植物生态学报 ›› 2014, Vol. 38 ›› Issue (6): 619-625.DOI: 10.3724/SP.J.1258.2014.00057
所属专题: 青藏高原植物生态学:植物-土壤-微生物
汪浩1,2,于凌飞3,陈立同1,王超4,贺金生1,4,*()
收稿日期:
2014-01-20
接受日期:
2014-04-10
出版日期:
2014-01-20
发布日期:
2014-06-10
通讯作者:
贺金生
基金资助:
WANG Hao1,2,YU Ling-Fei3,CHEN Li-Tong1,WANG Chao4,HE Jin-Sheng1,4,*()
Received:
2014-01-20
Accepted:
2014-04-10
Online:
2014-01-20
Published:
2014-06-10
Contact:
HE Jin-Sheng
摘要:
近20年来, 青藏高原高寒湿地经历了明显的气候变化, 从而导致多数湿地水位下降和氮沉降的增加。对于湿地生态系统来说, 水位下降意味着土壤通气性能的改善, 可能会导致土壤呼吸的增加; 而氮沉降的增加可能会降低土壤微生物生物量和pH值, 从而可能抑制土壤呼吸。为此, 在青海海北高寒草地生态系统国家野外科学观测研究站利用中宇宙(Mesocosm)实验方法, 探讨了青藏高原高寒泥炭型湿地土壤呼吸对水位降低和氮添加的响应。结果表明: (1)水位降低显著增强了土壤呼吸, 而氮添加对土壤呼吸的影响依赖于水位的变化: 对照水位下, 氮添加显著抑制土壤呼吸; 而水位降低时, 氮添加对土壤呼吸速率无显著影响。(2)土壤呼吸速率与地上生物量、枯落物累积量之间呈显著正相关关系, 而与根系生物量无显著相关关系。(3)水位降低显著提高了土壤呼吸的温度敏感性, 而氮添加对其无显著的影响。因此预测: 随着氮沉降的升高, 高寒泥炭湿地土壤CO2的排放量将会减少; 然而随着暖干化背景下水位的降低, 青藏高原高寒湿地会排放更多的CO2。
汪浩,于凌飞,陈立同,王超,贺金生. 青藏高原海北高寒湿地土壤呼吸对水位降低和氮添加的响应. 植物生态学报, 2014, 38(6): 619-625. DOI: 10.3724/SP.J.1258.2014.00057
WANG Hao,YU Ling-Fei,CHEN Li-Tong,WANG Chao,HE Jin-Sheng. Responses of soil respiration to reduced water table and nitrogen addition in an alpine wetland on the Qinghai-Xizang Plateau. Chinese Journal of Plant Ecology, 2014, 38(6): 619-625. DOI: 10.3724/SP.J.1258.2014.00057
图1 实验期间各处理水位深度(A)、5 cm深处土壤温度(B)和土壤呼吸速率(C)的变化(平均值±标准误差, n = 5)。●, 对照; ■, 水位降低; ▽, 氮添加; ◇, 水位降低与氮添加。
Fig. 1 Variations in water table depth (A), soil temperature at 5 cm depth (B), and soil respiration rate (C) under different treatments over the experimental period (mean ± SE, n = 5). ●, control; ■, reduced water table; ▽, nitrogen addition; ◇, combination of reduced water table and nitrogen addition.
土壤呼吸速率SR | 5 cm深处土壤温度 T | 水位深度 WTD | ||||
---|---|---|---|---|---|---|
F | p | F | p | F | p | |
N+ | 0.91 | 0.36 | 0.08 | 0.78 | 1.05 | 0.32 |
WT- | 338.94 | <0.001 | 6.64 | 0.02 | 1 183.00 | <0.001 |
N+ × WT- | 6.24 | 0.02 | 2.02 | 0.17 | 0.46 | 0.51 |
D | 37.26 | <0.001 | 205.06 | <0.001 | 24.94 | <0.001 |
D × N+ | 0.68 | 0.67 | 0.42 | 0.74 | 3.06 | 0.05 |
D × WT- | 10.93 | <0.001 | 2.08 | 0.11 | 22.59 | <0.001 |
D × N+ × WT- | 2.37 | 0.05 | 0.99 | 0.41 | 1.80 | 0.18 |
表1 将氮添加(N+)、水位降低(WT-)作为主因素, 采样日期(D)作为处理内因素时, 土壤呼吸速率、5 cm深处的土壤温度和水位深度的重复测量方差分析结果
Table 1 Summary of repeated-measures ANOVAs for soil respiration rate (SR), soil temperature at 5 cm depth (T), and water table depth (WTD) by using nitrogen addition (N+) and reduced water table (WT-) as main factors, and measurement date (D) as a within-subject factor over the experimental period
土壤呼吸速率SR | 5 cm深处土壤温度 T | 水位深度 WTD | ||||
---|---|---|---|---|---|---|
F | p | F | p | F | p | |
N+ | 0.91 | 0.36 | 0.08 | 0.78 | 1.05 | 0.32 |
WT- | 338.94 | <0.001 | 6.64 | 0.02 | 1 183.00 | <0.001 |
N+ × WT- | 6.24 | 0.02 | 2.02 | 0.17 | 0.46 | 0.51 |
D | 37.26 | <0.001 | 205.06 | <0.001 | 24.94 | <0.001 |
D × N+ | 0.68 | 0.67 | 0.42 | 0.74 | 3.06 | 0.05 |
D × WT- | 10.93 | <0.001 | 2.08 | 0.11 | 22.59 | <0.001 |
D × N+ × WT- | 2.37 | 0.05 | 0.99 | 0.41 | 1.80 | 0.18 |
图2 实验期间各处理对土壤呼吸速率的影响(平均值±标准误差, n = 5)。WT0 N0, 对照; WT- N0, 水位降低; WT0 N+, 氮添加; WT- N+, 水位降低与氮添加。不同字母表示处理间差异显著(p < 0.05)。
Fig. 2 Effects of different treatments on soil respiration over the experimental period (mean ± SE, n = 5). WT0 N0, control; WT- N0, reduced water table; WT0 N+, nitrogen addition; WT- N+, combination of reduced water table and nitrogen addition. Different letters indicate significant differences among treatments (p < 0.05).
处理 Treatment | 回归方程 Regression equation | R2 | p | Q10 |
---|---|---|---|---|
WT0 N0 | SR = 0.882e0.026T | 0.209 | 0.006 | 1.30c |
WT0 N+ | SR = 0.421e0.064T | 0.492 | <0.001 | 1.90bc |
WT- N0 | SR = 1.113e0.107T | 0.474 | <0.001 | 2.92a |
WT- N+ | SR = 1.664e0.089T | 0.416 | <0.001 | 2.44ab |
表2 土壤呼吸速率(SR)和5 cm深处的土壤温度(T)的指数回归函数拟合结果以及土壤呼吸温度敏感性(Q10)
Table 2 The fittings of exponential regression functions between soil respiration rate (SR) and soil temperature at 5 cm depth (T) and the values of temperature sensitivity of soil respiration (Q10)
处理 Treatment | 回归方程 Regression equation | R2 | p | Q10 |
---|---|---|---|---|
WT0 N0 | SR = 0.882e0.026T | 0.209 | 0.006 | 1.30c |
WT0 N+ | SR = 0.421e0.064T | 0.492 | <0.001 | 1.90bc |
WT- N0 | SR = 1.113e0.107T | 0.474 | <0.001 | 2.92a |
WT- N+ | SR = 1.664e0.089T | 0.416 | <0.001 | 2.44ab |
图3 各处理土壤呼吸速率与生物量、枯落物累积量之间的关系。A, 地上生物量。B, 枯落物累积量。C, 0-10 cm土层根系生物量。D, 0-20 cm土层根系生物量。Pearson相关分析显著时显示相关系数。*, p < 0.05; ***, p < 0.001。
Fig. 3 Relationships of soil respiration rate with biomass and litter accumulation under different treatments. A, Aboveground biomass. B, Litter accumulation. C, Root biomass in 0-10 cm soil layer. D, Root biomass in 0-20 cm soil layer. WT0 N0, control; WT- N0, reduced water table; WT0 N+, nitrogen addition; WT- N+, combination of reduced water table and nitrogen addition. The Pearson correlation coefficient is shown if significant. *, p < 0.05; ***, p < 0.001.
[1] |
Bragazza L, Freeman C, Jones T, Rydin H, Limpens J, Fenner N, Ellis T, Gerdol R, Hájek M, Hájek T (2006). Atmospheric nitrogen deposition promotes carbon loss from peat bogs. Proceedings of the National Academy of Sciences of the United States of America, 103, 19386-19389.
URL PMID |
[2] |
Bridgham SD, Pastor J, Dewey B, Weltzin JF, Updegraff K (2008). Rapid carbon response of peatlands to climate change. Ecology, 89, 3041-3048.
DOI URL PMID |
[3] |
Bubier JL, Moore TR, Bledzki LA (2007). Effects of nutrient addition on vegetation and carbon cycling in an ombrotrophic bog. Global Change Biology, 13, 1168-1186.
DOI URL |
[4] |
Chimner RA, Cooper DJ (2003). Influence of water table levels on CO2 emissions in a Colorado subalpine fen: an in situ microcosm study. Soil Biology & Biochemistry, 35, 345-351.
DOI URL |
[5] |
Craine JM, Wedin DA, Reich PB (2001). The response of soil CO2 flux to changes in atmospheric CO2, nitrogen supply and plant diversity. Global Change Biology, 7, 947-953.
DOI URL |
[6] |
Dinsmore KJ, Skiba UM, Billett MF, Rees RM (2009). Effect of water table on greenhouse gas emissions from peatland mesocosms. Plant and Soil, 318, 229-242.
DOI URL |
[7] |
Fenner N, Freeman C (2011). Drought-induced carbon loss in peatlands. Nature Geoscience, 4, 895-900.
DOI URL |
[8] |
Gorham E (1991). Northern peatlands: role in the carbon cycle and probable responses to climatic warming. Ecological Applications, 1, 182-195.
DOI URL PMID |
[9] |
Gruber N, Galloway JN (2008). An earth-system perspective of the global nitrogen cycle. Nature, 451, 293-296.
DOI URL PMID |
[10] |
Janssens I, Dieleman W, Luyssaert S, Subke JA, Reichstein M, Ceulemans R, Ciais P, Dolman AJ, Grace J, Matteucci G, Papale D, Piao SL, Schulze ED, Tang J, Law BE (2010). Reduction of forest soil respiration in response to nitrogen deposition. Nature Geoscience, 3, 315-322.
DOI URL |
[11] | Jimenez K, Starr G, Staudhammer C, Schedlbauer J, Loescher H, Malone S, Oberbauer S (2012). Carbon dioxide exchange rates from short- and long-hydroperiod everglades freshwater marsh. Journal of Geophysical Research, 117(G4), doi: 10.1029/2012JG002117. |
[12] | Lü CQ, Tian HQ (2007). Spatial and temporal patterns of nitrogen deposition in China: synthesis of observational data. Journal of Geophysical Research, 112, D22S05, doi: 10.1029/2006JD007990. |
[13] |
Liu XD, Chen BD (2000). Climatic warming in the Tibetan Plateau during recent decades. International Journal of Climatology, 20, 1729-1742.
DOI URL |
[14] |
Mäkiranta P, Laiho R, Fritze H, Hytönen J, Laine J, Minkkinen K (2009). Indirect regulation of heterotrophic peat soil respiration by water level via microbial community structure and temperature sensitivity. Soil Biology & Biochemistry, 41, 695-703.
DOI URL |
[15] |
Mo JG, Zhang W, Zhu WX, Gundersen P, Fang YT, Li DJ, Wang H (2008). Nitrogen addition reduces soil respiration in a mature tropical forest in southern China. Global Change Biology, 14, 403-412.
DOI URL |
[16] |
Muhr J, Höhle J, Otieno DO, Borken W (2011). Manipulative lowering of the water table during summer does not affect CO2 emissions and uptake in a fen in Germany. Ecological Applications, 21, 391-401.
URL PMID |
[17] |
Olsson P, Linder S, Giesler R, Högberg P (2005). Fertilization of boreal forest reduces both autotrophic and heterotrophic soil respiration. Global Change Biology, 11, 1745-1753.
DOI URL |
[18] |
Raich J, Schlesinger WH (1992). The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate. Tellus B, 44, 81-99.
DOI URL |
[19] |
Schlesinger WH, Andrews JA (2000). Soil respiration and the global carbon cycle. Biogeochemistry, 48, 7-20.
DOI URL |
[20] |
Silvola J, Alm J, Ahlholm U, Nykaenen H, Martikainen PJ (1996). The contribution of plant roots to CO2 fluxes from organic soils. Biology and Fertility of Soils, 23, 126-131.
DOI URL |
[21] | IPCC (Intergovernmental Panel on Climate Change) (2007). Climate Change 2007―the Physical Science Basis: Working Group I Contribution to the Fourth Assessment Report of the IPCC. Cambridge University Press, Cambridge, UK. |
[22] |
Tao BX, Song CC, Guo YD (2013). Short-term effects of nitrogen additions and increased temperature on wetland soil respiration, Sanjiang Plain, China. Wetlands, 33, 727-736.
DOI URL |
[23] |
Turunen J, Tomppo E, Tolonen K, Reinikainen A (2002). Estimating carbon accumulation rates of undrained mires in Finland―application to boreal and subarctic regions. The Holocene, 12, 69-80.
DOI URL |
[24] | Verry E (1997). Hydrological processes of natural, northern forested wetlands. Northern Forested Wetlands: Ecology and Management, 163-188. |
[25] |
Wang GX, Li YS, Wang YB, Chen L (2007). Typical alpine wetland system changes on the Qinghai-Tibet Plateau in recent 40 years. Acta Geographica Sinica, 62, 481-491. (in Chinese with English abstract)
DOI URL |
[ 王根绪, 李元寿, 王一博, 陈玲 (2007). 近40年来青藏高原典型高寒湿地系统的动态变化. 地理学报, 62, 481-491.]
DOI URL |
|
[26] |
Yan LM, Chen SP, Huang JH, Lin GH (2010). Differential responses of auto- and heterotrophic soil respiration to water and nitrogen addition in a semiarid temperate steppe. Global Change Biology, 16, 2345-2357.
DOI URL |
[27] |
Yang JS, Liu JS, Hu XJ, Li XX, Wang Y, Li HY (2013). Effect of water table level on CO2, CH4 and N2O emissions in a freshwater marsh of Northeast China. Soil Biology & Biochemistry, 61, 52-60.
DOI URL |
[1] | 黄玲, 王榛, 马泽, 杨发林, 李岚, SEREKPAYEV Nurlan, NOGAYEV Adilbek, 侯扶江. 长期放牧和氮添加对黄土高原典型草原长芒草种群生长的影响[J]. 植物生态学报, 2024, 48(3): 317-330. |
[2] | 颜辰亦, 龚吉蕊, 张斯琦, 张魏圆, 董学德, 胡宇霞, 杨贵森. 氮添加对内蒙古温带草原土壤活性有机碳的影响[J]. 植物生态学报, 2024, 48(2): 229-241. |
[3] | 耿雪琪, 唐亚坤, 王丽娜, 邓旭, 张泽凌, 周莹. 氮添加增加中国陆生植物生物量并降低其氮利用效率[J]. 植物生态学报, 2024, 48(2): 147-157. |
[4] | 舒韦维, 杨坤, 马俊旭, 闵惠琳, 陈琳, 刘士玲, 黄日逸, 明安刚, 明财道, 田祖为. 氮添加对红锥不同序级细根形态和化学性状的影响[J]. 植物生态学报, 2024, 48(1): 103-112. |
[5] | 赵艳超, 陈立同. 土壤养分对青藏高原高寒草地生物量响应增温的调节作用[J]. 植物生态学报, 2023, 47(8): 1071-1081. |
[6] | 苏炜, 陈平, 吴婷, 刘岳, 宋雨婷, 刘旭军, 刘菊秀. 氮添加与干季延长对降香黄檀幼苗非结构性碳水化合物、养分与生物量的影响[J]. 植物生态学报, 2023, 47(8): 1094-1104. |
[7] | 李红琴, 张法伟, 仪律北. 高寒草甸表层土壤和优势植物叶片的化学计量特征对降水改变和氮添加的响应[J]. 植物生态学报, 2023, 47(7): 922-931. |
[8] | 沈健, 何宗明, 董强, 郜士垒, 林宇. 轻度火烧对滨海沙地人工林土壤呼吸速率和非生物因子的影响[J]. 植物生态学报, 2023, 47(7): 1032-1042. |
[9] | 张雅琪, 庞丹波, 陈林, 曹萌豪, 何文强, 李学斌. 荒漠草原土壤氨氧化细菌群落结构对氮添加和枯落物输入的响应[J]. 植物生态学报, 2023, 47(5): 699-712. |
[10] | 师生波, 周党卫, 李天才, 德科加, 杲秀珍, 马家麟, 孙涛, 王方琳. 青藏高原高山嵩草光合功能对模拟夜间低温的响应[J]. 植物生态学报, 2023, 47(3): 361-373. |
[11] | 罗来聪, 赖晓琴, 白健, 李爱新, 方海富, Nasir SHAD, 唐明, 胡冬南, 张令. 氮添加背景下土壤真菌和细菌对不同种源入侵植物乌桕生长特征的影响[J]. 植物生态学报, 2023, 47(2): 206-215. |
[12] | 安凡, 李宝银, 钟全林, 程栋梁, 徐朝斌, 邹宇星, 张雪, 邓兴宇, 林秋燕. 不同种源刨花楠苗木生长与主要功能性状对氮添加的响应[J]. 植物生态学报, 2023, 47(12): 1693-1707. |
[13] | 葛萍, 李昂, 王银柳, 姜良超, 牛国祥, 哈斯木其尔, 王彦兵, 薛建国, 赵威, 黄建辉. 草甸草原温室气体排放对氮添加量的非线性响应[J]. 植物生态学报, 2023, 47(11): 1483-1492. |
[14] | 师生波, 师瑞, 周党卫, 张雯. 低温对高山嵩草叶片光化学和非光化学能量耗散特征的影响[J]. 植物生态学报, 2023, 47(10): 1441-1452. |
[15] | 林马震, 黄勇, 李洋, 孙建. 高寒草地植物生存策略地理分布特征及其影响因素[J]. 植物生态学报, 2023, 47(1): 41-50. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19