植物生态学报 ›› 2014, Vol. 38 ›› Issue (6): 619-625.DOI: 10.3724/SP.J.1258.2014.00057

所属专题: 青藏高原植物生态学:植物-土壤-微生物

• 研究论文 • 上一篇    下一篇

青藏高原海北高寒湿地土壤呼吸对水位降低和氮添加的响应

汪浩1,2,于凌飞3,陈立同1,王超4,贺金生1,4,*()   

  1. 1中国科学院西北高原生物研究所高原生物进化与适应重点实验室, 西宁 810008
    2中国科学院大学, 北京 100049
    3中国科学院植物研究所植被与环境变化国家重点实验室, 北京 100093
    4北京大学城市与环境学院生态学系, 地表过程分析与模拟教育部重点实验室, 北京 100871
  • 收稿日期:2014-01-20 接受日期:2014-04-10 出版日期:2014-01-20 发布日期:2014-06-10
  • 通讯作者: 贺金生
  • 基金资助:
    中国科学院重要方向性项目(KZCX2-YW-JC404);国家自然科学基金(31270481)

Responses of soil respiration to reduced water table and nitrogen addition in an alpine wetland on the Qinghai-Xizang Plateau

WANG Hao1,2,YU Ling-Fei3,CHEN Li-Tong1,WANG Chao4,HE Jin-Sheng1,4,*()   

  1. 1Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China
    2University of Chinese Academy of Sciences, Beijing 100049, China
    3State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
    4Key Laboratory for Earth Surface Processes of the Ministry of Education, Department of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
  • Received:2014-01-20 Accepted:2014-04-10 Online:2014-01-20 Published:2014-06-10
  • Contact: HE Jin-Sheng

摘要:

近20年来, 青藏高原高寒湿地经历了明显的气候变化, 从而导致多数湿地水位下降和氮沉降的增加。对于湿地生态系统来说, 水位下降意味着土壤通气性能的改善, 可能会导致土壤呼吸的增加; 而氮沉降的增加可能会降低土壤微生物生物量和pH值, 从而可能抑制土壤呼吸。为此, 在青海海北高寒草地生态系统国家野外科学观测研究站利用中宇宙(Mesocosm)实验方法, 探讨了青藏高原高寒泥炭型湿地土壤呼吸对水位降低和氮添加的响应。结果表明: (1)水位降低显著增强了土壤呼吸, 而氮添加对土壤呼吸的影响依赖于水位的变化: 对照水位下, 氮添加显著抑制土壤呼吸; 而水位降低时, 氮添加对土壤呼吸速率无显著影响。(2)土壤呼吸速率与地上生物量、枯落物累积量之间呈显著正相关关系, 而与根系生物量无显著相关关系。(3)水位降低显著提高了土壤呼吸的温度敏感性, 而氮添加对其无显著的影响。因此预测: 随着氮沉降的升高, 高寒泥炭湿地土壤CO2的排放量将会减少; 然而随着暖干化背景下水位的降低, 青藏高原高寒湿地会排放更多的CO2

关键词: 高寒湿地, 氮添加, 青藏高原, 土壤呼吸, 水位降低

Abstract:

Aims Over the past 20 years, alpine wetlands have been subjected to a rapid change in climate, resulting in water table drawdown and increased nitrogen deposition. In wetland ecosystems, the water table drawdown can improve soil aeration, hence leading to a higher soil respiration rate; whereas an increased nitrogen deposition could reduce the microbial biomass and pH value, suppressing soil respiration. Understanding the responses of soil respiration to reduced water table and increased nitrogen deposition in alpine wetlands is thus critical to predicting the carbon cycle of wetland ecosystems and its feedbacks to ongoing climate changes. This study tests the effects of water table reduction and nitrogen addition on soil respiration in the Luanhaizi wetland on the Qinghai-Xizang Plateau.
Methods We imposed four treatments, including control (WT0N0), reduced water table (WT-N0), nitrogen addition (WT0N+), and a combination of reduced water table and nitrogen addition (WT-N+), on 20 peat monoliths collected from the Luanhaizi wetland at the Haibei station. Soil respiration was measured from late July through mid-September under all treatments.
Important findings A reduction in water table significantly increased the rate of soil respiration. In contrast, nitrogen addition suppressed soil respiration only when water table was not reduced. A positive correlation was found between the aboveground biomass and soil respiration, while no correlation was detected between root biomass and soil respiration. The temperature sensitivity of soil respiration was increased by reduced water table, but was not affected by nitrogen addition. Our results suggest that nitrogen deposition is likely to reduce soil CO2 emission in alpine wetlands where water level remains high. However, future warmer and drier conditions could result in reduced water table, and consequently alpine wetlands would be predicted to release substantially more CO2 than previously estimated.

Key words: alpine wetland, nitrogen addition, Qinghai-Xizang Plateau, soil respiration, water table lowering