植物生态学报 ›› 2020, Vol. 44 ›› Issue (8): 819-827.DOI: 10.17521/cjpe.2020.0091
所属专题: 凋落物
袁锋1,2, 王艳艳1,2, 李茂瑾3, 江传阳4, 刘贺娜1,2, 李坤玲1,2, 洪滔1,2, 吴承祯5, 陈灿1,2,*()
收稿日期:
2020-03-31
接受日期:
2020-07-03
出版日期:
2020-08-20
发布日期:
2020-07-28
通讯作者:
陈灿
作者简介:
* canchen@fafu.edu.cn基金资助:
YUAN Feng1,2, WANG Yan-Yan1,2, LI Mao-Jin3, JIANG Chuan-Yang4, LIU He-Na1,2, LI Kun-Ling1,2, HONG Tao1,2, WU Cheng-Zhen5, CHEN Can1,2,*()
Received:
2020-03-31
Accepted:
2020-07-03
Online:
2020-08-20
Published:
2020-07-28
Contact:
CHEN Can
Supported by:
摘要:
精确估算生态系统内部环境梯度引起的养分循环差异, 对评估其生态功能十分重要。为探讨不同距海生境对木麻黄(Casuarina equisetifolia)凋落叶金属元素含量及养分归还动态的影响, 以福建省惠安赤湖国有防护林场木麻黄凋落叶为研究对象, 按照离海由近及远的顺序设置5个距离(T1到T5), 收集凋落叶测定金属元素含量。结果表明: 1)海岸梯度环境对木麻黄凋落叶各元素含量及归还量具有显著影响, 由基干林带向林内元素含量、归还量呈线性规律, 总体上近海高于远海, 按照离海由近及远元素含量逐渐降低, 铁(Fe)、铜(Cu)、锌(Zn)和锰(Mn)在T4后上升, 归还量变化趋势与含量相似。2)凋落叶元素含量在不同月份存在显著差异, Na、Fe、Cu、Zn具有相似性, 6月、11月存在明显低谷; Mn在2至4月下降后波动上升。归还量总体表现为钠(Na)、Cu相似, 5、8、次年1月出现峰值;Mn、Fe、Zn相似, 5、8、11、次年1月出现峰值。3)土壤Na含量按照离海由近及远逐渐降低, 其他元素波动变化, 各距离之间差异不明显。4)凋落叶Na-Fe含量存在显著正相关关系, Na-Zn、Fe-Cu、Fe-Zn含量存在极显著正相关关系; 土壤与凋落叶相同元素含量间存在正相关关系, Na和Cu达到显著水平。究其原因, 叶片元素含量差异受叶凋落时间差异造成的重吸收差异影响大; 月间差异因植物生命活动对元素需求量存在差异; 归还量差异与凋落叶量及元素含量有关。
袁锋, 王艳艳, 李茂瑾, 江传阳, 刘贺娜, 李坤玲, 洪滔, 吴承祯, 陈灿. 不同海岸距离上木麻黄凋落叶金属元素含量及归还量动态特征. 植物生态学报, 2020, 44(8): 819-827. DOI: 10.17521/cjpe.2020.0091
YUAN Feng, WANG Yan-Yan, LI Mao-Jin, JIANG Chuan-Yang, LIU He-Na, LI Kun-Ling, HONG Tao, WU Cheng-Zhen, CHEN Can. Dynamic characteristics of metal element content and return of Casuarina equisetifolia litter at different distances to the coastline. Chinese Journal of Plant Ecology, 2020, 44(8): 819-827. DOI: 10.17521/cjpe.2020.0091
海岸距离 Coastal distance (m) | 树高 Tree height (m) | 胸径 Diameter at breast height (cm) | 冠幅 Crown width (m) | 风速 Wind speed (m·s-1) | 密度 Density (trees·hm-2) |
---|---|---|---|---|---|
30 (T1) | 10.67 ± 1.68 | 17.34 ± 1.08 | 3.65 ± 0.11 | 7.8 ± 1.11 | 2 350 |
60 (T2) | 11.70 ± 1.03 | 14.19 ± 4.48 | 3.98 ± 0.98 | 7.2 ± 0.97 | 2 150 |
90 (T3) | 12.93 ± 0.94 | 20.57 ± 1.27 | 4.22 ± 1.17 | 6.4 ± 0.86 | 1 850 |
120 (T4) | 13.53 ± 1.37 | 18.64 ± 3.89 | 3.75 ± 0.95 | 5.8 ± 0.65 | 1 700 |
150 (T5) | 13.40 ± 1.21 | 19.27 ± 4.16 | 3.52 ± 0.87 | 5.3 ± 0.76 | 1 600 |
300 (TCK) | 13.53 ± 1.49 | 25.39 ± 9.01 | 5.37 ± 1.57 | 4.3 ± 0.66 | 1 550 |
表1 福建海岸采样点木麻黄林基本特征(平均值±标准偏差)
Table 1 Basic characteristics of Casuarina equisetifolia at different distances to Fujian coastline (mean ± SD)
海岸距离 Coastal distance (m) | 树高 Tree height (m) | 胸径 Diameter at breast height (cm) | 冠幅 Crown width (m) | 风速 Wind speed (m·s-1) | 密度 Density (trees·hm-2) |
---|---|---|---|---|---|
30 (T1) | 10.67 ± 1.68 | 17.34 ± 1.08 | 3.65 ± 0.11 | 7.8 ± 1.11 | 2 350 |
60 (T2) | 11.70 ± 1.03 | 14.19 ± 4.48 | 3.98 ± 0.98 | 7.2 ± 0.97 | 2 150 |
90 (T3) | 12.93 ± 0.94 | 20.57 ± 1.27 | 4.22 ± 1.17 | 6.4 ± 0.86 | 1 850 |
120 (T4) | 13.53 ± 1.37 | 18.64 ± 3.89 | 3.75 ± 0.95 | 5.8 ± 0.65 | 1 700 |
150 (T5) | 13.40 ± 1.21 | 19.27 ± 4.16 | 3.52 ± 0.87 | 5.3 ± 0.76 | 1 600 |
300 (TCK) | 13.53 ± 1.49 | 25.39 ± 9.01 | 5.37 ± 1.57 | 4.3 ± 0.66 | 1 550 |
海岸距离 Coastal distance (m) | Na | Mn | Fe | Cu | Zn |
---|---|---|---|---|---|
30 (T1) | 6.091 ± 1.135a | 0.067 ± 0.020c | 0.267 ± 0.110a | 0.0043 ± 0.002a | 0.020 ± 0.003b |
60 (T2) | 5.327 ± 1.346a | 0.093 ± 0.033b | 0.226 ± 0.113ab | 0.0036 ± 0.002ab | 0.016 ± 0.003ab |
90 (T3) | 5.084 ± 1.431a | 0.078 ± 0.014bc | 0.175 ± 0.059b | 0.0027 ± 0.002bc | 0.016 ± 0.004ab |
120 (T4) | 4.408 ± 1.689b | 0.063 ± 0.011c | 0.168 ± 0.062b | 0.0022 ± 0.001c | 0.012 ± 0.003ab |
150 (T5) | 3.823 ± 1.283b | 0.073 ± 0.011c | 0.174 ± 0.049b | 0.0033 ± 0.002ac | 0.016 ± 0.002ab |
300 (TCK) | 1.973 ± 0.587c | 0.204 ± 0.036a | 0.188 ± 0.056b | 0.0030 ± 0.001bc | 0.024 ± 0.004a |
平均值 Mean | 4.451 ± 1.442 | 0.096 ± 0.054 | 0.200 ± 0.039 | 0.0032 ± 0.0007 | 0.019 ± 0.009 |
表2 不同海岸距离木麻黄凋落叶金属元素含量(g·kg-1)(平均值±标准偏差)
Table 2 Contents of metal elements in Casuarina equisetifolia litters at different distances to the coastline (g·kg-1)(mean ± SD)
海岸距离 Coastal distance (m) | Na | Mn | Fe | Cu | Zn |
---|---|---|---|---|---|
30 (T1) | 6.091 ± 1.135a | 0.067 ± 0.020c | 0.267 ± 0.110a | 0.0043 ± 0.002a | 0.020 ± 0.003b |
60 (T2) | 5.327 ± 1.346a | 0.093 ± 0.033b | 0.226 ± 0.113ab | 0.0036 ± 0.002ab | 0.016 ± 0.003ab |
90 (T3) | 5.084 ± 1.431a | 0.078 ± 0.014bc | 0.175 ± 0.059b | 0.0027 ± 0.002bc | 0.016 ± 0.004ab |
120 (T4) | 4.408 ± 1.689b | 0.063 ± 0.011c | 0.168 ± 0.062b | 0.0022 ± 0.001c | 0.012 ± 0.003ab |
150 (T5) | 3.823 ± 1.283b | 0.073 ± 0.011c | 0.174 ± 0.049b | 0.0033 ± 0.002ac | 0.016 ± 0.002ab |
300 (TCK) | 1.973 ± 0.587c | 0.204 ± 0.036a | 0.188 ± 0.056b | 0.0030 ± 0.001bc | 0.024 ± 0.004a |
平均值 Mean | 4.451 ± 1.442 | 0.096 ± 0.054 | 0.200 ± 0.039 | 0.0032 ± 0.0007 | 0.019 ± 0.009 |
元素 Element | 含量 Content (g·kg-1) | 归还量 Return amount (kg·hm-2) | ||||
---|---|---|---|---|---|---|
方程 Equation | R2 | p | 方程 Equation | R2 | p | |
Na | y = -0.7365x + 7.0288 | 0.913 3 | 0.000 | y = -8.978x + 73.306 | 0.897 3 | 0.000 |
Mn | y = 0.0112x2 - 0.0607x + 0.1395 | 0.689 4 | 0.000 | y = 0.0889x2 - 0.4939x + 1.29 | 0.489 8 | 0.000 |
Fe | y = 0.009x2 - 0.0788x + 0.3393 | 0.977 3 | 0.019 | y = -0.24x + 2.644 | 0.813 4 | 0.002 |
Cu | y = 0.002x2 - 0.0015x + 0.0056 | 0.780 3 | 0.022 | y = 0.0012x2 - 0.0115x + 0.0505 | 0.776 0 | 0.054 |
Zn | y = 0.0013x2 - 0.0086x + 0.0276 | 0.833 1 | 0.019 | y = -0.014x + 0.1962 | 0.664 8 | 0.009 |
表3 不同海岸距离木麻黄凋落叶养分含量及归还量回归方程
Table 3 Equations for the calculation of litter element content and return of Casuarina equisetifolia at different distances to the coastline
元素 Element | 含量 Content (g·kg-1) | 归还量 Return amount (kg·hm-2) | ||||
---|---|---|---|---|---|---|
方程 Equation | R2 | p | 方程 Equation | R2 | p | |
Na | y = -0.7365x + 7.0288 | 0.913 3 | 0.000 | y = -8.978x + 73.306 | 0.897 3 | 0.000 |
Mn | y = 0.0112x2 - 0.0607x + 0.1395 | 0.689 4 | 0.000 | y = 0.0889x2 - 0.4939x + 1.29 | 0.489 8 | 0.000 |
Fe | y = 0.009x2 - 0.0788x + 0.3393 | 0.977 3 | 0.019 | y = -0.24x + 2.644 | 0.813 4 | 0.002 |
Cu | y = 0.002x2 - 0.0015x + 0.0056 | 0.780 3 | 0.022 | y = 0.0012x2 - 0.0115x + 0.0505 | 0.776 0 | 0.054 |
Zn | y = 0.0013x2 - 0.0086x + 0.0276 | 0.833 1 | 0.019 | y = -0.014x + 0.1962 | 0.664 8 | 0.009 |
海岸距离 Coastal distance (m) | Na | Mn | Fe | Cu | Zn |
---|---|---|---|---|---|
30 (T1) | 56.196 ± 19.596a | 0.636 ± 0.264b | 2.388 ± 1.008a | 0.037 ± 0.012a | 0.178 ± 0.048ab |
60 (T2) | 59.136 ± 23.580a | 0.960 ± 0.264ab | 2.364 ± 0.924a | 0.038 ± 0.024ab | 0.176 ± 0.072ab |
90 (T3) | 53.532 ± 17.136a | 0.876 ± 0.360ab | 1.848 ± 0.696ab | 0.026 ± 0.012ab | 0.174 ± 0.060ab |
120 (T4) | 40.656 ± 21.816ac | 0.612 ± 0.252ab | 1.572 ± 0.756ab | 0.020 ± 0.012b | 0.110 ± 0.048b |
150 (T5) | 25.896 ± 10.416bc | 0.528 ± 0.216ab | 1.176 ± 0.432b | 0.024 ± 0.012ab | 0.116 ± 0.048b |
300 (TCK) | 15.864 ± 10.908b | 1.848 ± 1.512a | 1.476 ± 0.948ab | 0.026 ± 0.024ab | 0.128 ± 0.068a |
平均值 Mean | 41.880 ± 17.733 | 0.910 ± 0.489 | 1.804 ± 0.492 | 0.029 ± 0.007 | 0.147 ± 0.0.32 |
表4 不同海岸距离木麻黄凋落叶金属元素养分归还量(kg·hm-2)(平均值±标准偏差)
Table 4 The amount of nutrients returned from the litter of Casuarina equisetifolia at different distances to the coastline (kg·hm-2)(mean ± SD)
海岸距离 Coastal distance (m) | Na | Mn | Fe | Cu | Zn |
---|---|---|---|---|---|
30 (T1) | 56.196 ± 19.596a | 0.636 ± 0.264b | 2.388 ± 1.008a | 0.037 ± 0.012a | 0.178 ± 0.048ab |
60 (T2) | 59.136 ± 23.580a | 0.960 ± 0.264ab | 2.364 ± 0.924a | 0.038 ± 0.024ab | 0.176 ± 0.072ab |
90 (T3) | 53.532 ± 17.136a | 0.876 ± 0.360ab | 1.848 ± 0.696ab | 0.026 ± 0.012ab | 0.174 ± 0.060ab |
120 (T4) | 40.656 ± 21.816ac | 0.612 ± 0.252ab | 1.572 ± 0.756ab | 0.020 ± 0.012b | 0.110 ± 0.048b |
150 (T5) | 25.896 ± 10.416bc | 0.528 ± 0.216ab | 1.176 ± 0.432b | 0.024 ± 0.012ab | 0.116 ± 0.048b |
300 (TCK) | 15.864 ± 10.908b | 1.848 ± 1.512a | 1.476 ± 0.948ab | 0.026 ± 0.024ab | 0.128 ± 0.068a |
平均值 Mean | 41.880 ± 17.733 | 0.910 ± 0.489 | 1.804 ± 0.492 | 0.029 ± 0.007 | 0.147 ± 0.0.32 |
海岸距离 Coastal distance (m) | Na (g·kg-1) | Mn (g·kg-1) | Fe (g·kg-1) | Cu (mg·kg-1) | Zn (mg·kg-1) |
---|---|---|---|---|---|
30 (T1) | 4.305 ± 1.030a | 0.075 ± 0.019ab | 2.130 ± 0.212a | 0.9 ± 0.07a | 7.0 ± 0.69ab |
60 (T2) | 3.554 ± 0.310ab | 0.074 ± 0.011ab | 2.063 ± 0.181a | 0.8 ± 0.08ab | 5.3 ± 1.08a |
90 (T3) | 3.867 ± 0.844ab | 0.061 ± 0.013a | 2.299 ± 0.433a | 0.8 ± 0.07ab | 6.5 ± 1.66ab |
120 (T4) | 3.106 ± 0.557b | 0.074 ± 0.077ab | 2.742 ± 0.220a | 0.6 ± 0.08b | 8.3 ± 1.16b |
150 (T5) | 2.857 ± 0.186b | 0.082 ± 0.011ab | 2.196 ± 0.281a | 0.8 ± 0.16ab | 6.7 ± 1.28ab |
300 (TCK) | 1.556 ± 0.399c | 0.090 ± 0.021b | 2.701 ± 0.790a | 0.7 ± 0.12b | 10.9 ± 2.47c |
平均值 Mean | 3.208 ± 0.961 | 0.076 ± 0.010 | 2.283 ± 0.241 | 0.8 ± 0.09 | 7.5 ± 1.90 |
表5 不同海岸距离土壤金属元素含量(平均值±标准偏差)
Table 5 Metal element content in soils at different distances to the coastline (mean ± SD)
海岸距离 Coastal distance (m) | Na (g·kg-1) | Mn (g·kg-1) | Fe (g·kg-1) | Cu (mg·kg-1) | Zn (mg·kg-1) |
---|---|---|---|---|---|
30 (T1) | 4.305 ± 1.030a | 0.075 ± 0.019ab | 2.130 ± 0.212a | 0.9 ± 0.07a | 7.0 ± 0.69ab |
60 (T2) | 3.554 ± 0.310ab | 0.074 ± 0.011ab | 2.063 ± 0.181a | 0.8 ± 0.08ab | 5.3 ± 1.08a |
90 (T3) | 3.867 ± 0.844ab | 0.061 ± 0.013a | 2.299 ± 0.433a | 0.8 ± 0.07ab | 6.5 ± 1.66ab |
120 (T4) | 3.106 ± 0.557b | 0.074 ± 0.077ab | 2.742 ± 0.220a | 0.6 ± 0.08b | 8.3 ± 1.16b |
150 (T5) | 2.857 ± 0.186b | 0.082 ± 0.011ab | 2.196 ± 0.281a | 0.8 ± 0.16ab | 6.7 ± 1.28ab |
300 (TCK) | 1.556 ± 0.399c | 0.090 ± 0.021b | 2.701 ± 0.790a | 0.7 ± 0.12b | 10.9 ± 2.47c |
平均值 Mean | 3.208 ± 0.961 | 0.076 ± 0.010 | 2.283 ± 0.241 | 0.8 ± 0.09 | 7.5 ± 1.90 |
NaL | MnL | FeL | CuL | ZnL | |
---|---|---|---|---|---|
MnL | 0.426, 0.167 (ns) | 1 | |||
FeL | 0.660, <0.05 | 0.117, 0.717 (ns) | 1 | ||
CuL | 0.388, 0.213 (ns) | -0.034, 0.917 (ns) | 0.724, <0.01 | 1 | |
ZnL | 0.825, <0.01 | 0.324, 0.304 (ns) | 0.740, <0.01 | 0.550, 0.064 (ns) | 1 |
pH | 0.971, <0.05 | 0.777, 0.069 (ns) | 0.695, 0.126 (ns) | 0.613, 0.196 (ns) | 0.617, 0.192 (ns) |
NaS-NaL | MnS-MnL | FeS-FeL | CuS-CuL | ZnS-ZnL | |
0.987, <0.01 | 0.677, 0.140 (ns) | 0.609, 0.200 (ns) | 0.895, <0.05 | 0.769, 0.074 (ns) |
表6 不同海岸距离木麻黄凋落叶金属元素含量之间及与土壤元素含量的Pearson相关分析(n = 12)
Table 6 Pearson correlation analysis between the metal elements content in the litter of Casuarina equisetifolia at different distances to the coastline and soil elements content (n = 12)
NaL | MnL | FeL | CuL | ZnL | |
---|---|---|---|---|---|
MnL | 0.426, 0.167 (ns) | 1 | |||
FeL | 0.660, <0.05 | 0.117, 0.717 (ns) | 1 | ||
CuL | 0.388, 0.213 (ns) | -0.034, 0.917 (ns) | 0.724, <0.01 | 1 | |
ZnL | 0.825, <0.01 | 0.324, 0.304 (ns) | 0.740, <0.01 | 0.550, 0.064 (ns) | 1 |
pH | 0.971, <0.05 | 0.777, 0.069 (ns) | 0.695, 0.126 (ns) | 0.613, 0.196 (ns) | 0.617, 0.192 (ns) |
NaS-NaL | MnS-MnL | FeS-FeL | CuS-CuL | ZnS-ZnL | |
0.987, <0.01 | 0.677, 0.140 (ns) | 0.609, 0.200 (ns) | 0.895, <0.05 | 0.769, 0.074 (ns) |
[1] | Chapin III FS, Matson PA, Vitouseh PM (2002). Principles of Terrestrial Ecosystem Ecology. Springer, New York. |
[2] | Ebemayer E (1876). Die gesammte Lehre der Waldstreu mit Rücksicht auf die chemische Statik des Waldbaues. Unter Zugrundlegung der in den Königl. Staatsforsten Bayerns angestellten Untersuchungen. Springer, Berlin. |
[3] | Fang YT, Mo JM, Zhou GY, Zhang DQ, Xue JH (2005). Minor nutrient element status of plant and soil in a lower subtropical evergreen broad-leaved forest in Dinghushan Biosphere Reserve. Guihaia, 25, 504-510. |
[ 方运霆, 莫江明, 周国逸, 张德强, 薛璟花 (2005). 鼎湖山南亚热带常绿阔叶林植物和土壤微量元素含量. 广西植物, 25, 504-510.] | |
[4] |
Jia BR (2019). Litter decomposition and its underlying mechanisms. Chinese Journal of Plant Ecology, 43, 648-657.
DOI URL |
[ 贾丙瑞 (2019). 凋落物分解及其影响机制. 植物生态学报, 43, 648-657.] | |
[5] | Jin MH, Ding ZH, Zhou HC, Ye GF (2014). Absorption and enrichment of heavy metals by Casuarina equisetifolia of different stand ages in a coastal zone. Chinese Journal of Ecology, 33, 2183-2187. |
[ 靳明华, 丁振华, 周海超, 叶功富 (2014). 海岸带不同林龄木麻黄对重金属的吸收与富集作用. 生态学杂志, 33, 2183-2187.] | |
[6] |
Jugsujinda A, Patrick Jr WH (1993). Evaluation of toxic conditions associated with oranging symptoms of rice in a flooded Oxisol in Sumatra, Indonesia. Plant and Soil, 152, 237-243.
DOI URL |
[7] |
Knecht MF, Göransson A (2004). Terrestrial plants require nutrients in similar proportions. Tree Physiology, 24, 447-460.
DOI URL PMID |
[8] |
Lado-Monserrat L, Lidón A, Bautista I (2016). Litterfall, litter decomposition and associated nutrient fluxes in Pinus halepensis: influence of tree removal intensity in a Mediterranean forest. European Journal of Forest Research, 135, 203-214.
DOI URL |
[9] | Liu L, Zhao CM, Xu WT, Shen GZ, Xie ZQ (2019). Litter nutrient characteristics of mixed evergreen and deciduous broadleaved forests in Shennongjia, China. Acta Ecologica Sinica, 39, 7611-7620. |
[ 刘璐, 赵常明, 徐文婷, 申国珍, 谢宗强 (2019). 神农架常绿落叶阔叶混交林凋落物养分特征. 生态学报, 39, 7611-7620.] | |
[10] | Li XG, Kang XR, Cai ZY, Zhang HD, Zhang JF, He GP, Chen GC (2019). Heavy metal tolerance, accumulation and distribution in five clones of Casuarina equisetifolia. Chinese Journal of Ecology, 38, 2094-2101. |
[ 李晓刚, 康希睿, 蔡泽宇, 张涵丹, 张建锋, 何贵平, 陈光才 (2019). 木麻黄对土壤重金属的生长响应及积累特征. 生态学杂志, 38, 2094-2101.] | |
[11] | Marschner H (1986). Mineral Nutrition of Higher Plants. Academic Press, London, |
[12] | Mo JM, Xue JH, Fang YT (2004). Litter decomposition and its responses to simulated N deposition for the major plants of Dinghushan forests in subtropical China. Acta Ecologica Sinica, 24, 1413-1420. |
[ 莫江明, 薛璟花, 方运霆 (2004). 鼎湖山主要森林植物凋落物分解及其对N沉降的响应. 生态学报, 24, 1413-1420.] | |
[13] | Ning QR, Li SZ, Jiang LC, Tao JJ, Chen HR, Liu C, Yang XY (2017). Characteristics and factors influencing foliar nutrient resorption in plants. Chinese Journal of Applied and Environmental Biology, 23, 811-817. |
[ 宁秋蕊, 李守中, 姜良超, 陶晶晶, 陈涵睿, 刘聪, 杨贤宇 (2017). 植物叶片养分再吸收特征及其影响因子. 应用与环境生物学报, 23, 811-817.] | |
[14] | Peng SL, Liu Q (2002). The dynamics of forest litter and its responses to global warming. Acta Ecologica Sinica, 22, 1534-1544. |
[ 彭少麟, 刘强 (2002). 森林凋落物动态及其对全球变暖的响应. 生态学报, 22, 1534-1544.] | |
[15] |
Pereira GHA, Jordao HCK, Silva VFV, Pereira MG (2016). Litter and nutrient flows in tropical upland forest flooded by a hydropower plant in the Amazonian basin. Science of the Total Environment, 572, 157-168.
DOI URL |
[16] |
Robert B, Caritat A, Bertoni G, Vilar L, Molinas M (1996). Nutrient content and seasonal fluctuations in the leaf component of cork-oak (Quercus suber L.) litterfall. Vegetatio, 122, 29-35.
DOI URL |
[17] |
Shen A, Zhu JJ, Yan T, Lu DL, Yang K (2018). Effects of leaf nutrient concentration and resorption on leaf falling time of dominant broad-leaved species in a montane region of eastern Liaoning Province, China. Chinese Journal of Plant Ecology, 42, 573-584.
DOI URL |
[ 申奥, 朱教君, 闫涛, 卢德亮, 杨凯 (2018). 辽东山区主要阔叶树种叶片养分含量和再吸收对落叶时间的影响. 植物生态学报, 42, 573-584.] | |
[18] |
Shukla G, Pala NA, Chakravarty S (2017). Quantification of organic carbon and primary nutrients in litter and soil in a foothill forest plantation of eastern Himalaya. Journal of Forestry Research, 28, 1195-1202.
DOI URL |
[19] | Tan FL (2003). Study on litter decomposition and nutrient release in Casuarina equisetifolia protective plantation ecosystem. Scientia Silvae Sinicae, 39(Suppl. 1), 21-26. |
[ 谭芳林 (2003). 木麻黄防护林生态系统凋落物及养分释放研究. 林业科学, 39(Suppl. 1), 21-26.] | |
[20] | Wang J, Huang JH (2001). Comparison of major nutrient release patterns in leaf litter decomposition in warm temperate zone of China. Acta Phytoecologica Sinica, 25, 375-380. |
[ 王瑾, 黄建辉 (2001). 暖温带地区主要树种叶片凋落物分解过程中主要元素释放的比较. 植物生态学报, 25, 375-380.] | |
[21] | Wu XL, Ye GF, Zhang SJ, Lin YM, Zhang LH (2011). Contents of some mineral elements and their resorption efficiencies in Casuarina equisetifolia branchlets across a coastal gradient. Journal of Applied and Environmental Biology, 17, 645-650. |
[ 吴锡麟, 叶功富, 张尚炬, 林益明, 张立华 (2011). 不同海岸梯度上短枝木麻黄小枝金属元素含量及其再吸收率动态. 应用与环境生物学报, 17, 645-650.] | |
[22] |
Yan ER, Wang XH, Zhou W (2008). Characteristics of litterfall in relation to soil nutrients in mature and degraded evergreen broad-leaved forests of Tiantong, East China. Chinese Journal of Plant Ecology, 32, 1-12.
DOI URL |
[ 阎恩荣, 王希华, 周武 (2008). 天童常绿阔叶林不同退化群落的凋落物特征及与土壤养分动态的关系. 植物生态学报, 32, 1-12.] | |
[23] | Ye GF, Zhang LH, Lin YM, Wang H, Zhou HC, Zeng Q (2009). Seasonal dynamics of nitrogen and phosphorus concentrations, and nutrient resorption efficiencies of Casuarina equisetifolia branchlets in Dongshan County, Fujian. Acta Ecologica Sinica, 29, 6519-6526. |
[ 叶功富, 张立华, 林益明, 王哼, 周海超, 曾琦 (2009). 福建东山短枝木麻黄小枝氮磷含量及其再吸收率季节动态. 生态学报, 29, 6519-6526.] | |
[24] |
Yuan YX (1996). The roles of microelements in plant life. Bulletin of Biology, 31, 4-8.
DOI URL |
[ 袁玉信 (1996). 微量元素在植物生活中的作用. 生物学通报, 31, 4-8.] | |
[25] | Zhang LL, Zhao XY, Yuan H (2013). Research progress on the effects of wind on plants and plant adaptation strategies. Advance in Earth Science, 28, 1349-1353. |
[ 张琳琳, 赵晓英, 原慧 (2013). 风对植物的作用及植物适应对策研究进展. 地球科学进展, 28, 1349-1353.] | |
[26] | Zhang YD, Liu YC, Gu FX, Guo MM, Miao N, Liu SR (2019). Litter composition and its dynamic in five main forest types in subalpine areas of west Sichuan, China. Acta Ecologica Sinica, 39, 502-508. |
[ 张远东, 刘彦春, 顾峰雪, 郭明明, 缪宁, 刘世荣 (2019). 川西亚高山五种主要森林类型凋落物组成及动态. 生态学报, 39, 502-508.] | |
[27] | Zhang ZR, Song CX (1991). The action of micronutrients played in plant life. Journal of Nanjing University, 27, 530-539. |
[ 张正仁, 宋长铣 (1991). 微量元素在植物生命活动中的作用. 南京大学学报, 27, 530-539.] | |
[28] |
Zhang ZX, Liu P, Xu GD, Zhang JY, Li HJ, Liao JP, Wu SB (2010). Metal element contents of Tsuga chinensis var. tchekiangensis in different community types and its relationship with soil nutrient factors in Eastern China. Chinese Journal of Plant Ecology, 34, 505-516.
DOI URL |
[ 张志祥, 刘鹏, 徐根娣, 张家银, 李洪军, 廖进平, 巫松标 (2010). 不同群落类型下南方铁杉金属元素含量差异及其与土壤养分因子的关系. 植物生态学报, 34, 505-516.] | |
[29] | Zhong CL, Huang YX, Cao CF, Jiang C, Guo JL, Gu F (2017). Responses of element stoichiometry characteristics of Casuarina equisetifolia to distance from the coastline. Journal of Subtropical Resources and Environment, 12, 22-29. |
[ 钟春柳, 黄义雄, 曹春福, 姜超, 郭佳蕾, 古璠 (2017). 不同海岸梯度下木麻黄防护林生态化学计量特征. 亚热带资源与环境学报, 12, 22-29.] | |
[30] | Zhong ZX, Xu YP, Wan KY, Chen F (2007). Trace elements in leaves of 21 rare species of Magnoliaceae and Lauraceae in the ex-situ conservation site of Wuhan botanical garden and trace elements in soil. Journal of Northeast Forestry University, 35(3), 46-48. |
[ 钟志祥, 徐有明, 万开元, 陈防 (2007). 迁栖地樟科与木兰科21种珍稀植物叶片微量元素与土壤微量元素. 东北林业大学学报, 35(3), 46-48.] |
[1] | 吴君梅, 曾泉鑫, 梅孔灿, 林惠瑛, 谢欢, 刘苑苑, 徐建国, 陈岳民. 土壤磷有效性调控亚热带森林土壤酶活性和酶化学计量对凋落叶输入的响应[J]. 植物生态学报, 2024, 48(2): 242-253. |
[2] | 李冠军, 陈珑, 余雯静, 苏亲桂, 吴承祯, 苏军, 李键. 固体培养内生真菌对土壤盐胁迫下木麻黄幼苗渗透调节和抗氧化系统的影响[J]. 植物生态学报, 2023, 47(6): 804-821. |
[3] | 仲琦, 李曾燕, 马炜, 况雨潇, 邱岭军, 黎蕴洁, 涂利华. 氮添加和凋落物处理对华西雨屏区常绿阔叶林凋落叶分解的影响[J]. 植物生态学报, 2023, 47(5): 629-643. |
[4] | 王广亚, 陈柄华, 黄雨晨, 金光泽, 刘志理. 着生位置对水曲柳小叶性状变异及性状间相关性的影响[J]. 植物生态学报, 2022, 46(6): 712-721. |
[5] | 吴秋霞, 吴福忠, 胡仪, 康自佳, 张耀艺, 杨静, 岳楷, 倪祥银, 杨玉盛. 亚热带同质园11个树种新老叶非结构性碳水化合物含量比较[J]. 植物生态学报, 2021, 45(7): 771-779. |
[6] | 荀彦涵, 邸雪颖, 金光泽. 典型阔叶红松林主要树种叶性状的垂直变异及经济策略[J]. 植物生态学报, 2020, 44(7): 730-741. |
[7] | 陈思路, 蔡劲松, 林成芳, 宋豪威, 杨玉盛. 亚热带不同树种凋落叶分解对氮添加的响应[J]. 植物生态学报, 2020, 44(3): 214-227. |
[8] | 申奥, 朱教君, 闫涛, 卢德亮, 杨凯. 辽东山区主要阔叶树种叶片养分含量和再吸收对落叶时间的影响[J]. 植物生态学报, 2018, 42(5): 573-584. |
[9] | 陈文静, 贡璐, 刘雨桐. 季节性雪被对天山雪岭云杉凋落叶分解和碳氮磷释放的影响[J]. 植物生态学报, 2018, 42(4): 487-497. |
[10] | 徐波, 朱忠福, 李金洋, 吴彦, 邓贵平, 吴宁, 石福孙. 九寨沟国家自然保护区4个典型树种叶片凋落物在林下及高山湖泊中的分解及养分释放特征[J]. 植物生态学报, 2016, 40(9): 883-892. |
[11] | 万菁娟, 郭剑芬, 纪淑蓉, 任卫岭, 司友涛, 杨玉盛. 不同来源可溶性有机物对亚热带森林土壤CO2排放的影响[J]. 植物生态学报, 2015, 39(7): 674-681. |
[12] | 倪祥银,杨万勤,李晗,徐李亚,何洁,吴福忠. 雪被斑块对川西亚高山森林6种凋落叶冬季腐殖化的影响[J]. 植物生态学报, 2014, 38(6): 540-549. |
[13] | 唐仕姗,杨万勤,殷睿,熊莉,王海鹏,王滨,张艳,彭艳君,陈青松,徐振锋. 中国森林生态系统凋落叶分解速率的分布特征及其控制因子[J]. 植物生态学报, 2014, 38(6): 529-539. |
[14] | 李小容,韦金玉,陈云,曹婷婷,冯莉,顾美子,李蕾. 海南岛不同林龄的木麻黄林地土壤微生物的功能多样性[J]. 植物生态学报, 2014, 38(6): 608-618. |
[15] | 何伟, 吴福忠, 杨万勤, 武启骞, 何敏, 赵野逸. 雪被斑块对高山森林两种灌木凋落叶质量损失的影响[J]. 植物生态学报, 2013, 37(4): 306-316. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19