植物生态学报 ›› 2020, Vol. 44 ›› Issue (8): 828-841.DOI: 10.17521/cjpe.2019.0146
所属专题: 植物功能性状
刘润红1, 白金连2, 包含1,3, 农娟丽1,3, 赵佳佳1,3, 姜勇1,3,*(), 梁士楚1,3, 李月娟1,3
收稿日期:
2019-06-13
接受日期:
2020-04-13
出版日期:
2020-08-20
发布日期:
2020-07-09
通讯作者:
姜勇
作者简介:
* yongjiang226@126.com基金资助:
LIU Run-Hong1, BAI Jin-Lian2, BAO Han1,3, NONG Juan-Li1,3, ZHAO Jia-Jia1,3, JIANG Yong1,3,*(), LIANG Shi-Chu1,3, LI Yue-Juan1,3
Received:
2019-06-13
Accepted:
2020-04-13
Online:
2020-08-20
Published:
2020-07-09
Contact:
JIANG Yong
Supported by:
摘要:
研究植物功能性状变异以及不同性状之间的关系, 有助于了解植物对环境的适应策略, 对揭示群落构建和生物多样性维持机制具有重要意义。本研究以桂林岩溶石山青冈群落18种主要木本植物为研究对象, 采用单因素方差分析、混合线性模型以及Pearson相关分析和主成分分析等方法探讨了不同生长型和生活型物种的9个枝、叶功能性状(叶绿素含量、叶片厚度、叶面积、叶干质量、比叶面积、叶干物质含量、叶组织密度、小枝干物质含量和小枝组织密度)的变异与关联。结果表明: (1) 9个功能性状的变异程度不同, 叶面积和叶干质量的种内和种间变异系数最大, 小枝干物质含量和小枝组织密度的种内和种间变异系数最小。(2)在生长型水平上, 乔木、灌木和木质藤本的绝大部分功能性状差异显著。(3)对于不同生活型植物, 除叶面积和比叶面积为落叶植物显著大于常绿植物外, 其余7个功能性状皆为常绿植物显著大于落叶植物。(4)不同生长型和生活型植物功能性状的种内和种间变异大小存在差异, 除部分植物功能性状在一些功能型上表现为种内变异高于种间变异, 其余功能性状的种间变异皆高于种内变异。(5)各功能性状之间关系在个体水平和物种水平大致相同, 但是个体水平上的显著相关比例高于物种水平。研究发现, 植物功能性状的种间变异基本高于种内变异, 但种内变异不容忽略。此外, 不同生长型和生活型物种采取不同的生态策略来适应喀斯特生境。今后的研究应基于个体水平采样并结合环境因子从生长型和生活型等不同功能型角度上深入探究植物功能性状在种内和种间等不同尺度上的变异与关联。
刘润红, 白金连, 包含, 农娟丽, 赵佳佳, 姜勇, 梁士楚, 李月娟. 桂林岩溶石山青冈群落主要木本植物功能性状变异与关联. 植物生态学报, 2020, 44(8): 828-841. DOI: 10.17521/cjpe.2019.0146
LIU Run-Hong, BAI Jin-Lian, BAO Han, NONG Juan-Li, ZHAO Jia-Jia, JIANG Yong, LIANG Shi-Chu, LI Yue-Juan. Variation and correlation in functional traits of main woody plants in the Cyclobalanopsis glauca community in the karst hills of Guilin, southwest China. Chinese Journal of Plant Ecology, 2020, 44(8): 828-841. DOI: 10.17521/cjpe.2019.0146
物种 Species | 生长型 Growth form | 生活型 Life form | 样本量 Sample size | 叶片质地 Leaf texture |
---|---|---|---|---|
青冈 Cyclobalanopsis glauca | 乔木 Tree | 常绿 Evergreen | 40 | 革质 Leathery |
扁片海桐 Pittosporum planilobum | 乔木 Tree | 常绿 Evergreen | 40 | 革质 Leathery |
千里香 Murraya paniculata | 乔木 Tree | 常绿 Evergreen | 40 | 革质 Leathery |
岩樟 Cinnamomum saxatile | 乔木 Tree | 常绿 Evergreen | 40 | 革质 Leathery |
子凌蒲桃 Syzygium championii | 灌木 Shrub | 常绿 Evergreen | 40 | 革质 Leathery |
粗糠柴 Mallotus philippensis | 灌木 Shrub | 常绿 Evergreen | 40 | 革质 Leathery |
白皮乌口树 Tarenna depauperata | 灌木 Shrub | 常绿 Evergreen | 40 | 纸质或革质 Papery or leathery |
网脉山龙眼 Helicia reticulata | 灌木 Shrub | 常绿 Evergreen | 40 | 革质 Leathery |
老虎刺 Pterolobium punctatum | 木质藤本 Woody liana | 常绿 Evergreen | 40 | 纸质 Papery |
齿叶黄皮 Clausena dunniana | 乔木 Tree | 落叶 Deciduous | 40 | 薄革质 Thinly leathery |
紫弹树 Celtis biondii | 乔木 Tree | 落叶 Deciduous | 40 | 薄革质 Thinly leathery |
菜豆树 Radermachera sinica | 乔木 Tree | 落叶 Deciduous | 40 | 纸质 Papery |
干花豆 Fordia cauliflora | 灌木 Shrub | 落叶 Deciduous | 40 | 厚纸质 Thickly papery |
红背山麻杆 Alchornea trewioides | 灌木 Shrub | 落叶 Deciduous | 40 | 纸质 Papery |
一叶萩 Flueggea suffruticosa | 灌木 Shrub | 落叶 Deciduous | 40 | 纸质 Papery |
山麻杆 Alchornea davidii | 灌木 Shrub | 落叶 Deciduous | 40 | 薄纸质 Thinly papery |
龙须藤 Bauhinia championii | 木质藤本 Woody liana | 落叶 Deciduous | 40 | 纸质 Papery |
藤金合欢 Acacia concinna | 木质藤本 Woody liana | 落叶 Deciduous | 40 | 纸质 Papery |
表1 桂林岩溶石山青冈群落18种主要木本植物信息
Table 1 Information about 18 main woody plant species of the Cyclobalanopsis glauca community in the karst hills of Guilin, southwest China
物种 Species | 生长型 Growth form | 生活型 Life form | 样本量 Sample size | 叶片质地 Leaf texture |
---|---|---|---|---|
青冈 Cyclobalanopsis glauca | 乔木 Tree | 常绿 Evergreen | 40 | 革质 Leathery |
扁片海桐 Pittosporum planilobum | 乔木 Tree | 常绿 Evergreen | 40 | 革质 Leathery |
千里香 Murraya paniculata | 乔木 Tree | 常绿 Evergreen | 40 | 革质 Leathery |
岩樟 Cinnamomum saxatile | 乔木 Tree | 常绿 Evergreen | 40 | 革质 Leathery |
子凌蒲桃 Syzygium championii | 灌木 Shrub | 常绿 Evergreen | 40 | 革质 Leathery |
粗糠柴 Mallotus philippensis | 灌木 Shrub | 常绿 Evergreen | 40 | 革质 Leathery |
白皮乌口树 Tarenna depauperata | 灌木 Shrub | 常绿 Evergreen | 40 | 纸质或革质 Papery or leathery |
网脉山龙眼 Helicia reticulata | 灌木 Shrub | 常绿 Evergreen | 40 | 革质 Leathery |
老虎刺 Pterolobium punctatum | 木质藤本 Woody liana | 常绿 Evergreen | 40 | 纸质 Papery |
齿叶黄皮 Clausena dunniana | 乔木 Tree | 落叶 Deciduous | 40 | 薄革质 Thinly leathery |
紫弹树 Celtis biondii | 乔木 Tree | 落叶 Deciduous | 40 | 薄革质 Thinly leathery |
菜豆树 Radermachera sinica | 乔木 Tree | 落叶 Deciduous | 40 | 纸质 Papery |
干花豆 Fordia cauliflora | 灌木 Shrub | 落叶 Deciduous | 40 | 厚纸质 Thickly papery |
红背山麻杆 Alchornea trewioides | 灌木 Shrub | 落叶 Deciduous | 40 | 纸质 Papery |
一叶萩 Flueggea suffruticosa | 灌木 Shrub | 落叶 Deciduous | 40 | 纸质 Papery |
山麻杆 Alchornea davidii | 灌木 Shrub | 落叶 Deciduous | 40 | 薄纸质 Thinly papery |
龙须藤 Bauhinia championii | 木质藤本 Woody liana | 落叶 Deciduous | 40 | 纸质 Papery |
藤金合欢 Acacia concinna | 木质藤本 Woody liana | 落叶 Deciduous | 40 | 纸质 Papery |
![]() |
表2 桂林岩溶石山青冈群落主要木本植物功能性状的描述性统计
Table 2 Characteristics of plant functional traits of main woody plant species of the Cyclobalanopsis glauca community in the karst hlls of Guilin, southwest China
![]() |
![]() |
表3 不同生长型和生活型的植物功能性状(平均值±标准偏差)及(种内/种间)变异系数
Table 3 The mean (mean ± SD) and the variation coefficient (intraspecific/interspecific for plant functional traits on different growth forms and life forms
![]() |
CHL | LTH | LA | LDM | SLA | LDMC | LTD | TDMC | TTD | |
---|---|---|---|---|---|---|---|---|---|
种间 Interspecific | 78.98 | 66.40 | 78.41 | 76.85 | 92.08 | 58.36 | 56.05 | 55.83 | 70.82 |
种内 Intraspecific | 13.37 | 30.15 | 17.92 | 23.04 | 4.21 | 32.28 | 36.01 | 28.36 | 23.72 |
随机误差 Random error | 7.65 | 3.45 | 3.67 | 0.11 | 3.71 | 9.36 | 7.94 | 15.81 | 5.46 |
表4 种内和种间变异对不同植物功能性状总体变异的贡献(%)
Table 4 Contributions of intraspecific and interspecific variations to the overall variation of different plant functional traits (%)
CHL | LTH | LA | LDM | SLA | LDMC | LTD | TDMC | TTD | |
---|---|---|---|---|---|---|---|---|---|
种间 Interspecific | 78.98 | 66.40 | 78.41 | 76.85 | 92.08 | 58.36 | 56.05 | 55.83 | 70.82 |
种内 Intraspecific | 13.37 | 30.15 | 17.92 | 23.04 | 4.21 | 32.28 | 36.01 | 28.36 | 23.72 |
随机误差 Random error | 7.65 | 3.45 | 3.67 | 0.11 | 3.71 | 9.36 | 7.94 | 15.81 | 5.46 |
图1 桂林岩溶石山青冈群落主要木本植物功能性状值箱线图。图中的实心圆点为异常值; 百分数为种内变异系数。纵坐标代表物种, 从下至上分别为: 1, 青冈; 2, 扁片海桐; 3, 千里香; 4, 岩樟; 5, 子凌蒲桃; 6, 粗糠柴; 7, 白皮乌口树; 8, 网脉山龙眼; 9, 老虎刺; 10, 齿叶黄皮; 11, 紫弹树; 12, 菜豆树; 13, 干花豆; 14, 红背山麻杆; 15, 一叶萩; 16, 山麻杆; 17, 龙须藤; 18, 藤金合欢。其中, 1-9为常绿物种, 10-18为落叶物种。
Fig. 1 Boxplot of plant functional traits value for the main woody plant species of the Cyclobalanopsis glauca community in the karst hills of Guilin, southwest China. CHL, leaf chlorophyll content; LA, leaf area; LDM, leaf dry mass; LDMC, leaf dry matter content; LTD, leaf tissue density; LTH, leaf thickness; SLA, specific leaf area; TDMC, twig dry matter content; TTD, twig tissue density. The solid dots in the boxplot indicate the abnormal value; the percentage in the figure is the variation coefficient at the intraspecific level. The ordinate represents the name of the species, from the bottom to the top, the species number: 1, Cyclobalanopsis glauca; 2, Pittosporum planilobum; 3, Murraya paniculata; 4, Cinnamomum saxatile; 5, Syzygium championii; 6, Mallotus philippensis; 7, Tarenna depauperata; 8, Helicia reticulata; 9, Pterolobium punctatum; 10, Clausena dunniana; 11, Celtis biondii; 12, Radermachera sinica; 13, Fordia cauliflora; 14, Fordia cauliflora; 15, Flueggea suffruticosa; 16, Alchornea davidii; 17, Bauhinia championii; 18, Acacia concinna. 1 to 9 are evergreen species, and 10 to 18 are deciduous species.
图2 桂林岩溶石山青冈群落主要木本植物功能性状在个体(A)和物种(B)水平上的Pearson相关系数。*, p < 0. 05; **, p < 0. 01; ***, p < 0. 001。图中各功能性状缩写同表3。
Fig. 2 Pearson correlation coefficients at the individual (A) and species (B) levels between plant functional traits of the main woody plant species of the Cyclobalanopsis glauca community in the karst hills of Guilin, southwest China. The abbreviations of plant functional traits are shown in Table 3.
图3 桂林岩溶石山青冈群落主要木本植物功能性状在个体(A)和物种(B)水平上的主成分分析。图中各功能性状缩写同表1。平衡贡献圈(图中黑色圆圈)的半径代表变量的向量长度对排序的平均贡献率。红色实线为向量长度超过平衡贡献圈半径的功能性状, 代表它对该排序空间的贡献大于所有变量的平均贡献。
Fig. 3 Principal component analysis (PCA) at the individual level (A) and species level (B) between plant functional traits of the main woody plant species of the Cyclobalanopsis glauca community in the karst hills of Guilin, southwest China. The abbreviations of plant functional traits are shown in Table 1. The radius of the equilibrium contribution circle (black circle in the figure) represents the average contribution rate of the variable’s vector length to the sorting space. The variables that have vectors longer than the radius of the equilibrium contribution circle are shown by red solid line, indicating that its contribution to the sorting space is greater than the average contribution of all variables.
[1] |
Ackerly DD, Reich PB (1999). Convergence and correlations among leaf size and function in seed plants: a comparative test using independent contrasts. American Journal of Botany, 86, 1272-1281.
URL PMID |
[2] | Albert CH, Thuiller W, Yoccoz NG, Douzet R, Aubert S, Lavorel S (2010a). A multi-trait approach reveals the structure and the relative importance of intra- vs. interspecific variability in plant traits. Functional Ecology, 24, 1192-1201. |
[3] | Albert CH, Thuiller W, Yoccoz NG, Soudant A, Boucher F, Saccone P, Lavorel S (2010b). Intraspecific functional variability: extent, structure and sources of variation. Journal of Ecology, 98, 604-613. |
[4] | Anderegg WRL (2015). Spatial and temporal variation in plant hydraulic traits and their relevance for climate change impacts on vegetation. New Phytologist, 205, 1008-1014. |
[5] | Auger S, Shipley B (2013). Inter-specific and intra-specific trait variation along short environmental gradients in an old- growth temperate forest. Journal of Vegetation Science, 24, 419-428. |
[6] |
Baraloto C, Timothy Paine CE, Poorter L, Beauchene J, Bonal D, Domenach AM, Hérault B, Patiño S, Roggy JC, Chave J (2010). Decoupled leaf and stem economics in rain forest trees. Ecology Letters, 13, 1338-1347.
DOI URL PMID |
[7] | Bolmgren K, Cowan PD (2008). Time-size tradeoffs: a phylogenetic comparative study of flowering time, plant height and seed mass in a north-temperate flora. Oikos, 117, 424-429. |
[8] |
Bucci SJ, Goldstein G, Meinzer FC, Scholz FG, Franco AC, Bustamante M (2004). Functional convergence in hydraulic architecture and water relations of tropical savanna trees: from leaf to whole plant. Tree Physiology, 24, 891-899.
DOI URL PMID |
[9] |
Cadotte MW, Arnillas CA, Livingstone SW, Yasui SLE (2015). Predicting communities from functional traits. Trends in Ecology & Evolution, 30, 510-511.
DOI URL PMID |
[10] | Castro-Díe P, Montserrat-Martí G, Cornelissen JHC (2003). Trade-offs between phenology, relative growth rate, life form and seed mass among 22 Mediterranean woody species. Plant Ecology, 166, 117-129. |
[11] | Chalmandrier L, Münkemüller T, Colace MP, Renaud J, Aubert S, Carlson BZ, Clément JC, Legay N, Pellet G, Saillard A, Lavergne S, Thuiller W (2017). Spatial scale and intraspecific trait variability mediate assembly rules in alpine grasslands. Journal of Ecology, 105, 277-287. |
[12] |
Chave J, Coomes D, Jansen S, Lewis SL, Swenson NG, Zanne AE (2009). Towards a worldwide wood economics spectrum. Ecology Letters, 12, 351-366.
DOI URL PMID |
[13] | Cheng W, Yu YH, Xiong KN, Zhang Y, Xu M, Tan DJ (2019). Leaf functional traits of dominant species in karst plateau- canyon areas. Guihaia, 39, 1039-1049. |
[ 程雯, 喻阳华, 熊康宁, 张俞, 许敏, 谭代军 (2019). 喀斯特高原峡谷优势种叶片功能性状分析. 广西植物, 39, 1039-1049.] | |
[14] | de la Riva EG, Tosto A, Pérez-Ramos IM, Navarro-Fernández CM, Olmo M, Anten NPR, Marañón T, Villar R (2016). A plant economics spectrum in Mediterranean forests along environmental gradients: Is there coordination among leaf, stem and root traits? Journal of Vegetation Science, 27, 187-199. |
[15] | Díaz S, Hodgson JG, Thompson K, Cabido M, Cornelissen JHC, Jalili A, Montserrat-Martí G, Grime JP, Zarrinkamar F, Asri Y, Band SR, Basconcelo S, Castro-Díez P, Hamzehee GFB, Khoshnevi M, Pérez-Harguindeguy N, Pérez-Rontomé MC, Shirvany FA, Vendramini F, Yazdani S, Abbas-Azimi R, Bogaard A, Boustani S, Charles M, Dehghan M, de Torres-Espuny L, Falczuk V, Guerrero- Campo J, Hynd A, Jones G, Kowsary E, Kazemi-Saeed F, Maestro-Martínez M, Romo-Díez A, Shaw S, Siavash B, Villar-Salvador P, Zak MR (2004). The plant traits that drive ecosystems: evidence from three continents. Journal of Vegetation Science, 15, 295-304. |
[16] |
Díaz S, Kattge J, Cornelissen JHC, Wright IJ, Lavorel S, Dray S, Reu B, Kleyer M, Wirth C, Colin Prentice I, Garnier E, Bönisch G, Westoby M, Poorter H, Reich PB, Moles AT, Dickie J, Gillison AN, Zanne AE, Chave J, Joseph Wright S, Sheremetʼev SN, Jactel H, Baraloto C, Cerabolini B, Pierce S, Shipley B, Kirkup D, Casanoves F, Joswig JS, Günther A, Falczuk V, Rüger N, Mahecha MD, Gorné LD (2016). The global spectrum of plant form and function. Nature, 529, 167-171.
DOI URL PMID |
[17] |
Funk JL, Standish RJ, Stock WD, Valladares F (2016). Plant functional traits of dominant native and invasive species in mediterranean-climate ecosystems. Ecology, 97, 75-83.
DOI URL PMID |
[18] | Garnier E, Laurent G, Bellmann A, Debain S, Berthelier P, Ducout B, Roumet C, Navas ML (2001). Consistency of species ranking based on functional leaf traits. New phytologist, 152, 69-83. |
[19] | Grime JP (1977). Evidence for the existence of three primary strategies in plants and its relevance to ecological and evolutionary theory. The American Naturalist, 111, 1169-1194. |
[20] | He D (2016). Plant Functional Trait Variation and Community Assembly: A Case Study in A Subtropical Evergreen Forest. PhD dissertation, Sun Yat-Sen University, Guangzhou. |
[ 何东 (2016). 植物功能性状变异与群落构建: 以黑石顶常绿阔叶林为例. 博士学位论文, 中山大学, 广州.] | |
[21] | Jackson BG, Peltzer DA, Wardle DA (2013). The within- species leaf economic spectrum does not predict leaf litter decomposability at either the within-species or whole community levels. Journal of Ecology, 101, 1409-1419. |
[22] | Jiang Y, Chen XB, Ma JM, Liang SC, Huang J, Liu RH, Pan YF (2016). Interspecific and intraspecific variation in functional traits of subtropical evergreen and deciduous broadleaved mixed forests in karst topography, Guilin, Southwest China. Tropical Conservation Science, 9, 194008291668021. DOI: 10.1177/1940082916680211. |
[23] | Jung V, Violle C, Mondy C, Hoffmann L, Muller S (2010). Intraspecific variability and trait-based community assembly. Journal of Ecology, 98, 1134-1140. |
[24] | Kang M, Chang SX, Yan ER, Wang XH (2014). Trait variability differs between leaf and wood tissues across ecological scales in subtropical forests. Journal of Vegetation Science, 25, 703-714. |
[25] | Li DX, Li G, Shen ZH, Xu SD, Han QY, Wang GF, Tian FL (2017). Growth-form regulates the altitudinal variation of interspecific seed mass of woody plants in Mt. Dalaoling, the Three Gorges Region, China. Chinese Journal of Plant Ecology, 41, 539-548. |
[ 李道新, 李果, 沈泽昊, 徐慎东, 韩庆瑜, 王功芳, 田风雷 (2017). 植物生长型显著影响三峡大老岭地区木本植物种子质量的海拔格局. 植物生态学报, 41, 539-548.] | |
[26] | Liu HW, Wang W, Zuo J, Tao JP (2014). Leaf traits of main plants on limestone area in Zhongliang Mountain. Journal of Southwest China Normal University (Natural Science Edition), 39, 50-55. |
[ 刘宏伟, 王微, 左娟, 陶建平 (2014). 中梁山石灰岩山地30种主要植物叶片性状研究. 西南师范大学学报(自然科学版), 39, 50-55.] | |
[27] | Liu RH (2018). Variation in Functional Traits of Woody Plants in Aquatic-terrestrial Ecotone, Lijiang River. Master degree dissertation, Guangxi Normal University, Guilin, Guangxi. |
[ 刘润红 (2018). 漓江水陆交错带木本植物功能性状变异研究. 硕士学位论文, 广西师范大学, 广西桂林.] | |
[28] | Liu RH, Liang SC, Huang DL, Huang CY, Li JF, Chang B, Jiang Y (2019). Variation in functional traits of woody species across organizational scales in a riparian zone of Lijiang River, Southwest China. Acta Ecologica Sinica, 39, 8038-8047. |
[ 刘润红, 梁士楚, 黄冬柳, 黄昶吟, 李娇凤, 常斌, 姜勇 (2019). 漓江河岸带木本植物功能性状跨尺度变异研究. 生态学报, 39, 8038-8047.] | |
[29] | Liu XJ, Ma KP (2015). Plant functional traits—Concepts, applications and future directions. Scientia Sinica (Vitae), 45, 325-339. |
[ 刘晓娟, 马克平 (2015). 植物功能性状研究进展. 中国科学: 生命科学, 45, 325-339.] | |
[30] |
Méndez-Alonzo R, Paz H, Zuluaga RC, Rosell JA, Olson ME (2012). Coordinated evolution of leaf and stem economics in tropical dry forest trees. Ecology, 93, 2397-2406.
DOI URL PMID |
[31] | Meng TT, Ni J, Wang GH (2007). Plant functional traits, environments and ecosystem functioning. Journal of Plant Ecology (Chinese Version), 31, 150-165. |
[ 孟婷婷, 倪健, 王国宏 (2007). 植物功能性状与环境和生态系统功能. 植物生态学报, 31, 150-165.] | |
[32] | Messier J, McGill BJ, Enquist BJ, Lechowicz MJ (2017). Trait variation and integration across scales: Is the leaf economic spectrum present at local scales? Ecography, 40, 685-697. |
[33] |
Messier J, McGill BJ, Lechowicz MJ (2010). How do traits vary across ecological scales? A case for trait-based ecology. Ecology Letters, 13, 838-848.
DOI URL PMID |
[34] | Mouillot D, Graham NAJ, Villéger S, Mason NWH, Bellwood DR (2013). A functional approach reveals community responses to disturbances. Trends in Ecology & Evolution, 28, 167-177. |
[35] | Niu CJ, Lou AR, Sun RY, Li QF (2015). Basic Ecology. 3rd ed. Higher Education Press, Beijing. 157-158. |
[ 牛翠娟, 娄安如, 孙儒泳, 李庆芬 (2015). 基础生态学. 3版. 高等教育出版社, 北京.] | |
[36] |
Osnas JLD, Lichstein JW, Reich PB, Pacala SW (2013). Global leaf trait relationships: mass, area, and the leaf economics spectrum. Science, 340, 741-744.
DOI URL PMID |
[37] | Pang ZQ, Lu WL, Jiang LS, Jin K, Qi Z (2019). Leaf traits of different growing plants in karst area of Shilin, China. Guihaia, 39, 1126-1138. |
[ 庞志强, 卢炜丽, 姜丽莎, 靳珂, 亓峥 (2019). 滇中喀斯特41种不同生长型植物叶性状研究. 广西植物, 39, 1126-1138.] | |
[38] | Pérez-Harguindeguy N, Díaz S, Garnier E, Lavorel S, Poorter H, Jaureguiberry P, Bret-Harte MS, Cornwell WK, Craine JM, Gurvich DE, Urcelay C, Veneklaas EJ, Reich PB, Poorter L, Wright IJ, Ray P, Enrico L, Pausas JG, de Vos AC, Buchmann N, Funes G, Quétier F, Hodgson JG, Thompson K, Morgan HD, ter Steege H, Sack L, Blonder B, Poschlod P, Vaieretti MV, Conti G, Staver AC, Aquino S, Cornelissen JHC (2013). New handbook for standardised measurement of plant functional traits worldwide. Australian Journal of Botany, 61, 167-234. |
[39] |
Poorter L, Wright SJ, Paz H, Ackerly DD, Condit R, Ibarra- Manríouez G, Harms KE, Licona JC, Martínez-Ramos M, Mazer SJ, Muller-Landau HC, Peña-Claros M, Webb CO, Wright IJ (2008). Are functional traits good predictors of demographic rates? Evidence from five neotropical forests. Ecology, 89, 1908-1920.
DOI URL PMID |
[40] | Reich PB, Walters MB, Ellsworth DS (1992). Leaf life-span in relation to leaf, plant, and stand characteristics among diverse ecosystems. Ecological Monographs, 62, 365-392. |
[41] | Rowe N, Speck T (2005). Plant growth forms: an ecological and evolutionary perspective. New Phytologist, 166, 61-72. |
[42] | Santiago LS, Wright SJ (2007). Leaf functional traits of tropical forest plants in relation to growth form. Functional Ecology, 21, 19-27. |
[43] |
Siefert A, Violle C, Chalmandrier L, Albert CH, Taudiere A, Fajardo A, Aarssen LW, Baraloto C, Carlucci MB, Cianciaruso MV, de L Dantas V, de Bello F, Duarte LDS, Fonseca CR, Freschet GT, Gaucherand S, Gross N, Hikosaka K, Jackson B, Jung V, Kamiyama C, Katabuchi M, Kembel SW, Kichenin E, Kraft NJB, Lagerström A, Le Bagousse-Pinguet Y, Li Y, Mason N, Messier J, Nakashizuka T, Overton JM, Peltzer DA, Pérez-Ramos IM, Pillar VD, Prentice HC, Richardson S, Sasaki T, Schamp BS, Schöb C, Shipley B, Sundqvist M, Sykes MT, Vandewalle M, Wardle DA (2015). A global meta-analysis of the relative extent of intraspecific trait variation in plant communities. Ecology Letters, 18, 1406-1419.
DOI URL PMID |
[44] | Silvertown J (2004). Plant coexistence and the niche. Trends in Ecology & Evolution, 19, 605-611. |
[45] | Spasojevic MJ, Turner BL, Myers JA (2016). When does intraspecific trait variation contribute to functional beta- diversity? Journal of Ecology, 104, 487-496. |
[46] |
Tang QQ, Huang YT, Ding Y, Zang RG (2016). Interspecific and intraspecific variation in functional traits of subtropical evergreen and deciduous broad-leaved mixed forests. Biodiversity Science, 24, 262-270.
DOI URL |
[ 唐青青, 黄永涛, 丁易, 臧润国 (2016). 亚热带常绿落叶阔叶混交林植物功能性状的种间和种内变异. 生物多样性, 24, 262-270.] | |
[47] |
Tomlinson KW, Poorter L, Bongers F, Borghetti F, Jacobs L, van Langevelde F (2014). Relative growth rate variation of evergreen and deciduous savanna tree species is driven by different traits. Annals of Botany, 114, 315-324.
DOI URL PMID |
[48] |
Violle C, Enquist BJ, McGill BJ, Jiang L, Albert CH, Hulshof C, Jung V, Messier J (2012). The return of the variance: intraspecific variability in community ecology. Trends in Ecology & Evolution, 27, 244-252.
DOI URL PMID |
[49] | Violle C, Navas ML, Vile D, Kazakou E, Fortunel C, Hummel I, Garnier E (2007). Let the concept of trait be functional!. Oikos, 116, 882-892. |
[50] | Wang KL, Chen HS, Zeng FP, Yue YM, Zhang W, Fu ZY (2018). Ecological research supports eco-environmental management and poverty alleviation in karst region of southwest China. Bulletin of the Chinese Academy of Sciences, 33, 213-222. |
[ 王克林, 陈洪松, 曾馥平, 岳跃民, 张伟, 付智勇 (2018). 生态学研究支撑喀斯特区域生态环境治理与科技扶贫. 中国科学院院刊, 33, 213-222. ] | |
[51] | Wang RL, Yu GR, He NP, Wang QF, Zhao N, Xu ZW (2016). Altitudinal variation in the covariation of stomatal traits with leaf functional traits in Changbai Mountain. Acta Ecologica Sinica, 36, 2175-2184. |
[ 王瑞丽, 于贵瑞, 何念鹏, 王秋凤, 赵宁, 徐志伟 (2016). 气孔特征与叶片功能性状之间关联性沿海拔梯度的变化规律——以长白山为例. 生态学报, 36, 2175-2184.] | |
[52] | Weemstra M, Mommer L, Visser EJW, van Ruijven J, Kuyper TW, Mohren GMJ, Sterck FJ (2016). Towards a multidimensional root trait framework: a tree root review. New Phytologist, 211, 1159-1169. |
[53] | Westoby M (1998). A leaf-height-seed (LHS) plant ecology strategy scheme. Plant and Soil, 199, 213-227. |
[54] |
Wright IJ, Ackerly DD, Bongers F, Harms KE, Ibarra-Manriquez G, Martinez-Ramos M, Mazer SJ, Muller-Landau HC, Paz H, Pitman NCA, Poorter L, Silman MR, Vriesendorp CF, Webb CO, Westoby M, Wright SJ (2007). Relationships among ecologically important dimensions of plant trait variation in seven Neotropical forests. Annals of Botany, 99, 1003-1015.
DOI URL PMID |
[55] | Wright IJ, Falster DS, Pickup M, Westoby M (2006). Cross- species patterns in the coordination between leaf and stem traits, and their implications for plant hydraulics. Physiologia Plantarum, 127, 445-456. |
[56] |
Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, Cavender-Bares J, Chapin T, Cornelissen JHC, Diemer M, Flexas J, Garnier E, Groom PK, Gulias J, Hikosaka K, Lamont BB, Lee T, Lee W, Lusk C, Midgley JJ, Navas ML, Niinemets Ü, Oleksyn J, Osada N, Poorter H, Poot P, Prior L, Pyankov VI, Roumet C, Thomas SC, Tjoelker MG, Veneklaas EJ, Villar R (2004). The worldwide leaf economics spectrum. Nature, 428, 821-827.
DOI URL PMID |
[57] | Zhong QL, Liu LB, Xu X, Yang Y, Guo YM, Xu HY, Cai XL, Ni J (2018). Variations of plant functional traits and adaptive strategy of woody species in a karst forest of central Guizhou Province, Southwestern China. Chinese Journal of Plant Ecology, 42, 562-572. |
[ 钟巧连, 刘立斌, 许鑫, 杨勇, 郭银明, 许海洋, 蔡先立, 倪健 (2018). 黔中喀斯特木本植物功能性状变异及其适应策略. 植物生态学报, 42, 562-572.] |
[1] | 付粱晨, 丁宗巨, 唐茂, 曾辉, 朱彪. 北京东灵山白桦和蒙古栎的根际效应及其季节动态[J]. 植物生态学报, 2024, 48(4): 508-522. |
[2] | 陈雪纯, 刘虹, 朱少琦, 孙铭遥, 宇振荣, 王庆刚. 漓江流域不同弃耕年限下4种常见草本植物功能性状种内变化及其影响因素[J]. 植物生态学报, 2023, 47(4): 559-570. |
[3] | 汤璐瑶, 方菁, 钱海蓉, 张博纳, 上官方京, 叶琳峰, 李姝雯, 童金莲, 谢江波. 落羽杉和池杉功能性状随高度的变异与协同[J]. 植物生态学报, 2023, 47(11): 1561-1575. |
[4] | 张义, 程杰, 苏纪帅, 程积民. 长期封育演替下典型草原植物群落生产力与多样性关系[J]. 植物生态学报, 2022, 46(2): 176-187. |
[5] | 罗源林, 马文红, 张芯毓, 苏闯, 史亚博, 赵利清. 内蒙古锦鸡儿属植物地理替代分布种的功能性状沿环境梯度的变化[J]. 植物生态学报, 2022, 46(11): 1364-1375. |
[6] | 祁鲁玉, 陈浩楠, 库丽洪·赛热别力, 籍天宇, 孟高德, 秦慧颖, 王宁, 宋逸欣, 刘春雨, 杜宁, 郭卫华. 基于植物功能性状的暖温带5种灌木幼苗生长策略[J]. 植物生态学报, 2022, 46(11): 1388-1399. |
[7] | 严正兵, 刘树文, 吴锦. 高光谱遥感技术在植物功能性状监测中的应用与展望[J]. 植物生态学报, 2022, 46(10): 1151-1166. |
[8] | 张景慧, 王铮, 黄永梅, 陈慧颖, 李智勇, 梁存柱. 草地利用方式对温性典型草原优势种植物功能性状的影响[J]. 植物生态学报, 2021, 45(8): 818-833. |
[9] | 朱蔚娜, 张国龙, 张璞进, 张迁迁, 任瑾涛, 徐步云, 清华. 大针茅草原6种主要植物叶凋落物和根系分解特征与功能性状的关系[J]. 植物生态学报, 2021, 45(6): 606-616. |
[10] | 向响, 黄永梅, 杨崇曜, 李泽卿, 陈慧颖, 潘莹萍, 霍佳璇, 任梁. 海拔对青海湖流域群落水平植物功能性状的影响[J]. 植物生态学报, 2021, 45(5): 456-466. |
[11] | 王钊颖, 陈晓萍, 程英, 王满堂, 钟全林, 李曼, 程栋梁. 武夷山49种木本植物叶片与细根经济谱[J]. 植物生态学报, 2021, 45(3): 242-252. |
[12] | 石娇星, 许洺山, 方晓晨, 郑丽婷, 张宇, 鲍迪峰, 杨安娜, 阎恩荣. 中国东部海岛黑松群落功能多样性的纬度变异及其影响因素[J]. 植物生态学报, 2021, 45(2): 163-173. |
[13] | 潘权, 郑华, 王志恒, 文志, 杨延征. 植物功能性状对生态系统服务影响研究进展[J]. 植物生态学报, 2021, 45(10): 1140-1153. |
[14] | 曹嘉瑜, 刘建峰, 袁泉, 徐德宇, 樊海东, 陈海燕, 谭斌, 刘立斌, 叶铎, 倪健. 森林与灌丛的灌木性状揭示不同的生活策略[J]. 植物生态学报, 2020, 44(7): 715-729. |
[15] | 冯继广, 朱彪. 氮磷添加对树木生长和森林生产力影响的研究进展[J]. 植物生态学报, 2020, 44(6): 583-597. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19