植物生态学报 ›› 2014, Vol. 38 ›› Issue (6): 608-618.DOI: 10.3724/SP.J.1258.2014.00056
所属专题: 生物多样性
收稿日期:
2013-12-04
接受日期:
2014-02-11
出版日期:
2014-12-04
发布日期:
2014-06-10
通讯作者:
李蕾
基金资助:
LI Xiao-Rong,WEI Jin-Yu,CHEN Yun,CAO Ting-Ting,FENG Li,GU Mei-Zi,LI Lei()
Received:
2013-12-04
Accepted:
2014-02-11
Online:
2014-12-04
Published:
2014-06-10
Contact:
LI Lei
摘要:
为研究不同林龄木麻黄(Casuarina equisetifolia)林地土壤微生物功能多样性的动态变化, 通过Biolog系统对海口市桂林洋开发区滨海不同林龄(幼龄林(林龄5-8年)、中龄林(林龄15-20年)和成熟林(林龄30年及以上))的木麻黄林地土壤微生物的功能多样性进行了分析。结果表明: (1)对照裸地和成熟林林地土壤微生物对所使用的Biolog-ECO微孔板中的31种碳源的利用率和对这31种碳源的各分类碳源的利用率高于中龄林与幼龄林林地; (2) Shannon-Wiener指数(H′), McIntosh、Simpson多样性指数随着林龄增大而增大, 不同林龄林地间的H′差异显著, 幼龄林和中龄林的McIntosh、Simpson多样性指数无显著差异; (3)主成分分析结果表明, 在主成分分离中起分异作用的主要碳源为单糖和氨基酸。林地土壤微生物群落多样性随着林龄增加而增高, 这可能是林分凋落物、植物根系分泌的次生代谢物、土壤养分、林地土壤特异性微生物等共同作用的结果。
李小容,韦金玉,陈云,曹婷婷,冯莉,顾美子,李蕾. 海南岛不同林龄的木麻黄林地土壤微生物的功能多样性. 植物生态学报, 2014, 38(6): 608-618. DOI: 10.3724/SP.J.1258.2014.00056
LI Xiao-Rong,WEI Jin-Yu,CHEN Yun,CAO Ting-Ting,FENG Li,GU Mei-Zi,LI Lei. Functional diversity of soil microorganisms in Casuarina equisetifolia woodlands of different stand ages in Hainan Island. Chinese Journal of Plant Ecology, 2014, 38(6): 608-618. DOI: 10.3724/SP.J.1258.2014.00056
林地 Woodland | 容重 Bulk density (g·cm-3) | 含水量 Water content (%) | pH值 pH value | 全氮 Total N (mg·kg-1) | 全磷 Total P (mg·kg-1) | 全钾 Total K (mg·kg-1) |
---|---|---|---|---|---|---|
对照裸地 Bare land as control | 1.52 ± 0.05a | 13.35 ± 0.69b | 5.52 ± 0.26c | 297.49 ± 47.11b | 528.31 ± 2.65c | 137.82 ± 24.62b |
幼龄林 Young forest | 1.27 ± 0.06b | 14.88 ± 1.15a | 5.27 ± 0.45bc | 435.65 ± 11.76a | 498.62 ± 5.30d | 175.55 ± 30.42a |
中龄林 Middle-aged forest | 1.30 ± 0.03b | 13.39 ± 0.45b | 4.96 ± 0.29ab | 418.32 ± 31.45a | 552.76 ± 7.05b | 154.67 ± 6.21ab |
成熟林 Mature forest | 1.28 ± 0.02b | 14.62 ± 0.65a | 4.68 ± 0.15a | 239.91 ± 24.00b | 573.10 ± 0.47a | 155.40 ± 22.83ab |
表1 不同林龄林地的土壤理化性质(平均值±标准偏差)
Table 1 Soil physical-chemical properties in woodlands of different stand ages (mean ± SD)
林地 Woodland | 容重 Bulk density (g·cm-3) | 含水量 Water content (%) | pH值 pH value | 全氮 Total N (mg·kg-1) | 全磷 Total P (mg·kg-1) | 全钾 Total K (mg·kg-1) |
---|---|---|---|---|---|---|
对照裸地 Bare land as control | 1.52 ± 0.05a | 13.35 ± 0.69b | 5.52 ± 0.26c | 297.49 ± 47.11b | 528.31 ± 2.65c | 137.82 ± 24.62b |
幼龄林 Young forest | 1.27 ± 0.06b | 14.88 ± 1.15a | 5.27 ± 0.45bc | 435.65 ± 11.76a | 498.62 ± 5.30d | 175.55 ± 30.42a |
中龄林 Middle-aged forest | 1.30 ± 0.03b | 13.39 ± 0.45b | 4.96 ± 0.29ab | 418.32 ± 31.45a | 552.76 ± 7.05b | 154.67 ± 6.21ab |
成熟林 Mature forest | 1.28 ± 0.02b | 14.62 ± 0.65a | 4.68 ± 0.15a | 239.91 ± 24.00b | 573.10 ± 0.47a | 155.40 ± 22.83ab |
图1 不同林龄林地土壤微生物群落平均颜色变化率(平均值±标准偏差)。
Fig. 1 Average well color development of soil microbial communities in woodlands of different stand ages (mean ± SD).
图2 不同林龄林地的土壤微生物对不同碳源的利用情况(平均值±标准偏差)。A, 单糖类底物及其衍生物。B, 二糖和多糖底物。C, 氨基酸底物及其衍生物。D, 脂肪酸和脂类。E, 代谢中间产物和次生代谢物。
Fig. 2 Utilization of different carbon sources of soil microorganisms in woodlands of different stand ages (mean ± SD). A, monosaccharide substrates and their derivants. B, disaccharide and polysaccharide substrates. C, amino acid substrates and their derivants. D, fat acid and lipid. E, metabolic intermediates and secondary metabolites.
林地 Woodland | 单糖类底物及其衍生物 Monosaccharide substrates and their derivants | 二糖、多糖底物Disaccharide and polysaccharide substrates | 氨基酸底物及其衍生物 Amino acid substrates and their derivants | 脂肪酸和脂类 Fat acid and lipid | 代谢中间产物和次生代谢物 Metabolic intermediates and secondary metabolites |
---|---|---|---|---|---|
对照裸地 Bare land as control | 2.27 ± 0.12a | 1.14 ± 0.29a | 2.85 ± 0.10a | 2.22 ± 0.17a | 2.19 ± 0.07a |
幼龄林 Young forest | 0.28 ± 0.17c | 0.22 ± 0.20b | 0.02 ± 0.03d | 0.49 ± 0.18b | 0.23 ± 0.04c |
中龄林 Middle-aged forest | 0.30 ± 0.07c | 0.03 ± 0.00b | 0.43 ± 0.19c | 0.78 ± 0.39b | 0.40 ± 0.13c |
成熟林 Mature forest | 1.89 ± 0.17b | 0.82 ± 0.21a | 2.46 ± 0.20b | 2.04 ± 0.07a | 1.69 ± 0.76b |
表2 土壤微生物群落对不同碳源的利用率(平均值±标准偏差, n = 3)
Table 2 Utilization efficiency of different carbon sources in soil microbial communities (mean ± SD, n = 3)
林地 Woodland | 单糖类底物及其衍生物 Monosaccharide substrates and their derivants | 二糖、多糖底物Disaccharide and polysaccharide substrates | 氨基酸底物及其衍生物 Amino acid substrates and their derivants | 脂肪酸和脂类 Fat acid and lipid | 代谢中间产物和次生代谢物 Metabolic intermediates and secondary metabolites |
---|---|---|---|---|---|
对照裸地 Bare land as control | 2.27 ± 0.12a | 1.14 ± 0.29a | 2.85 ± 0.10a | 2.22 ± 0.17a | 2.19 ± 0.07a |
幼龄林 Young forest | 0.28 ± 0.17c | 0.22 ± 0.20b | 0.02 ± 0.03d | 0.49 ± 0.18b | 0.23 ± 0.04c |
中龄林 Middle-aged forest | 0.30 ± 0.07c | 0.03 ± 0.00b | 0.43 ± 0.19c | 0.78 ± 0.39b | 0.40 ± 0.13c |
成熟林 Mature forest | 1.89 ± 0.17b | 0.82 ± 0.21a | 2.46 ± 0.20b | 2.04 ± 0.07a | 1.69 ± 0.76b |
林地 Woodland | Shannon-Wiener指数 Shannon-Wiener index | Simpson指数 Simpson index | McIntosh指数 McIntosh index | 丰富度指数 Richness index |
---|---|---|---|---|
对照裸地 Bare land as control | 3.17 ± 0.02d | 21.92 ± 0.12b | 12.87 ± 0.25b | 29.00 ± 1.00a |
幼龄林 Young forest | 2.28 ± 0.06c | 8.23 ± 0.36c | 4.69 ± 0.31c | 16.67 ± 0.58b |
中龄林 Middle-aged forest | 2.53 ± 0.06b | 9.13 ± 1.61c | 5.12 ± 0.07c | 8.00 ± 2.00c |
成熟林 Mature forest | 3.29 ± 0.04a | 25.54 ± 1.35a | 13.81 ± 0.01a | 27.67 ± 1.53a |
表3 不同林龄林地土壤微生物群落代谢多样性指数分析(平均值±标准偏差)
Table 3 Analysis of metabolic diversity index for soil microbial communities in woodlands of different stand ages (mean ± SD)
林地 Woodland | Shannon-Wiener指数 Shannon-Wiener index | Simpson指数 Simpson index | McIntosh指数 McIntosh index | 丰富度指数 Richness index |
---|---|---|---|---|
对照裸地 Bare land as control | 3.17 ± 0.02d | 21.92 ± 0.12b | 12.87 ± 0.25b | 29.00 ± 1.00a |
幼龄林 Young forest | 2.28 ± 0.06c | 8.23 ± 0.36c | 4.69 ± 0.31c | 16.67 ± 0.58b |
中龄林 Middle-aged forest | 2.53 ± 0.06b | 9.13 ± 1.61c | 5.12 ± 0.07c | 8.00 ± 2.00c |
成熟林 Mature forest | 3.29 ± 0.04a | 25.54 ± 1.35a | 13.81 ± 0.01a | 27.67 ± 1.53a |
图3 不同林龄林地土壤微生物群落碳源利用主成分分析。
Fig. 3 Principal component analysis of carbon sources utilization of soil microbial communities in woodlands of different stand ages.
碳源 Carbon source | 类别 Type | 相关系数 Correlation coefficient | |
---|---|---|---|
PC1 | Tween-40 | 脂肪酸 Fatty acid | 0.995 |
L-天冬酰胺酸 L-Asparagine | 氨基酸 Amino acid | 0.920 | |
L-苏氨酸 L-Threonine | 氨基酸 Amino acid | 0.909 | |
2-羟苯甲酸 2-Hydroxy benzoic acid | 代谢中间产物 Metabolic intermediate | 0.956 | |
4-羟基苯甲酸 4-Hydroxy benzoic acid | 代谢中间产物 Metabolic intermediate | 0.976 | |
衣康酸 Itaconic acid | 代谢中间产物 Metabolic intermediate | 0.903 | |
D, L-α-磷酸甘油 D,L-α-Glycerol phosphate | 代谢中间产物 Metabolic intermediate | 0.992 | |
苯乙基胺 Phenylethyl-amine | 代谢中间产物 Metabolic intermediate | 0.921 | |
D-苹果酸 D-Malic acid | 代谢中间产物 Metabolic intermediate | 0.913 | |
β-甲基-D-葡萄糖苷 β-Methyl-D-glucoside | 单糖 Monosaccharide | 0.931 | |
I-赤藻糖醇 I-Erythritol | 单糖 Monosaccharide | 0.993 | |
N-乙酰基-D-葡萄糖胺 N-Acetyl-D-glucosamine | 单糖 Monosaccharide | 0.975 | |
D-氨基葡萄糖酸 D-Glucosaminic acid | 单糖 Monosaccharide | 0.992 | |
D-半乳糖酸-γ内酯 D-Galactonic acid γ-lactone | 单糖 Monosaccharide | 0.915 | |
D-半乳糖醛酸 D-Galacturonic acid | 单糖 Monosaccharide | 0.953 | |
D-纤维二糖 D-Cellobiose | 二糖与多糖 Disaccharide and polysaccharide | 0.945 | |
PC2 | α-环式糊精 α-Cyclodextrin | 二糖与多糖 Disaccharide and polysaccharide | 0.857 |
表4 林地土壤中与PC1、PC2显著相关的主要碳源
Table 4 Main carbon sources significantly related to PC1 and PC2 in woodland soils
碳源 Carbon source | 类别 Type | 相关系数 Correlation coefficient | |
---|---|---|---|
PC1 | Tween-40 | 脂肪酸 Fatty acid | 0.995 |
L-天冬酰胺酸 L-Asparagine | 氨基酸 Amino acid | 0.920 | |
L-苏氨酸 L-Threonine | 氨基酸 Amino acid | 0.909 | |
2-羟苯甲酸 2-Hydroxy benzoic acid | 代谢中间产物 Metabolic intermediate | 0.956 | |
4-羟基苯甲酸 4-Hydroxy benzoic acid | 代谢中间产物 Metabolic intermediate | 0.976 | |
衣康酸 Itaconic acid | 代谢中间产物 Metabolic intermediate | 0.903 | |
D, L-α-磷酸甘油 D,L-α-Glycerol phosphate | 代谢中间产物 Metabolic intermediate | 0.992 | |
苯乙基胺 Phenylethyl-amine | 代谢中间产物 Metabolic intermediate | 0.921 | |
D-苹果酸 D-Malic acid | 代谢中间产物 Metabolic intermediate | 0.913 | |
β-甲基-D-葡萄糖苷 β-Methyl-D-glucoside | 单糖 Monosaccharide | 0.931 | |
I-赤藻糖醇 I-Erythritol | 单糖 Monosaccharide | 0.993 | |
N-乙酰基-D-葡萄糖胺 N-Acetyl-D-glucosamine | 单糖 Monosaccharide | 0.975 | |
D-氨基葡萄糖酸 D-Glucosaminic acid | 单糖 Monosaccharide | 0.992 | |
D-半乳糖酸-γ内酯 D-Galactonic acid γ-lactone | 单糖 Monosaccharide | 0.915 | |
D-半乳糖醛酸 D-Galacturonic acid | 单糖 Monosaccharide | 0.953 | |
D-纤维二糖 D-Cellobiose | 二糖与多糖 Disaccharide and polysaccharide | 0.945 | |
PC2 | α-环式糊精 α-Cyclodextrin | 二糖与多糖 Disaccharide and polysaccharide | 0.857 |
多样性指数 Diversity index | pH值 pH value | 全氮 Total N | 全磷 Total P | 全钾 Total K |
---|---|---|---|---|
Shannon-Wiener指数 Shannon-Wiener index | -0.334 | -0.678* | 0.656* | -0.184 |
McIntosh指数 McIntosh index | -0.319 | -0.551 | 0.717* | -0.041 |
Simpson指数 Simpson index | -0.298 | -0.499 | 0.730* | -0.041 |
表5 土壤理化性质与微生物群落功能多样性相关性分析
Table 5 Correlation analysis of soil physical-chemical properties and functional diversity of soil microbial communities
多样性指数 Diversity index | pH值 pH value | 全氮 Total N | 全磷 Total P | 全钾 Total K |
---|---|---|---|---|
Shannon-Wiener指数 Shannon-Wiener index | -0.334 | -0.678* | 0.656* | -0.184 |
McIntosh指数 McIntosh index | -0.319 | -0.551 | 0.717* | -0.041 |
Simpson指数 Simpson index | -0.298 | -0.499 | 0.730* | -0.041 |
[1] |
Bending GD, Tumer MK, Jones JE (2002). Interactions between crop residue and soil organic matter quality and the metabolic functional diversity of soil microbial communities. Soil Biology & Biochemistry, 34, 1073-1082.
DOI URL |
[2] | Bi JT, He DH (2009). Research advances in effects of plant on soil microbial diversity. Chinese Agricultural Science Bulletin, 25, 244-250. (in Chinese with English abstract) |
[ 毕江涛, 贺达汉 (2009). 植物对土壤微生物多样性的影响研究进展. 中国农学通报, 25, 244-250.] | |
[3] | Cai DX, Liu SJ, Tian GH, Xu XC, Cui D, Zhang JH (2010). Analysis on tourism climate resource of Hainan Island. Modern Agricultural Sciences and Technology,(16), 18-21. (in Chinese with English abstract) |
[ 蔡大鑫, 刘少军, 田光辉, 许向春, 崔丹, 张京红 (2010). 海南岛旅游气候资源分析. 现代农业科技, (16), 18-21.] | |
[4] |
Choi K, Dobbs FC (1999). Comparison of two kinds of Biolog micro plates (GN and ECO) in their ability to distinguish among aquatic microbial communities. Journal of Microbiological Methods, 36, 203-213.
URL PMID |
[5] | Deng X, Li QF, Hou XW, Wu CY, Li GY (2013). A comparative study on the soil microbial community functional diversity of diseased banana plantations infected by banana fusarium wilt and those healthy ones. Chinese Journal of Soil Science, 44, 355-362. (in Chinese with English abstract) |
[ 邓晓, 李勤奋, 侯宪文, 武春媛, 李光义 (2013). 香蕉枯萎病患病与健康蕉园土壤微生物群落功能多样性的比较研究. 土壤通报, 44, 355-362.] | |
[6] |
Engelen B, Meinken K, Wintzingerode F, Heuer H, Malkomes HP, Backhaus H (1998). Monitoring impact of a pesticide treatment on bacterial soil communities by metabolic and genetic fingerprinting in addition to conventional testing procedures. Applied and Environmental Microbiology, 64, 2814-2821.
DOI URL PMID |
[7] | Fan RY, Yang XY, Wang EH, Zou L, Chen XW (2013). Comparative studies on functional diversity of soil microbial community of larch plantations with different ages in black soil region, northeastern China. Journal of Beijing Forestry University, 35, 63-68. (in Chinese with English abstract) |
[ 范瑞英, 杨小燕, 王恩姮, 邹莉, 陈祥伟 (2013). 黑土区不同林龄落叶松人工林土壤微生物群落功能多样性的对比研究. 北京林业大学学报, 35, 63-68.] | |
[8] |
Garland JL (1997). Analysis and interpretation of community- level physiological profiles in microbial ecology. FEMS Microbiology Ecology, 24, 289-300.
DOI URL |
[9] | He R, Wang GB, Wang JS, Xu BF, Wang JK, Fang YH, Shi Z, Ruan HH (2009). Seasonal variation and its main affecting factors of soil microbial biomass under different vegetations along an elevation gradient in Wuyi Mountains of China. Chinese Journal of Ecology, 28, 394-399. (in Chinese with English abstract) |
[ 何容, 王国兵, 汪家社, 许波峰, 汪继科, 方燕鸿, 施政, 阮宏华 (2009). 武夷山不同海拔植被土壤微生物量的季节动态及主要影响因子. 生态学杂志, 28, 394-399.] | |
[10] | Hou XJ, Wang JK, Li SP (2007). Effects of different fertilization and plastic-mulching on functional diversity of soil microbial community. Acta Ecologica Sinica, 27, 655-661. (in Chinese with English abstract) |
[ 侯晓杰, 汪景宽, 李世朋 (2007). 不同施肥处理与地膜覆盖对土壤微生物群落功能多样性的影响. 生态学报, 27, 655-661.] | |
[11] | Hu CJ, Fu BJ, Liu GH, Jin TT, Liu Y (2005). Soil microbial functional and diversity under typical artificial woodlands in the hilly area of the Loess Plateau. Acta Ecologica Sinica, 29, 727-733. (in Chinese with English abstract) |
[ 胡婵娟, 傅伯杰, 刘国华, 靳甜甜, 刘宇 (2005). 黄土丘陵沟壑区典型人工林下土壤微生物功能多样性. 生态学报, 29, 727-733.] | |
[12] |
Hua JF, Lin XG, Jiang Q, Zhang HY, Chen Q, Yin YL (2013). Diversity of carbon source metabolism of microbial community in farmland soils in an arsenic mining area. Chinese Journal of Applied Ecology, 24, 473-480. (in Chinese with English abstract)
URL PMID |
[ 华建峰, 林先贵, 蒋倩, 张华勇, 陈茜, 殷云龙 (2013). 砷矿区农田土壤微生物群落碳源代谢多样性. 应用生态学报, 24, 473-480.]
URL PMID |
|
[13] |
Inderjit (2005). Soil microorganisms: an important determinant of allelopathic activity. Plant and Soil, 274, 227-236.
DOI URL |
[14] | Kong WD, Liu KX, Liao ZW, Zhu YG, Wang BL (2005). Effects of organic matters on metabolic functional diversity of soil microbial community under pot incubation conditions. Acta Ecologica Sinica, 25, 2291-2296. (in Chinese with English abstract) |
[ 孔维栋, 刘可星, 廖宗文, 朱永官, 王碧玲 (2005). 不同腐熟程度有机物料对土壤微生物群落功能多样性的影响. 生态学报, 25, 2291-2296.] | |
[15] |
Konopka A, Oliver L, Turco RF (1998). The use of carbon substrate utilization patterns in environmental and ecological microbiology. Microbial Ecology, 35, 103-115.
DOI URL PMID |
[16] | Li L, Zhang Y, Ding Y, Zhang YJ, Wang CQ, Liu Q (2012). Effects of Casuarina equisetifolia leachates on photosynthesis of Vatica mangachapoi Blanco seedlings. Allelopathy Journal, 29, 231-240. |
[17] | Li ZZ, Xie YQ, Wang ZJ, Yang ZW, Chen QF (2003). The biological characteristics of Actinormycetes frankia living in roots of Casuarina. Scientia Silvae Sinicae, 39(S1), 139-147. (in Chinese with English abstract) |
[ 李志真, 谢一青, 王志洁, 杨宗武, 陈启峰 (2003). 木麻黄根瘤内生菌生物学特性研究. 林业科学, 39(S1), 139-147.] | |
[18] | Lin S, Zhuang JQ, Chen T, Zhang AJ, Zhou MM, Lin WX (2012). Analysis of nutrient and microbial Biolog function diversity in tea soils with different planting years in Fujian Anxi. Chinese Journal of Eco-Agriculture, 20, 1471-1477. (in Chinese with English abstract) |
[ 林生, 庄家强, 陈婷, 张爱加, 周明明, 林文雄 (2012). 福建安溪不同年限茶树土壤养分与微生物Biolog功能多样性的差异分析. 中国生态农业学报, 20, 1471-1477.] | |
[19] | Lin WX (2006). Study on effect factors and relief of self-allelopathy of Casuarina. Protection Forest Science and Technology, (6), 1-5. (in Chinese with English abstract) |
[ 林武星 (2006). 木麻黄自身他感作用影响因素及缓解. 防护林科技, (6), 1-5.] | |
[20] | Lin WX (2007). Self-allelopathy from root solutions on chlorophyll and carbohydrate of Casuarina equisetifolia seedlings. Journal of Zhejiang Forestry College, 24, 12-16. (in Chinese with English abstract) |
[ 林武星 (2007). 自身他感作用物对木麻黄幼苗叶绿素及糖类的影响. 浙江林学院学报, 24, 12-16.] | |
[21] | Lin WX, Hong W, Ye GF (2005). Effect of water extract of Casuarina equisetifolia root on nutrient absorption and growth of the seedlings. Journal of Zhejiang Forestry College, 22, 170-175. (in Chinese with English abstract) |
[ 林武星, 洪伟, 叶功富 (2005). 木麻黄根系浸提液对幼苗营养吸收和生长的影响. 浙江林学院学报, 22, 170-175. | |
[22] | Lin XG (2010). Principles and Methods of Soil Microbiology Research. Higher Education Press, Beijing. 170-172. (in Chinese) |
[ 林先贵 (2010). 土壤微生物研究原理与方法. 高等教育出版社, 北京. 170-172.] | |
[23] |
Liu Y, Zhang J, Yan BG, Huang X, Xu ZF, Wu FZ (2012). Seasonal dynamics in soil microbial biomass carbon and nitrogen and microbial quantity in a forest-alpine tundra ecotone, Eastern Qinghai-Tibetan Plateau, China. Chinese Journal of Plant Ecology, 36, 382-392. (in Chinese with English abstract)
DOI URL |
[ 刘洋, 张健, 闫帮国, 黄旭, 徐振锋, 吴福忠 (2012). 青藏高原东缘高山森林-苔原交错带土壤微生物生物量碳、氮和可培养微生物数量的季节动态. 植物生态学报, 36, 382-392.]
DOI URL |
|
[24] | Lu SJ (1990). The Climate of Southern China. Meteorological Press, Beijing. (in Chinese) |
[ 鹿世谨 (1990). 华南气候. 气象出版社, 北京.] | |
[25] | Luo HL, Wang J, Shao ZF, Zhang JN (2002). The relationship between pathogenicity of Pseudomonas solanacearum and its adsorption on the root surfaces and propagation inside the roots of Casuarina clone seedling. Forest Research, 15(1), 21-27. (in Chinese with English abstract) |
[ 罗焕亮, 王军, 邵志芳, 张景宁 (2002). 木麻黄青枯菌的根表吸附及根内增殖与其致病性关系. 林业科学研究, 15(1), 21-27.] | |
[26] |
Ma Y, Peng JJ, Wang Y, Chen FL, Chen JJ, Sun YX (2013). Effects of ciprofloxacin on microbial biomass carbon and carbon metabolism diversity of soil microbial communities. Acta Ecologica Sinica, 33, 1506-1512. (in Chinese with English abstract)
DOI URL |
[ 马驿, 彭金菊, 王芸, 陈法霖, 陈进军, 孙永学 (2013). 环丙沙星对土壤微生物量碳和土壤微生物群落碳代谢多样性的影响. 生态学报, 33, 1506-1512.]
DOI URL |
|
[27] |
Murphy DV, Cookson WR, Braimbridge M, Marschner P, Jones DL, Stockdale EA, Abbott LK (2011). Relationships between soil organic matter and the soil microbial biomass (size, functional diversity, and community structure) in crop and pasture systems in a semi-arid environment. Soil Research, 49, 582-594.
DOI URL |
[28] |
O’Donnell AG, Seasman M, Macrae A, Waite Davies JI (2001). Plants and fertilisers as drivers of change in microbial community structure and function in soils. Plant and Soil, 232, 135-145.
DOI URL |
[29] | Ou YD, Su ZY, Peng GX, Liu G (2009). Soil microbial functional diversity in a montane evergreen broadleaved forest of Chebaling Following the Huge Ice Storm in South China. Acta Ecologica Sinica, 29, 6156-6164. (in Chinese with English abstract) |
[ 区余端, 苏志尧, 彭桂香, 刘刚 (2009). 车八岭山地常绿阔叶林冰灾后土壤微生物群落功能多样性. 生态学报, 29, 6156-6164.] | |
[30] |
Preston-Matham J, Boddy L, Randerson PF (2002). Analysis of microbial community functional diversity using sole- carbon-source utilization profiles—a critique. FEMS Microbiology Ecology, 42, 1-14.
DOI URL PMID |
[31] | Shao YY, Wang ZY, Zou L, Wu SP (2011). Effect of chloroth- alonil on soil microbial communities of Larix artificial shelter-forest. Acta Ecologica Sinica, 31, 819-829. (in Chinese with English abstract) |
[ 邵元元, 王志英, 邹莉, 吴韶平 (2011). 百菌清对落叶松人工防护林土壤微生物群落的影响. 生态学报, 31, 819-829.] | |
[32] | Su N, Yi WP, Xu WM, Wang W, Cai YC, Wang GF, Mei RH (1999). Characterization of superoxide dismutase from Bacillus cereus. Chinese Journal of Microecology, 11(1), 7-9. (in Chinese with English abstract) |
[ 苏宁, 衣文平, 徐维敏, 王琦, 蔡元呈, 王桂峰, 梅汝鸿 (1999). 蜡质芽孢杆菌超氧化物歧化酶的理化性质研究. 中国微生态学杂志, 11(1), 7-9.] | |
[33] | Sun S, Wu HX, Wang J (2013). Research review on the bacterial wilt of Casuarina. Forest Pest and Disease, 32(5), 29-34. (in Chinese with English abstract) |
[ 孙思, 伍慧雄, 王军 (2013). 木麻黄青枯病研究概述. 中国森林病虫, 32(5), 29-34.] | |
[34] | Tian YN, Wang HQ (2011). Application of Biolog to study of environmental microbial function diversity. Environmental Science & Technology, 34(3), 50-57. (in Chinese with English abstract) |
[ 田雅楠, 王红旗 (2011). Biolog法在环境微生物功能多样性研究中的应用. 环境科学技术, 34(3), 50-57.] | |
[35] |
Waid JS (1999). Does soil biodiversity depend upon metab- iotic activity and influences? Applied Soil Ecology, 13, 151-158.
DOI URL |
[36] | Wang CQ, Liu Q, Li L (2012a). Isolation and identification of the aqueous extract from Casuarina equisetifolia and allelopathy effect on the seed germination of Vatica mangachapoi. Journal of Northwest Forestry University, 27(3), 80-86. (in Chinese with English abstract) |
[ 王春晴, 刘强, 李蕾 (2012a). 木麻黄水浸液对青皮种子的化感效应. 西北林学院学报, 27(3), 80-86.] | |
[37] | Wang CQ, Liu Q, Li Y, Hu PW, Li L (2012b). Effects of Casuarina equisetifolia extract on the photosynthetic characteristics of Vatica mangachapoi seedlings. Journal of Northwest Forestry University, 27(4), 31-38. (in Chinese with English abstract) |
[ 王春晴, 刘强, 李云, 胡鹏伟, 李蕾 (2012b). 木麻黄浸提液对青皮苗光合特性的影响. 西北林学院学报, 27(4), 31-38.] | |
[38] | Wang J (1997). Horizontal and vertical resistance of Casuarina clones to isolates of Pseudomonas solanacearum. Scientia Silvae Sinicae, 33, 427-431. (in Chinese with English abstract) |
[ 王军 (1997). 木麻黄对青枯菌的水平抗性及垂直抗性研究. 林业科学, 33, 427-431.] | |
[39] |
Wu ZY, Lin WX, Chen ZF, Fang CX, Zhang ZX, Wu LK, Zhou MM, Chen T (2013). Variations of soil microbial community diversity along an elevational gradient in mid-subtropical forest. Chinese Journal of Plant Ecology, 37, 397-406. (in Chinese with English abstract)
DOI URL |
[ 吴则焰, 林文雄, 陈志芳, 方长旬, 张志兴, 吴林坤, 周明明, 陈婷 (2013). 中亚热带森林土壤微生物群落多样性随海拔梯度的变化. 植物生态学报, 37, 397-406.]
DOI URL |
|
[40] |
Xi JY, Hu HY, Qian Y (2003). Application of biolog system in the study of microbial community. Acta Microbiologica Sinica, 43, 138-141. (in Chinese with English abstract)
URL PMID |
[ 席劲瑛, 胡洪营, 钱易 (2003). Biolog方法在环境微生物群落研究中的应用. 微生物学报, 43, 138-141.]
URL PMID |
|
[41] | Xu X, Wang FM, Zou B, Li QL, Wang G, Li YW, Ling QY, Li ZA (2013). Biodiversity and soil nutrient research of Casuarina equisetifolia plantation at different stand ages. Ecology and Environmental Sciences, 22, 1514-1522. (in Chinese with English abstract) |
[ 徐馨, 王法明, 邹碧, 李钦禄, 王刚, 李应文, 凌清云, 李志安 (2013). 不同林龄木麻黄人工林生物多样性与土壤养分状况研究. 生态环境学报, 22, 1514-1522.] | |
[42] | Ye GF, Long XW, Pan HZ, Xu JS, Lin WX, Zhu W, Huang CY (1996). Dynamic and decomposition of litter of Casuarina equisetifolia woodland. Protection Forest Science and Technology, (S1), 30-34. (in Chinese) |
[ 叶功富, 隆学武, 潘惠忠, 徐俊森, 林武星, 朱炜, 黄传英 (1996). 木麻黄林的凋落物动态及其分解. 防护林科技, (S1), 30-34.] | |
[43] | Yuan YH, Fan HB, Liu WF, Huang RZ, Shen FF, Hu F, Li HX (2013). Effects of simulated nitrogen deposition on soil enzyme activities and microbial community functional diversities in a Chinese fir plantation. Soils, 45, 120-128. (in Chinese with English abstract) |
[ 袁颖红, 樊后保, 刘文飞, 黄荣珍, 沈芳芳, 胡锋, 李辉信 (2013). 模拟氮沉降对杉木人工林(Cunninghamia lanceolata)土壤酶活性及微生物群落功能多样性的影响. 土壤, 45, 120-128.] | |
[44] | Yue BB, Li X, Zhang HH, Jin WW, Xu N, Zhu WX, Sun GY (2013). Soil microbial diversity and community structure under continuous tobacco cropping. Soils, 45, 116-119. (in Chinese with English abstract) |
[ 岳冰冰, 李鑫, 张会慧, 金微微, 许楠, 朱文旭, 孙广玉 (2013). 连作对黑龙江烤烟土壤微生物功能多样性的影响. 土壤, 45, 116-119.] | |
[45] |
Zak JC, Willig MR, Moorhead DL, Wildman HG (1994). Functional diversity of microbial communities: a quantitative approach. Soil Biology & Biochemistry, 26, 1101-1108.
DOI URL |
[46] | Zhang SY, Yuan HH, Lu M, Jiang CF, Xiang SM (2010). The soil enzyme activities of different land use types and the relationships between the soil enzyme activities and physical chemical properties or microorganism in mountainous area of northwest Yunnan Province. Subtropical Soil and Water Conservation, 22, 13-16. (in Chinese with English abstract) |
[ 张仕艳, 原海红, 陆梅, 蒋翠芬, 向仕敏 (2010). 滇西北不同利用类型土壤酶活性及其与理化性质与微生物的关系. 亚热带水土保持, 22, 13-16.] | |
[47] | Zhao N, Lin WP, Cai KZ, Wang JW (2010). Impacts of livestock waste compost on tomato bacterial wilt, soil enzyme activity and soil microbial functional diversity. Acta Ecologica Sinica, 30, 5327-5337. (in Chinese with English abstract) |
[ 赵娜, 林威鹏, 蔡昆争, 王建武 (2010). 家畜粪便堆肥对番茄青枯病、土壤酶活性及土壤微生物功能多样性的影响. 生态学报, 30, 5327-5337.] |
[1] | 刘瑶 钟全林 徐朝斌 程栋梁 郑跃芳 邹宇星 张雪 郑新杰 周云若. 不同大小刨花楠细根功能性状与根际微环境关系[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[2] | 陈昭铨, 王明慧, 胡子涵, 郎学东, 何云琼, 刘万德. 云南普洱季风常绿阔叶林幼苗的群落构建机制[J]. 植物生态学报, 2024, 48(1): 68-79. |
[3] | 李冠军, 陈珑, 余雯静, 苏亲桂, 吴承祯, 苏军, 李键. 固体培养内生真菌对土壤盐胁迫下木麻黄幼苗渗透调节和抗氧化系统的影响[J]. 植物生态学报, 2023, 47(6): 804-821. |
[4] | 吕自立, 刘彬, 常凤, 马紫荆, 曹秋梅. 巴音布鲁克高寒草甸植物功能多样性与生态系统多功能性关系沿海拔梯度的变化[J]. 植物生态学报, 2023, 47(6): 822-832. |
[5] | 张琦, 冯可, 常智慧, 何双辉, 徐维启. 灌丛化对林草交错带植物和土壤微生物的影响[J]. 植物生态学报, 2023, 47(6): 770-781. |
[6] | 郑炀, 孙学广, 熊洋阳, 袁贵云, 丁贵杰. 叶际微生物对马尾松凋落针叶分解的影响[J]. 植物生态学报, 2023, 47(5): 687-698. |
[7] | 赵小祥, 朱彬彬, 田秋香, 林巧玲, 陈龙, 刘峰. 叶片凋落物分解的主场优势研究进展[J]. 植物生态学报, 2023, 47(5): 597-607. |
[8] | 杨元合, 张典业, 魏斌, 刘洋, 冯雪徽, 毛超, 徐玮婕, 贺美, 王璐, 郑志虎, 王媛媛, 陈蕾伊, 彭云峰. 草地群落多样性和生态系统碳氮循环对氮输入的非线性响应及其机制[J]. 植物生态学报, 2023, 47(1): 1-24. |
[9] | 李万年, 罗益敏, 黄则月, 杨梅. 望天树人工幼林混交对土壤微生物功能多样性与碳源利用的影响[J]. 植物生态学报, 2022, 46(9): 1109-1124. |
[10] | 董六文, 任正炜, 张蕊, 谢晨笛, 周小龙. 功能多样性比物种多样性更好解释氮添加对高寒草地生物量的影响[J]. 植物生态学报, 2022, 46(8): 871-881. |
[11] | 吴赞, 彭云峰, 杨贵彪, 李秦鲁, 刘洋, 马黎华, 杨元合, 蒋先军. 青藏高原高寒草地退化对土壤及微生物化学计量特征的影响[J]. 植物生态学报, 2022, 46(4): 461-472. |
[12] | 张义, 程杰, 苏纪帅, 程积民. 长期封育演替下典型草原植物群落生产力与多样性关系[J]. 植物生态学报, 2022, 46(2): 176-187. |
[13] | 赵晏平, 王忠武, 温都日根, 赵玉金, 白永飞. 基于Sentinel-2数据的草地植物功能多样性遥感反演及其与生产力的关系[J]. 植物生态学报, 2022, 46(10): 1234-1250. |
[14] | 毛瑾, 朵莹, 邓军, 程杰, 程积民, 彭长辉, 郭梁. 冬季增温和减雪对黄土高原典型草原土壤养分和细菌群落组成的影响[J]. 植物生态学报, 2021, 45(8): 891-902. |
[15] | 姜鑫, 牛克昌. 青藏高原禾草混播对土壤微生物多样性的影响[J]. 植物生态学报, 2021, 45(5): 539-551. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19