---|---|---|---|
落羽杉 T. distichum | 24-44 | 西南 SW | 湿润 Moist | 15-17 | 34.04 ± 2.02 | 6.22 ± 0.18 |
池杉 T. distichum var. imbricatum | 42-44 | 西南 SW | 湿润 Moist | 13-15 | 31.42 ± 0.87 | 6.32 ± 0.21 |
表1 落羽杉和池杉采样点及样树的基本特征(平均值±标准误)
Table 1 Basic characteristics of the sampling plots and the trees of Taxodium distichum and T. distichum var. imbricatum (mean ± SE)
树种 Species | 海拔 Altitude (m) | 坡向 Slope direction | 土壤水分状况 Soil moisture status | 树高 Tree height (m) | 胸径 DBH (cm) | 冠幅 Crown (m) |
---|---|---|---|---|---|---|
落羽杉 T. distichum | 24-44 | 西南 SW | 湿润 Moist | 15-17 | 34.04 ± 2.02 | 6.22 ± 0.18 |
池杉 T. distichum var. imbricatum | 42-44 | 西南 SW | 湿润 Moist | 13-15 | 31.42 ± 0.87 | 6.32 ± 0.21 |
数据来源 Data Source | 落羽杉 T. distichum (m) | 池杉 T. distichum var. imbricatum (m) | 网站 Website |
---|---|---|---|
Flora of China | 50 | 25 | http://www.iplant.cn/foc |
《北美植物志》 Flora of North America | 30 | http://floranorthamerica.org/Main_Page | |
树木和灌木在线 Trees and Shrubs online | 30.48-45.72 | https://treesandshrubsonline.org/ | |
《生命大百科全书》 Encyclopedia of Life | 39.62 | https://eol.org/ | |
微软必应搜索引擎 Microsoft Bing | 38.1 | 25 | https://cn.bing.com/?FORM=Z9FD1 |
百度搜索引擎 Baidu | 25-50 | 25 | https://www.baidu.com/ |
世界植物在线 Plants of the World Online | 46 | https://powo.science.kew.org/ |
表2 世界各地记录的落羽杉和池杉最大高度
Table 2 Maximum heights of Taxodium distichum and T. distichum var. imbricatum recorded worldwide
数据来源 Data Source | 落羽杉 T. distichum (m) | 池杉 T. distichum var. imbricatum (m) | 网站 Website |
---|---|---|---|
Flora of China | 50 | 25 | http://www.iplant.cn/foc |
《北美植物志》 Flora of North America | 30 | http://floranorthamerica.org/Main_Page | |
树木和灌木在线 Trees and Shrubs online | 30.48-45.72 | https://treesandshrubsonline.org/ | |
《生命大百科全书》 Encyclopedia of Life | 39.62 | https://eol.org/ | |
微软必应搜索引擎 Microsoft Bing | 38.1 | 25 | https://cn.bing.com/?FORM=Z9FD1 |
百度搜索引擎 Baidu | 25-50 | 25 | https://www.baidu.com/ |
世界植物在线 Plants of the World Online | 46 | https://powo.science.kew.org/ |
图1 落羽杉和池杉叶片结构和木质部解剖结构沿高度变异的示意图。
Fig. 1 Schematic diagram of variations in leaf structure and xylem anatomical structure of Taxodium distichum and T. distichum var. imbricatum along the tree height.
性状 Trait | 符号 Symbol | 单位 Unit |
---|---|---|
枝比导率 Sapwood-specific hydraulic conductivity | Ks | kg·m-1·s-1·MPa-1 |
叶比导率 Leaf specific conductivity | Kl | g·m-1·s-1·MPa-1 |
正午叶水势 Midday leaf water potential | ψMD | MPa |
导水率损失50%时的水势 Water potential causing 50% loss of conductivity | P50 | MPa |
水力安全边界 Hydraulic safety margin | HSM | MPa |
胡伯尔值 Huber value | Hv | m2·m-2 |
比叶质量 Leaf mass per unit area | LMA | kg·m-2 |
木质部密度 Wood density | WD | g·cm-3 |
最大净光合速率(光饱和CO2同化率) Maximum net photosynthetic rate | Pn | μmol·m-2·s-1 |
最大蒸腾速率 Maximum transpiration rate | Tr | mmol·m-2·s-1 |
最大气孔导度 Maximum stomatal conductance | Gs | mol·m-2·s-1 |
水分利用效率 Water use efficiency | WUE | μmol·mmol-1 |
理论水分供给速率 Theoretical water supply rate | Qcrit | mmol·m-2·s-1 |
管胞直径 Tracheid diameter | Dt | μm |
管胞密度 Tracheid density | Nt | 103·mm-2 |
管胞壁厚度 Tracheid wall thickness | Tw | μm |
厚度跨度比 Thickness span ratio | (t/b)2 | μm·μm-1 |
纹孔口直径 Pit aperture diameter | Dpa | μm |
纹孔膜直径 Pit membrane diameter | Dpm | μm |
表3 本研究相关性状、符号及单位
Table 3 List for traits related to this study: symbols and units employed
性状 Trait | 符号 Symbol | 单位 Unit |
---|---|---|
枝比导率 Sapwood-specific hydraulic conductivity | Ks | kg·m-1·s-1·MPa-1 |
叶比导率 Leaf specific conductivity | Kl | g·m-1·s-1·MPa-1 |
正午叶水势 Midday leaf water potential | ψMD | MPa |
导水率损失50%时的水势 Water potential causing 50% loss of conductivity | P50 | MPa |
水力安全边界 Hydraulic safety margin | HSM | MPa |
胡伯尔值 Huber value | Hv | m2·m-2 |
比叶质量 Leaf mass per unit area | LMA | kg·m-2 |
木质部密度 Wood density | WD | g·cm-3 |
最大净光合速率(光饱和CO2同化率) Maximum net photosynthetic rate | Pn | μmol·m-2·s-1 |
最大蒸腾速率 Maximum transpiration rate | Tr | mmol·m-2·s-1 |
最大气孔导度 Maximum stomatal conductance | Gs | mol·m-2·s-1 |
水分利用效率 Water use efficiency | WUE | μmol·mmol-1 |
理论水分供给速率 Theoretical water supply rate | Qcrit | mmol·m-2·s-1 |
管胞直径 Tracheid diameter | Dt | μm |
管胞密度 Tracheid density | Nt | 103·mm-2 |
管胞壁厚度 Tracheid wall thickness | Tw | μm |
厚度跨度比 Thickness span ratio | (t/b)2 | μm·μm-1 |
纹孔口直径 Pit aperture diameter | Dpa | μm |
纹孔膜直径 Pit membrane diameter | Dpm | μm |
图2 落羽杉(BC, ▲)和池杉(PC, ●)功能性状沿高度的回归分析(平均值±标准误)。图中的平均值和误差条用于直观地展示性状变化而不参与计算。
Fig. 2 Regression analysis of water-carbon traits along the tree height in Taxodium distichum (BC, ▲) and T. distichum var. imbricatum (PC, ●) (mean ± SE). The mean value and error bar on the figure are used to visually show the variation of traits without participating in the calculation. Trait symbols see Table 3.
图3 落羽杉和池杉在种内不同冠层高度(大写字母)和同一冠层高度种间(小写字母)的性状差异分析(平均值±标准误)。不同字母表示在p ≤ 0.05水平上差异显著。
Fig. 3 Differences in traits for the same height in different species (uppercase letters) and for different canopy heights in the same species (lowercase letters) in Taxodium distichum and T. distichum var. imbricatum (mean ± SE). Different letters indicate significant differences at p ≤ 0.05 level. Trait symbols see Table 3.
图4 落羽杉(BC, ▲)和池杉(PC, ●)木质部解剖结构沿高度的回归分析(平均值±标准误)。图中的平均值和误差条用于直观地展示性状变化而不参与计算。
Fig. 4 Regression analysis of xylem anatomical structure along the tree height in Taxodium distichum (BC, ▲) and T. distichum var. imbricatum (PC, ●) (mean ± SE). The mean value and error bar on the figure are used to visually show the variation of traits without participating in the calculation. Trait symbols see Table 3.
图5 落羽杉和池杉种内性状间的通径分析。性状缩写见表3。箭头表示性状间的拟合关系, 蓝线表示正相关, 红线表示负相关。标准化通径系数用线的粗细表示, 系数越大, 线越粗。标准化路径系数的显著性标示在箭头上(ns, p ≥ 0.05; *, p < 0.05; **, p < 0.001)。
Fig. 5 Path analysis on traits in Taxodium distichum and T. distichum var. imbricatum. Trait symbols see Table 3. The arrows indicate the proposed links between traits. Blue lines indicate positive relationships, red lines indicate negative relationships. Standard path coefficients are represented as the thickness of the line, the larger the coefficient, the thicker the line. Significances of standard path coefficients are shown on the arrows (ns, p ≥ 0.05; *, p < 0.05; **, p < 0.001). NFI, normed fit index; SRMR, standardized root mean square residual.
图6 落羽杉(BC, ▲)和池杉(PC, ●)水分供需比(r)沿高度的回归分析(平均值±标准误)。回归线取95%置信区间上限, 虚线为回归线的延长线。
Fig. 6 Regression analysis of the ratio of water supply and demand (r) along the tree height in Taxodium distichum (BC, ▲) and T. distichum var. imbricatum (PC, ●) (mean ± SE). Upper bound of 95% confidence interval (CI) is taken, and the dotted lines are the extension of the regression lines.
[1] |
Ambrose AR, Baxter WL, Wong CS, Burgess SSO, Williams CB, Næsborg RR, Koch GW, Dawson TE (2016). Hydraulic constraints modify optimal photosynthetic profiles in giant sequoia trees. Oecologia, 182, 713-730.
DOI PMID |
[2] |
Anfodillo T, Carraro V, Carrer M, Fior C, Rossi S (2006). Convergent tapering of xylem conduits in different woody species. New Phytologist, 169, 279-290.
PMID |
[3] |
Brodribb TJ, Jordan GJ (2011). Water supply and demand remain balanced during leaf acclimation of Nothofagus cunninghamii trees. New Phytologist, 192, 437-448.
DOI PMID |
[4] |
Buckley TN, Warren CR (2014). The role of mesophyll conductance in the economics of nitrogen and water use in photosynthesis. Photosynthesis Research, 119, 77-88.
DOI PMID |
[5] |
Burgess SSO, Dawson TE (2007). Predicting the limits to tree height using statistical regressions of leaf traits. New Phytologist, 174, 626-636.
DOI PMID |
[6] | Burgess SSO, Pittermann J, Dawson TE (2006). Hydraulic efficiency and safety of branch xylem increases with height in Sequoia sempervirens (D. Don) crowns. Plant, Cell & Environment, 29, 229-239. |
[7] |
Butler DW, Gleason SM, Davidson I, Onoda Y, Westoby M (2012). Safety and streamlining of woody shoots in wind: an empirical study across 39 species in tropical Australia. New Phytologist, 193, 137-149.
DOI PMID |
[8] |
Caquet B, Barigah TS, Cochard H, Montpied P, Collet C, Dreyer E, Epron D (2009). Hydraulic properties of naturally regenerated beech saplings respond to canopy opening. Tree Physiology, 29, 1395-1405.
DOI PMID |
[9] |
Chen YJ, Choat B, Sterck F, Maenpuen P, Katabuchi M, Zhang SB, Tomlinson KW, Oliveira RS, Zhang YJ, Shen JX, Cao KF, Jansen S (2021). Hydraulic prediction of drought- induced plant dieback and top-kill depends on leaf habit and growth form. Ecology Letters, 24, 2350-2363.
DOI URL |
[10] |
Choat B, Jansen S, Brodribb TJ, Cochard H, Delzon S, Bhaskar R, Bucci SJ, Feild TS, Gleason SM, Hacke UG, Jacobsen AL, Lens F, Maherali H, Martínez-Vilalta J, Mayr S, et al. (2012). Global convergence in the vulnerability of forests to drought. Nature, 491, 752-755.
DOI |
[11] |
Clearwater MJ, Meinzer FC (2001). Relationships between hydraulic architecture and leaf photosynthetic capacity in nitrogen-fertilized Eucalyptus grandis trees. Tree Physiology, 21, 683-690.
PMID |
[12] | Couvreur V, Ledder G, Manzoni S, Way DA, Muller EB, Russo SE (2018). Water transport through tall trees: a vertically explicit, analytical model of xylem hydraulic conductance in stems. Plant, Cell & Environment, 41, 1821-1839. |
[13] |
Cruiziat P, Cochard H, Améglio T (2002). Hydraulic architecture of trees: main concepts and results. Annals of Forest Science, 59, 723-752.
DOI URL |
[14] |
Deans RM, Brodribb TJ, Busch FA, Farquhar GD (2020). Optimization can provide the fundamental link between leaf photosynthesis, gas exchange and water relations. Nature Plants, 6, 1116-1125.
DOI PMID |
[15] | Domec JC, Lachenbruch B, Meinzer FC, Woodruff DR, Warren JM, McCulloh KA (2008). Maximum height in a conifer is associated with conflicting requirements for xylem design. Proceedings of the National Academy of Sciences of the United States of America, 105, 12069-12074. |
[16] |
Domec JC, Lachenbruch B, Pruyn ML, Spicer R (2012). Effects of age-related increases in sapwood area, leaf area, and xylem conductivity on height-related hydraulic costs in two contrasting coniferous species. Annals of Forest Science, 69, 17-27.
DOI URL |
[17] | Duursma R, Choat B (2017). Fitplc—An R package to fit hydraulic vulnerability curves. Journal of Plant Hydraulics, 4, e002. DOI: 10.20870/jph.2017.e002. |
[18] |
Ennajeh M, Simões F, Khemira H, Cochard H (2011). How reliable is the double-ended pressure sleeve technique for assessing xylem vulnerability to cavitation in woody angiosperms. Physiologia Plantarum, 142, 205-210.
DOI URL |
[19] | Fang LD, Ning QR, Guo JJ, Gong XW, Zhu JJ, Hao GY (2021). Hydraulic limitation underlies the dieback of Populus pseudo-simonii trees in water-limited areas of Northern China. Forest Ecology and Management, 483, 118764. DOI: 10.1016/j.foreco.2020.118764. |
[20] |
Franklin O, Harrison SP, Dewar R, Farrior CE, Brännström Å, Dieckmann U, Pietsch S, Falster D, Cramer W, Loreau M, Wang H, Mäkelä A, Rebel KT, Meron E, Schymanski SJ, et al. (2020). Organizing principles for vegetation dynamics. Nature Plants, 6, 444-453.
DOI PMID |
[21] |
Fulton MR, Kamman JC, Coyle MP (2014). Hydraulic limitation on maximum height of Pinus strobus trees in northern Minnesota, USA. Trees, 28, 841-848.
DOI URL |
[22] |
Givnish TJ, Wong SC, Stuart-Williams H, Holloway-Phillips M, Farquhar GD (2014). Determinants of maximum tree height in Eucalyptus species along a rainfall gradient in Victoria, Australia. Ecology, 95, 2991-3007.
DOI URL |
[23] |
Gleason SM, Butler DW, Ziemińska K, Waryszak P, Westoby M (2012). Stem xylem conductivity is key to plant water balance across Australian angiosperm species. Functional Ecology, 26, 343-352.
DOI URL |
[24] |
Gleason SM, Westoby M, Jansen S, Choat B, Hacke UG, Pratt RB, Bhaskar R, Brodribb TJ, Bucci SJ, Cao KF, Cochard H, Delzon S, Domec JC, Fan ZX, Feild TS, et al. (2016). Weak tradeoff between xylem safety and xylem-specific hydraulic efficiency across the world’s woody plant species. New Phytologist, 209, 123-136.
DOI PMID |
[25] | Hacke UG, Sperry JS, Pittermann J (2000). Drought experience and cavitation resistance in six shrubs from the Great Basin, Utah. Basic & Applied Ecology, 1, 31-41. |
[26] |
Hacke UG, Sperry JS, Pockman WT, Davis SD, McCulloh KA (2001). Trends in wood density and structure are linked to prevention of xylem implosion by negative pressure. Oecologia, 126, 457-461.
DOI PMID |
[27] |
He CX, Li JY, Meng P, Zhang JS (2013). Changes of leaf traits and WUE with crown height of four tall tree species. Acta Ecologica Sinica, 33, 5644-5654.
DOI URL |
[何春霞, 李吉跃, 孟平, 张劲松 (2013). 4种高大树木的叶片性状及WUE随树高的变化. 生态学报, 33, 5644-5654.] | |
[28] |
Johnson DM, Wortemann R, McCulloh KA, Jordan-Meille L, Ward E, Warren JM, Palmroth S, Domec JC (2016). A test of the hydraulic vulnerability segmentation hypothesis in angiosperm and conifer tree species. Tree Physiology, 36, 983-993.
DOI PMID |
[29] | Katul G, Leuning R, Oren R (2003). Relationship between plant hydraulic and biochemical properties derived from a steady-state coupled water and carbon transport model. Plant, Cell & Environment, 26, 339-350. |
[30] |
Koch GW, Sillett SC, Jennings GM, Davis SD (2004). The limits to tree height. Nature, 428, 851-854.
DOI |
[31] |
Kunstler G, Falster D, Coomes DA, Hui F, Kooyman RM, Laughlin DC, Poorter L, Vanderwel M, Vieilledent G, Wright SJ, Aiba M, Baraloto C, Caspersen J, Cornelissen JHC, et al. (2016). Plant functional traits have globally consistent effects on competition. Nature, 529, 204-207.
DOI |
[32] | Lechthaler S, Robert EMR, Tonné N, Prusova A, Gerkema E, van As H, Koedam N, Windt CW (2016). Rhizophoraceae mangrove saplings use hypocotyl and leaf water storage capacity to cope with soil water salinity changes. Frontiers in Plant Science, 7, 895. DOI: 10.3389/fpls.2016.00895. |
[33] |
Lewis AM (1992). Measuring the hydraulic diameter of a pore or conduit. American Journal of Botany, 79, 1158-1161.
DOI PMID |
[34] | Li CX, Ye B, Geng YH, Rebcca S (2010). Physiological responses of Taxodium distichum (Baldcypress) and Taxodium ascendens (Pondcypress) seedlings to different soil water regimes. Scientia Silvae Sinicae, 46(4), 22-30. |
[李昌晓, 叶兵, 耿养会, Rebcca S (2010). 落羽杉与池杉幼苗对不同土壤水分含量的生理响应. 林业科学, 46(4), 22-30.] | |
[35] |
Li L, McCormack ML, Ma CG, Kong DL, Zhang Q, Chen XY, Zeng H, Niinemets Ü, Guo DL (2015). Leaf economics and hydraulic traits are decoupled in five species-rich tropical-subtropical forests. Ecology Letters, 18, 899-906.
DOI PMID |
[36] |
Liang EY, Eckstein D, Shao XM (2009). Seasonal cambial activity of relict Chinese pine at the northern limit of its natural distribution in North China—Exploratory results. IAWA Journal, 30, 371-378.
DOI URL |
[37] | Liu CH, Li YY, Chen WY (2014). Hydraulic architecture of three typical woody plants in Ziwuling forest zone on the Loess Plateau. Acta Botanica Boreali-Occidentalia Sinica, 34, 835-842. |
[刘存海, 李秧秧, 陈伟月 (2014). 子午岭林区3种典型树木的水力结构特性比较. 西北植物学报, 34, 835-842.] | |
[38] | Liu H, Gleason SM, Hao GY, Hua L, He PC, Goldstein G, Ye Q (2019). Hydraulic traits are coordinated with maximum plant height at the global scale. Science Advances, 5, eaav1332. DOI: 10.1126/sciadv.aav1332. |
[39] |
Lu ST, Chen S, Li Y, Wang ZY, Pan TT, Ye LF, Xie JB (2021). Relationships among xylem transport, anatomical structure and mechanical strength in stems and roots of three Podocarpaceae species. Chinese Journal of Plant Ecology, 45, 659-669.
DOI URL |
[陆世通, 陈森, 李彦, 王忠媛, 潘天天, 叶琳峰, 谢江波 (2021). 罗汉松科3种植物茎和根木质部水分运输、解剖结构与机械强度之间的关系. 植物生态学报, 45, 659-669.] | |
[40] | Magnani F, Mencuccini M, Grace J (2000). Age-related decline in stand productivity: the role of structural acclimation under hydraulic constraints. Plant, Cell & Environment, 23, 251-263. |
[41] | Markesteijn L, Poorter L, Paz H, Sack L, Bongers F (2011). Ecological differentiation in xylem cavitation resistance is associated with stem and leaf structural traits. Plant, Cell & Environment, 34, 137-148. |
[42] |
Martin-StPaul N, Delzon S, Cochard H (2017). Plant resistance to drought depends on timely stomatal closure. Ecology Letters, 20, 1437-1447.
DOI PMID |
[43] |
McCulloh KA, Sperry JS, Adler FR (2003). Water transport in plants obeys Murray’s law. Nature, 421, 939-942.
DOI |
[44] |
McDowell N, Barnard H, Bond BJ, Hinckley T, Hubbard RM, Ishii H, Köstner B, Magnani F, Marshall JD, Meinzer FC, Phillips N, Ryan MG, Whitehead D (2002). The relationship between tree height and leaf area: sapwood area ratio. Oecologia, 132, 12-20.
DOI PMID |
[45] |
McDowell NG, Allen CD (2015). Darcy’s law predicts widespread forest mortality under climate warming. Nature Climate Change, 5, 669-672.
DOI |
[46] |
Mencuccini M, Rosas T, Rowland L, Choat B, Cornelissen H, Jansen S, Kramer K, Lapenis A, Manzoni S, Niinemets Ü, Reich P, Schrodt F, Soudzilovskaia N, Wright IJ, Martínez-Vilalta J (2019). Leaf economics and plant hydraulics drive leaf: wood area ratios. New Phytologist, 224, 1544-1556.
DOI PMID |
[47] | Nguyen HT, Meir P, Sack L, Evans JR, Oliveira RS, Ball MC (2017). Leaf water storage increases with salinity and aridity in the mangrove Avicennia marina: integration of leaf structure, osmotic adjustment and access to multiple water sources. Plant, Cell & Environment, 40, 1576-1591. |
[48] |
Niinemets Ü (2012). Optimization of foliage photosynthetic capacity in tree canopies: towards identifying missing constraints. Tree Physiology, 32, 505-509.
DOI PMID |
[49] | Niinemets Ü, Sonninen E, Tobias M (2004). Canopy gradients in leaf intercellular CO2 mole fractions revisited: interactions between leaf irradiance and water stress need consideration. Plant, Cell & Environment, 27, 569-583. |
[50] |
Nolan RH, Gauthey A, Losso A, Medlyn BE, Smith R, Chhajed SS, Fuller K, Song M, Li XE, Beaumont LJ, Boer MM, Wright IJ, Choat B (2021). Hydraulic failure and tree size linked with canopy die-back in eucalypt forest during extreme drought. New Phytologist, 230, 1354-1365.
DOI PMID |
[51] |
Peltoniemi MS, Duursma RA, Medlyn BE (2012). Co-optimal distribution of leaf nitrogen and hydraulic conductance in plant canopies. Tree Physiology, 32, 510-519.
DOI PMID |
[52] |
Pickard WF (1981). The ascent of sap in plants. Progress in Biophysics and Molecular Biology, 37, 181-229.
DOI URL |
[53] | Pratt RB, Jacobsen AL (2017). Conflicting demands on angiosperm xylem: tradeoffs among storage, transport and biomechanics. Plant, Cell & Environment, 40, 897-913. |
[54] |
Pratt RB, Jacobsen AL, Ewers FW, Davis SD (2007). Relationships among xylem transport, biomechanics and storage in stems and roots of nine Rhamnaceae species of the California chaparral. New Phytologist, 174, 787-798.
DOI PMID |
[55] |
Prentice IC, Dong N, Gleason SM, Maire V, Wright IJ (2014). Balancing the costs of carbon gain and water transport: testing a new theoretical framework for plant functional ecology. Ecology Letters, 17, 82-91.
DOI PMID |
[56] | Roddy AB, Brodersen CR, Dawson TE (2016). Hydraulic conductance and the maintenance of water balance in flowers. Plant, Cell & Environment, 39, 2123-2132. |
[57] |
Rosas T, Mencuccini M, Barba J, Cochard H, Saura-Mas S, Martínez-Vilalta J (2019). Adjustments and coordination of hydraulic, leaf and stem traits along a water availability gradient. New Phytologist, 223, 632-646.
DOI PMID |
[58] |
Roskilly B, Keeling E, Hood S, Giuggiola A, Sala AN (2019). Conflicting functional effects of xylem pit structure relate to the growth-longevity trade-off in a conifer species. Proceedings of the National Academy of Sciences of the United States of America, 116, 15282-15287.
DOI PMID |
[59] | Ryan MG, Phillips N, Bond BJ (2006). The hydraulic limitation hypothesis revisited. Plant, Cell & Environment, 29, 367-381. |
[60] |
Ryan MG, Yoder BJ (1997). Hydraulic limits to tree height and tree growth. BioScience, 47, 235-242.
DOI URL |
[61] |
Santiago LS, Goldstein G, Meinzer FC, Fisher JB, Machado K, Woodruff D, Jones T (2004). Leaf photosynthetic traits scale with hydraulic conductivity and wood density in Panamanian forest canopy trees. Oecologia, 140, 543-550.
PMID |
[62] |
Schuldt B, Knutzen F, Delzon S, Jansen S, Müller-Haubold H, Burlett R, Clough Y, Leuschner C (2016). How adaptable is the hydraulic system of European beech in the face of climate change-related precipitation reduction. New Phytologist, 210, 443-458.
DOI URL |
[63] |
Schumann K, Leuschner C, Schuldt B (2019). Xylem hydraulic safety and efficiency in relation to leaf and wood traits in three temperate Acer species differing in habitat preferences. Trees, 33, 1475-1490.
DOI |
[64] | Scoffoni C, Chatelet DS, Pasquet-Kok J, Rawls M, Donoghue MJ, Edwards EJ, Sack L (2016). Hydraulic basis for the evolution of photosynthetic productivity. Nature Plants, 2, 16072. DOI: 10.1038/NPLANTS.2016.72. |
[65] | Sinclair TR (2019). “Water dynamics in the soil-plant- atmosphere system” by J. T. Ritchie, Plant and Soil (1981) 58: 81-96., Crop Science, 60, 541-543. |
[66] | Sperry JS, Hacke UG, Oren R, Comstock JP (2002). Water deficits and hydraulic limits to leaf water supply. Plant, Cell & Environment, 25, 251-263. |
[67] |
Sperry JS, Love DM (2015). What plant hydraulics can tell us about responses to climate-change droughts. New Phytologist, 207, 14-27.
DOI PMID |
[68] |
Sperry JS, Wang YJ, Wolfe BT, MacKay DS, Anderegg WRL, McDowell NG, Pockman WT (2016). Pragmatic hydraulic theory predicts stomatal responses to climatic water deficits. New Phytologist, 212, 577-589.
DOI PMID |
[69] |
Tyree MT, Zimmermann MH (2002). Xylem structure and the ascent of sap. Science, 222, 500-501.
DOI URL |
[70] | West GB, Brown JH, Enquist BJ (1999). A general model for the structure and allometry of plant vascular systems. Nature, 400, 664-667. |
[71] |
Whitehead D (1998). Regulation of stomatal conductance and transpiration in forest canopies. Tree Physiology, 18, 633-644.
PMID |
[72] | Whitehead D, Edwards WRN, Jarvis PG (1984). Conducting sapwood area, foliage area, and permeability in mature trees of Picea sitchensis and Pinus cordata. Canadian Journal of Forest Research, 14, 940-947. |
[73] |
Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, Cavender-Bares J, Chapin T, Cornelissen JHC, Diemer M, Flexas J, Garnier E, Groom PK, Gulias J, Niinemets Ü, et al. (2004). The worldwide leaf economics spectrum. Nature, 428, 821-827.
DOI |
[74] |
Xie JB, Wang ZY, Li Y (2022). Stomatal opening ratio mediates trait coordinating network adaptation to environmental gradients. New Phytologist, 235, 907-922.
DOI PMID |
[75] |
Xu HY, Wang H, Prentice IC, Harrison SP, Wright IJ (2021). Coordination of plant hydraulic and photosynthetic traits: confronting optimality theory with field measurements. New Phytologist, 232, 1286-1296.
DOI PMID |
[76] |
Zhang JZ, Gou XH, Zhao ZQ, Liu WH, Zhang F, Cao ZY, Zhou FF (2013). Improved method of obtaining micro- core paraffin sections in dendroecological research. Chinese Journal of Plant Ecology, 37, 972-977.
DOI URL |
[张军周, 勾晓华, 赵志千, 刘文火, 张芬, 曹宗英, 周非飞 (2013). 树轮生态学研究中微树芯石蜡切片制作的方法探讨. 植物生态学报, 37, 972-977.]
DOI |
|
[77] | Zhang YJ, Meinzer FC, Hao GY, Scholz FG, Bucci SJ, Takahashi FSC, Villalobos-Vega R, Giraldo JP, Cao KF, Hoffmann WA, Goldstein G (2009). Size-dependent mortality in a Neotropical savanna tree: the role of height-related adjustments in hydraulic architecture and carbon allocation. Plant, Cell & Environment, 32, 1456-1466. |
[78] | Zhang YJ, Sack L, Cao KF, Wei XM, Li N (2017). Speed versus endurance tradeoff in plants: leaves with higher photosynthetic rates show stronger seasonal declines. Scientific Reports, 7, 42085. DOI: 10.1038/srep42085. |
[1] | 文佳 张新娜 王娟 赵秀海 张春雨. 性状调节幼苗存活率对邻体竞争和环境的响应 [J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[2] | 付粱晨, 丁宗巨, 唐茂, 曾辉, 朱彪. 北京东灵山白桦和蒙古栎的根际效应及其季节动态[J]. 植物生态学报, 2024, 48(4): 508-522. |
[3] | 江蓝, 魏晨思, 何中声, 朱静, 邢聪, 王雪琳, 刘金福, 沈彩霞, 施友文. 格氏栲天然林林窗植物群落功能性状的变异[J]. 植物生态学报, 2022, 46(3): 267-279. |
[4] | 张义, 程杰, 苏纪帅, 程积民. 长期封育演替下典型草原植物群落生产力与多样性关系[J]. 植物生态学报, 2022, 46(2): 176-187. |
[5] | 罗源林, 马文红, 张芯毓, 苏闯, 史亚博, 赵利清. 内蒙古锦鸡儿属植物地理替代分布种的功能性状沿环境梯度的变化[J]. 植物生态学报, 2022, 46(11): 1364-1375. |
[6] | 祁鲁玉, 陈浩楠, 库丽洪·赛热别力, 籍天宇, 孟高德, 秦慧颖, 王宁, 宋逸欣, 刘春雨, 杜宁, 郭卫华. 基于植物功能性状的暖温带5种灌木幼苗生长策略[J]. 植物生态学报, 2022, 46(11): 1388-1399. |
[7] | 严正兵, 刘树文, 吴锦. 高光谱遥感技术在植物功能性状监测中的应用与展望[J]. 植物生态学报, 2022, 46(10): 1151-1166. |
[8] | 张景慧, 王铮, 黄永梅, 陈慧颖, 李智勇, 梁存柱. 草地利用方式对温性典型草原优势种植物功能性状的影响[J]. 植物生态学报, 2021, 45(8): 818-833. |
[9] | 朱蔚娜, 张国龙, 张璞进, 张迁迁, 任瑾涛, 徐步云, 清华. 大针茅草原6种主要植物叶凋落物和根系分解特征与功能性状的关系[J]. 植物生态学报, 2021, 45(6): 606-616. |
[10] | 王钊颖, 陈晓萍, 程英, 王满堂, 钟全林, 李曼, 程栋梁. 武夷山49种木本植物叶片与细根经济谱[J]. 植物生态学报, 2021, 45(3): 242-252. |
[11] | 石娇星, 许洺山, 方晓晨, 郑丽婷, 张宇, 鲍迪峰, 杨安娜, 阎恩荣. 中国东部海岛黑松群落功能多样性的纬度变异及其影响因素[J]. 植物生态学报, 2021, 45(2): 163-173. |
[12] | 潘权, 郑华, 王志恒, 文志, 杨延征. 植物功能性状对生态系统服务影响研究进展[J]. 植物生态学报, 2021, 45(10): 1140-1153. |
[13] | 刘润红, 白金连, 包含, 农娟丽, 赵佳佳, 姜勇, 梁士楚, 李月娟. 桂林岩溶石山青冈群落主要木本植物功能性状变异与关联[J]. 植物生态学报, 2020, 44(8): 828-841. |
[14] | 曹嘉瑜, 刘建峰, 袁泉, 徐德宇, 樊海东, 陈海燕, 谭斌, 刘立斌, 叶铎, 倪健. 森林与灌丛的灌木性状揭示不同的生活策略[J]. 植物生态学报, 2020, 44(7): 715-729. |
[15] | 冯继广, 朱彪. 氮磷添加对树木生长和森林生产力影响的研究进展[J]. 植物生态学报, 2020, 44(6): 583-597. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19