植物生态学报 ›› 2022, Vol. 46 ›› Issue (10): 1234-1250.DOI: 10.17521/cjpe.2022.0104
所属专题: 生态遥感及应用
赵晏平1, 王忠武1, 温都日根3, 赵玉金2,*(), 白永飞2,*(
)
收稿日期:
2022-03-23
接受日期:
2022-07-06
出版日期:
2022-10-20
发布日期:
2022-09-28
通讯作者:
赵玉金,白永飞
作者简介:
Bai YF, yfbai@ibcas.ac.cn)基金资助:
ZHAO Yan-Ping1, WANG Zhong-Wu1, WENDU Rigen3, ZHAO Yu-Jin2,*(), BAI Yong-Fei2,*(
)
Received:
2022-03-23
Accepted:
2022-07-06
Online:
2022-10-20
Published:
2022-09-28
Contact:
ZHAO Yu-Jin,BAI Yong-Fei
Supported by:
摘要:
生物多样性与生态系统功能的关系是当前生态学研究的焦点和难点。植物功能多样性是影响生态系统功能的重要指标, 开展植物功能多样性的研究对了解生物多样性与生态系统功能之间的关系有着重要意义。传统的草地植物功能多样性研究多以实地调查为主, 不仅费时费力, 而且由于受到时空的限制, 很难拓展到大尺度的研究中。遥感技术的发展为评估草地功能多样性提供了一种经济、有效的手段。该研究选取内蒙古自治区锡林郭勒盟乌拉盖管理区草甸草原为研究区, 利用Sentinel-2卫星影像和野外实测数据, 选取了波段及植被指数等46个特征变量, 探讨了逐步回归、偏最小二乘法(PLSR)和随机森林(RFR)等3种不同方法对草地植物功能丰富度(FRic)、功能均匀度(FEve)和功能离散度(FDiv)的反演精度, 并基于PLSR反演草地地上生物量, 进一步分析了研究区功能多样性与生产力的关系。研究结果表明: (1)波段B11、优化型土壤调节植被指数(OSAVI)、水波段指数(WBI)对FRic解释度最高; 波段B6、B10、B12、类胡萝卜素反射指数1 (CRI1)、双峰光学指数(D)、归一化差值指数45 (NDI45)等6个特征变量对FEve解释度最高; 波段B5、B9、B10、B11、加权差分植被指数(WDVI)、凸包面积等对FDiv解释度最高; (2)基于十折重复交叉验证, 利用逐步回归估算的FRic和FEve反演精度远高于其他两种回归方法, R2分别为0.52和0.44; 而利用PLSR方法估算的FDiv反演精度最高(R2 = 0.61); (3)群落地上生物量反演精度为R2 = 0.61; FRic与地上生产力的关系最好(R2 = 0.40), 其次为FDiv (R2 = 0.28)和FEve (R2 = 0.27)。研究发现, 基于Sentinel-2卫星影像能较好地反演草地功能多样性和生产力, 为下一步能在大尺度上进行草地功能多样性估算及其与生产力关系研究提供了参考和依据。
赵晏平, 王忠武, 温都日根, 赵玉金, 白永飞. 基于Sentinel-2数据的草地植物功能多样性遥感反演及其与生产力的关系. 植物生态学报, 2022, 46(10): 1234-1250. DOI: 10.17521/cjpe.2022.0104
ZHAO Yan-Ping, WANG Zhong-Wu, WENDU Rigen, ZHAO Yu-Jin, BAI Yong-Fei. Remotely sensed monitoring method of grassland plant functional diversity and its relationship with productivity based on Sentinel-2 satellite data. Chinese Journal of Plant Ecology, 2022, 46(10): 1234-1250. DOI: 10.17521/cjpe.2022.0104
图1 内蒙古锡林郭勒盟乌拉盖管理区草甸草原研究区采样点位置(A)及样方布设示意图(B)。B中蓝色框为1 m × 1 m小样方; 红色框为小样方中心1/4的面积; 绿色框为10 m × 10 m样方组成方式。NDVI, 归一化植被指数。
Fig. 1 Location of the study area (A) and sample settings (B) across the meadow steppe in the Ulgai Management Area of Xilin Gol League in Nei Mongol. In B, blue boxes represent 1 m × 1 m small sample squares, red boxes represent the area of 1/4 of the center of small sample squares, and the green box represents the composition of 10 m × 10 m sample square. NDVI, normalized difference vegetation index.
图2 研究方法流程图。FDiv, 功能离散度; FEve, 功能均匀度; FRic, 功能丰富度; NDVI, 归一化植被指数。
Fig. 2 Flow chart of the research method. FDiv, functional diversity; FEve, functional evenness; FRic, functional richness; NDVI, normalized difference vegetation index.
植被指数 Vegetation index | 计算公式 Calculate formula | Sentinel-2波段 Sentinel-2 band used | 参考文献 Reference |
---|---|---|---|
TCARI | 3[(R699.19 - R668.98) - 0.2(R699.19 - R550.67)(R699.19/R668.98)] | B3, B4, B5 | Kim et al., |
OSAVI | (1 + 0.16)(R750 - R705)/(R750 + R705 + 0.16) | B5, B6 | Wu et al., |
OSAVI2 | (1 + 0.16) (R800 - R670)/(R800 + R670 + 0.16) | B4, B7 | Rondeaux et al., |
D | R730/R706 | B5, B6 | Zarco-Tejada et al., |
Datt | (R850 - R710)/(R850 - R680) | B4, B5, B8 | Datt, |
Datt2 | R850/R710 | B5, B8 | Datt, |
Gitelson | 1/R700 | B5 | Gitelson et al., |
SR | R750/R700 | B5, B6 | Gitelson & Merzlyak, |
SR2 | R700/R670 | B4, B5 | McMurtrey III et al., |
MSI | R1600/R819 | B8, B11 | Hunt Jr & Rock, |
NDVI705 | (R750 - R705)/( R750 + R705) | B5, B6 | Sims & Gamon, |
CRI1 | 1/R510 - 1/R550 | B2, B3 | Gitelson et al., |
CRI2 | 1/R510 - 1/R700 | B2, B5 | Gitelson et al., |
ARI1 | 1/R550 - 1/R700 | B3, B5 | Sims & Gamon, |
ARI2 | R800(1/R550 - 1/R700) | B3, B5, B7 | Gitelson et al., |
NDVI | (R842 - R665)/(R842 + R665) | B4, B8 | Huete et al., |
GNDVI | (R783 - R560)/(R783 + R560) | B3, B7 | Rozenstein et al., |
TNDVI | [(R842 - R665)/(R842 + R665) + 0.5]0.5 | B4, B8 | Rozenstein et al., |
WDVI | R842 - 0.5R665 | B4, B8 | Rozenstein et al., |
NDI45 | (R705 - R665)/(R705 + R665) | B4, B5 | Delegido et al., |
SAVI | (1 + 0.5) × (R799.09 - R680.045)/(R799.09 + R680.045 + 0.5) | B4, B7 | Huete, |
SAVI2 | R799.09/(R680.045 + b/a) (a = 0.97, b = 0.08) | B4, B7 | Major et al., |
ARVI | ARVI = (R799.09 -R680.045 + R444.5 + R680.045)/(R799.09 + R680.045 - R444.5 - R680.045) | B1, B4, B7 | Kaufman & Tanre, |
SARVI | RB = R680.045 - (R444.5 - R680.045) SARVI = (1 + 0.5)(R799.09 -R680.045 + R444.5 + R680.045)/(R799.09 + R680.045 - R444.5 - R680.045 + 0.5) | B1, B4, B7 | Kaufman & Tanre, |
EVI | 2.5(R799.09 - R680.045)/(R799.09 + 6R680.045 - 7.5R444.5 + 1) | B1, B4, B7 | Huete et al., |
IRECI | (R783 - R665)/(R705/R740) | B4, B5, B6, B7 | Frampton et al., |
IPVI | R842/(R842 + R665) | B4, B8 | Rozenstein et al., |
PSSRA | R783/R665 | B4, B7 | Rozenstein et al., |
RVI | R842/R665 | B4, B8 | Rozenstein et al., |
mNDVI705 | (R750 - R705)/( R750 + R705 - 2R445) | B1, B5, B6 | Datt, |
mSR705 | (R750 - R445)/( R705 + R445) | B1, B6 | Datt, |
SIPI | (R800 - R445)/( R800 - R680) | B1, B7 | Penuelas et al., |
NDWI | (R865 - R1614)/( R865 - R1614) | B8A, B11 | McFeeters, |
表1 植被指数计算公式
Table 1 Calculating formula of vegetation index
植被指数 Vegetation index | 计算公式 Calculate formula | Sentinel-2波段 Sentinel-2 band used | 参考文献 Reference |
---|---|---|---|
TCARI | 3[(R699.19 - R668.98) - 0.2(R699.19 - R550.67)(R699.19/R668.98)] | B3, B4, B5 | Kim et al., |
OSAVI | (1 + 0.16)(R750 - R705)/(R750 + R705 + 0.16) | B5, B6 | Wu et al., |
OSAVI2 | (1 + 0.16) (R800 - R670)/(R800 + R670 + 0.16) | B4, B7 | Rondeaux et al., |
D | R730/R706 | B5, B6 | Zarco-Tejada et al., |
Datt | (R850 - R710)/(R850 - R680) | B4, B5, B8 | Datt, |
Datt2 | R850/R710 | B5, B8 | Datt, |
Gitelson | 1/R700 | B5 | Gitelson et al., |
SR | R750/R700 | B5, B6 | Gitelson & Merzlyak, |
SR2 | R700/R670 | B4, B5 | McMurtrey III et al., |
MSI | R1600/R819 | B8, B11 | Hunt Jr & Rock, |
NDVI705 | (R750 - R705)/( R750 + R705) | B5, B6 | Sims & Gamon, |
CRI1 | 1/R510 - 1/R550 | B2, B3 | Gitelson et al., |
CRI2 | 1/R510 - 1/R700 | B2, B5 | Gitelson et al., |
ARI1 | 1/R550 - 1/R700 | B3, B5 | Sims & Gamon, |
ARI2 | R800(1/R550 - 1/R700) | B3, B5, B7 | Gitelson et al., |
NDVI | (R842 - R665)/(R842 + R665) | B4, B8 | Huete et al., |
GNDVI | (R783 - R560)/(R783 + R560) | B3, B7 | Rozenstein et al., |
TNDVI | [(R842 - R665)/(R842 + R665) + 0.5]0.5 | B4, B8 | Rozenstein et al., |
WDVI | R842 - 0.5R665 | B4, B8 | Rozenstein et al., |
NDI45 | (R705 - R665)/(R705 + R665) | B4, B5 | Delegido et al., |
SAVI | (1 + 0.5) × (R799.09 - R680.045)/(R799.09 + R680.045 + 0.5) | B4, B7 | Huete, |
SAVI2 | R799.09/(R680.045 + b/a) (a = 0.97, b = 0.08) | B4, B7 | Major et al., |
ARVI | ARVI = (R799.09 -R680.045 + R444.5 + R680.045)/(R799.09 + R680.045 - R444.5 - R680.045) | B1, B4, B7 | Kaufman & Tanre, |
SARVI | RB = R680.045 - (R444.5 - R680.045) SARVI = (1 + 0.5)(R799.09 -R680.045 + R444.5 + R680.045)/(R799.09 + R680.045 - R444.5 - R680.045 + 0.5) | B1, B4, B7 | Kaufman & Tanre, |
EVI | 2.5(R799.09 - R680.045)/(R799.09 + 6R680.045 - 7.5R444.5 + 1) | B1, B4, B7 | Huete et al., |
IRECI | (R783 - R665)/(R705/R740) | B4, B5, B6, B7 | Frampton et al., |
IPVI | R842/(R842 + R665) | B4, B8 | Rozenstein et al., |
PSSRA | R783/R665 | B4, B7 | Rozenstein et al., |
RVI | R842/R665 | B4, B8 | Rozenstein et al., |
mNDVI705 | (R750 - R705)/( R750 + R705 - 2R445) | B1, B5, B6 | Datt, |
mSR705 | (R750 - R445)/( R705 + R445) | B1, B6 | Datt, |
SIPI | (R800 - R445)/( R800 - R680) | B1, B7 | Penuelas et al., |
NDWI | (R865 - R1614)/( R865 - R1614) | B8A, B11 | McFeeters, |
图4 各功能多样性特征变量重要性排序。B5, B6, B9, B10, B11, B12表示波段5、6、9、10、11、12; CHA, 凸包面积; CRI1,类胡萝卜素反射指数; D, 双峰光学指数; NDI45, 归一化差值指数; OSAVI, 优化型土壤调节植被指数; WBI, 水波段指数; WDVI, 加权差分植被指数。
Fig. 4 Importance ranking of functional diversity feature variables. B5, B6, B9, B10, B11, B12 means bands 5, 6, 9, 10, 11, 12; CHA, convex hull area; CRI1, carotenoid reflectance index 1; D, double-peak optical index; NDI45, normalized difference index 45; OSAVI, optimized soil-adjusted vegetation index; WBI, water band index; WDVI, weighted differential vegetation index.
功能多样性指数 Functional diversity index | 逐步回归 Stepwise regression | 随机森林回归 Random forest regression | 偏最小二乘回归 Partial least squares regression | |||
---|---|---|---|---|---|---|
R2 | RMSE | R2 | RMSE | R2 | RMSE | |
FRic | 0.52 | 4.51 | 0.40 | 5.18 | 0.36 | 4.88 |
FEve | 0.43 | 0.03 | 0.32 | 0.04 | 0.35 | 0.03 |
FDiv | 0.54 | 0.04 | 0.56 | 0.04 | 0.61 | 0.04 |
表2 三种回归方法的验证精度
Table 2 Validation accuracy of the three regression methods
功能多样性指数 Functional diversity index | 逐步回归 Stepwise regression | 随机森林回归 Random forest regression | 偏最小二乘回归 Partial least squares regression | |||
---|---|---|---|---|---|---|
R2 | RMSE | R2 | RMSE | R2 | RMSE | |
FRic | 0.52 | 4.51 | 0.40 | 5.18 | 0.36 | 4.88 |
FEve | 0.43 | 0.03 | 0.32 | 0.04 | 0.35 | 0.03 |
FDiv | 0.54 | 0.04 | 0.56 | 0.04 | 0.61 | 0.04 |
图5 乌拉盖管理区植物功能多样性分布图。A, 功能丰富度。B, 功能均匀度。C, 功能离散度。
Fig. 5 Maps of plant functional diversity metrics in the Ulgai Management Area. A, Functional richness. B, Functional evenness. C, Functional divergence.
图6 地上生物量反演精度验证。实线和虚线分别表示线性回归模型拟合线和1:1线。所有回归分析均具有统计学意义(p < 0.001)。RMSE为均方根误差。
Fig. 6 Validation of the remotely-sensed aboveground biomass based on field-measured data. Solid and dashed lines depict the linear regression model and the 1:1 line, respectively. All regression analyses were statistically significant (p < 0.001). RMSE is root mean square error.
[1] |
Asner GP, Martin RE. (2008). Spectral and chemical analysis of tropical forests: scaling from leaf to canopy levels. Remote Sensing of Environment, 112, 3958-3970.
DOI URL |
[2] |
Asner GP, Martin RE, Knapp DE, Tupayachi R, Anderson CB, Sinca F, Vaughn NR, Llactayo W. (2017). Airborne laser-guided imaging spectroscopy to map forest trait diversity and guide conservation. Science, 355, 385-388.
DOI PMID |
[3] |
Bai YF, Han XG, Wu JG, Chen ZZ, Li LH. (2004). Ecosystem stability and compensatory effects in the Inner Mongolia grassland. Nature, 431, 181-184.
DOI URL |
[4] |
Bai YF, Wu JG, Pan QM, Huang JH, Wang QB, Li FS, Buyantuyev A, Han XG. (2007). Positive linear relationship between productivity and diversity: evidence from the Eurasian Steppe. Journal of Applied Ecology, 44, 1023-1034.
DOI URL |
[5] |
Bernhardt RM, Roemermann C, Sperlich S, Schmidt W. (2011). Explaining grassland biomass—The contribution of climate, species and functional diversity depends on fertilization and mowing frequency. Journal of Applied Ecology, 48, 1088-1097.
DOI URL |
[6] |
Blackburn GA. (2007). Hyperspectral remote sensing of plant pigments. Journal of Experimental Botany, 58, 855-867.
DOI PMID |
[7] |
Botta-Dukát Z. (2005). Raoʼs quadratic entropy as a measure of functional diversity based on multiple traits. Journal of Vegetation Science, 16, 533-540.
DOI URL |
[8] |
Breiman L. (2001). Random forests. Machine Learning, 45, 5-32.
DOI URL |
[9] |
Cadotte MW, Carscadden K, Mirotchnick N. (2011). Beyond species: functional diversity and the maintenance of ecological processes and services. Journal of Applied Ecology, 48, 1079-1087.
DOI URL |
[10] |
Cutler A, Stevens JR. (2006). Random forests for microarrays. Methods in Enzymology, 411, 422-432.
PMID |
[11] | Cutler A, Zhao G. (2001). PERT—Perfect random tree ensembles. Computer Science and Statistics, 1-8. |
[12] |
da Silveira Pontes L, Louault F, Carrère P, Maire V, Andueza D, Soussana JF. (2010). The role of plant traits and their plasticity in the response of pasture grasses to nutrients and cutting frequency. Annals of Botany, 105, 957-965.
DOI PMID |
[13] |
Dahlin KM, Asner GP, Field CB. (2013). Environmental and community controls on plant canopy chemistry in a Mediterranean-type ecosystem. Proceedings of the National Academy of Sciences of the United States of America, 110, 6895-6900.
DOI PMID |
[14] |
Datt B. (1999). A new reflectance index for remote sensing of chlorophyll content in higher plants: tests using Eucalyptus leaves. Journal of Plant Physiology, 154, 30-36.
DOI URL |
[15] |
Delegido J, Verrelst J, Alonso L, Moreno J. (2011). Evaluation of Sentinel-2 red-edge bands for empirical estimation of green LAI and chlorophyll content. Sensors, 11, 7063-7081.
DOI PMID |
[16] |
Deng S, Katoh M, Yu X, Hyyppa J, Gao T. (2016). Comparison of tree species classifications at the individual tree level by combining ALS data and RGB images using different algorithms. Remote Sensing, 8, 1034. DOI: 10.3390/rs8121034.
DOI |
[17] |
Díaz S, Cabido M. (2001). Vive la différence: plant functional diversity matters to ecosystem processes. Trends in Ecology & Evolution, 16, 646-655.
DOI URL |
[18] |
Díaz S, Hodgson JG, Thompson K, Cabido M, Cornelissen JHC, Jalili A, Montserrat-Martí G, Grime JP, Zarrinkamar F, Asri Y, Band SR, Basconcelo S, Castro-Díez P, Funes G, Hamzehee B, et al. (2004). The plant traits that drive ecosystems: evidence from three continents. Journal of Vegetation Science, 15, 295-304.
DOI URL |
[19] |
Dou ZG, Li YZ, Cui LJ, Pan X, Ma QF, Huang YL, Lei YR, Li J, Zhao XS, Li W. (2020). Hyperspectral inversion of Suaeda salsa biomass under different types of human activity in Liaohe Estuary wetland in north-eastern China. Marine and Freshwater Research, 71, 482-492.
DOI URL |
[20] |
Durán SM, Martin RE, Díaz S, Maitner BS, Malhi Y, Salinas N, Shenkin A, Silman MR, Wieczynski DJ, Asner GP, Bentley LP, Savage VM, Enquist BJ. (2019). Informing trait-based ecology by assessing remotely sensed functional diversity across a broad tropical temperature gradient. Science Advances, 5, eaaw8114. DOI: 10.1126/sciadv.aaw8114.
DOI |
[21] |
Edwards JA, Santos-Medellin CM, Liechty ZS, Nguyen B, Lurie E, Eason S, Phillips G, Sundaresan V. (2018). Compositional shifts in root-associated bacterial and archaeal microbiota track the plant life cycle in field-grown rice. PLOS Biology, 16, e2003862. DOI: 10.1371/journal.pbio.2003862.
DOI |
[22] |
Farifteh J, van der Meer F, Atzberger C, Carranza EJM. (2007). Quantitative analysis of salt-affected soil reflectance spectra: a comparison of two adaptive methods (PLSR and ANN). Remote Sensing of Environment, 110, 59-78.
DOI URL |
[23] |
Frampton WJ, Dash J, Watmough G, Milton EJ. (2013). Evaluating the capabilities of Sentinel-2 for quantitative estimation of biophysical variables in vegetation. ISPRS Journal of Photogrammetry and Remote Sensing, 82, 83-92.
DOI URL |
[24] |
Fyllas NM, Bentley LP, Shenkin A, Asner GP, Atkin OK, Díaz S, Enquist BJ, Farfan-Rios W, Gloor E, Guerrieri R, Huasco WH, Ishida Y, Martin RE, Meir P, Phillips O, et al. (2017). Solar radiation and functional traits explain the decline of forest primary productivity along a tropical elevation gradient. Ecology Letters, 20, 730-740.
DOI PMID |
[25] |
Genuer R, Poggi JM, Tuleau-Malot C. (2010). Variable selection using random forests. Pattern Recognition Letters, 31, 2225-2236.
DOI URL |
[26] |
Gholizadeh H, Gamon JA, Zygielbaum AI, Wang R, Schweiger AK, Cavender-Bares J. (2018). Remote sensing of biodiversity: soil correction and data dimension reduction methods improve assessment of α-diversity (species richness) in prairie ecosystems. Remote Sensing of Environment, 206, 240-253.
DOI URL |
[27] | Gillison AN. (2013). Plant functional types and traits at the community ecosystem and world level//van der Maarel E, Franklin J. Vegetation Ecology. John Wiley & Sons, Oxford. 347-386. |
[28] |
Gitelson AA, Buschmann C, Lichtenthaler HK. (1999). The chlorophyll fluorescence ratio F735/F700 as an accurate measure of the chlorophyll content in plants. Remote Sensing of Environment, 69, 296-302.
DOI URL |
[29] |
Gitelson AA, Gritz Y, Merzlyak MN. (2003). Relationships between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves. Journal of Plant Physiology, 160, 271-282.
DOI PMID |
[30] |
Gitelson AA, Merzlyak MN. (1997). Remote estimation of chlorophyll content in higher plant leaves. International Journal of Remote Sensing, 18, 2691-2697.
DOI URL |
[31] |
Gitelson AA, Zur Y, Chivkunova OB, Merzlyak MN. (2002). Assessing carotenoid content in plant leaves with reflectance spectroscopy. Photochemistry and Photobiology, 75, 272-281.
DOI PMID |
[32] |
Grime JP. (1998). Benefits of plant diversity to ecosystems: immediate, filter and founder effects. Journal of Ecology, 86, 902-910.
DOI URL |
[33] | Han TT, Tang X, Ren H, Wang J, Liu N, Guo QF. (2021). Community/ecosystem functional diversity: measurements and development. Acta Ecologica Sinica, 41, 3286-3295. |
[韩涛涛, 唐玄, 任海, 王俊, 刘楠, 郭勤峰 (2021). 群落/生态系统功能多样性研究方法及展望. 生态学报, 41, 3286-3295.] | |
[34] |
Homolová L, Malenovský Z, Clevers JGPW, García-Santos G, Schaepman ME. (2013). Review of optical-based remote sensing for plant trait mapping. Ecological Complexity, 15, 1-16.
DOI URL |
[35] |
Hoover DL, Knapp AK, Smith MD. (2014). Resistance and resilience of a grassland ecosystem to climate extremes. Ecology, 95, 2646-2656.
DOI URL |
[36] |
Huete AR. (1988). A soil-adjusted vegetation index (SAVI). Remote Sensing of Environment, 25, 295-309.
DOI URL |
[37] |
Huete AR, Liu HQ, Batchily K, van Leeuwen W. (1997). A comparison of vegetation indices over a global set of TM images for EOS-MODIS. Remote Sensing of Environment, 59, 440-451.
DOI URL |
[38] |
Hunt Jr ER, Rock BN. (1989). Detection of changes in leaf water content using Near- and Middle-Infrared reflectances. Remote Sensing of Environment, 30, 43-54.
DOI URL |
[39] |
Kassen R, Buckling A, Bell G, Rainey PB. (2000). Diversity peaks at intermediate productivity in a laboratory microcosm. Nature, 406, 508-512.
DOI URL |
[40] |
Kaufman YJ, Tanre D. (1992). Atmospherically resistant vegetation index (ARVI) for EOS-MODIS. IEEE Transactions on Geoscience and Remote Sensing, 30, 261-270.
DOI URL |
[41] | Kim MS, Daughtry C, Chappelle EW, McMurtrey III JE, Walthall CL. (1994). The use of high spectral resolution bands for estimating absorbed photosynthetically active radiation// ISPRS Sixth International Colloquium on Physical Measurements and Signatures in Remote Sensing. 17-21. |
[42] |
Kong B, Yu H, Du RX, Wang Q. (2019). Quantitative estimation of biomass of alpine grasslands using hyperspectral remote sensing. Rangeland Ecology & Management, 72, 336-346.
DOI URL |
[43] |
Laliberté E, Legendre P. (2010). A distance-based framework for measuring functional diversity from multiple traits. Ecology, 91, 299-305.
PMID |
[44] | Lepš J, de Bello F, Lavorel S, Berman S. (2006). Quantifying and interpreting functional diversity of natural communities: practical considerations matter. Preslia, 78, 481-501. |
[45] |
Li XG, Zhu ZH, Zhou XS, Yuan FR, Fan RJ, Xu ML. (2011). Effects of clipping, fertilizing and watering on the relationship between species diversity, functional diversity and primary productivity in alpine meadow of China. Chinese Journal of Plant Ecology, 35, 1136-1147.
DOI URL |
[李晓刚, 朱志红, 周晓松, 袁芙蓉, 樊瑞俭, 许曼丽 (2011). 刈割、施肥和浇水对高寒草甸物种多样性、功能多样性与初级生产力关系的影响. 植物生态学报, 35, 1136-1147.]
DOI |
|
[46] |
Liu XJ, Ma KP. (2015). Plant functional traits—Concepts, applications and future directions. Scientia Sinica Vitae, 45, 325-339.
DOI URL |
[刘晓娟, 马克平 (2015). 植物功能性状研究进展. 中国科学: 生命科学, 45, 325-339.] | |
[47] |
Loreau M, Naeem S, Inchausti P, Bengtsson J, Grime JP, Hector A, Hooper DU, Huston MA, Raffaelli D, Schmid B, Tilman D, Wardle DA. (2001). Biodiversity and ecosystem functioning: current knowledge and future challenges. Science, 294, 804-808.
DOI PMID |
[48] | Ma WJ. (2014). The Relationship Between Plant Functional Diversity and Primary Productivity in Desert Steppe of Inner Mongolia. Master degree desertation, Inner Mongolia University, Hohhot. |
[马文静 (2014). 内蒙古荒漠草原植物功能多样性与初级生产力的关系. 硕士学位论文, 内蒙古大学, 呼和浩特.] | |
[49] |
Major DJ, Baret F, Guyot G. (1990). A ratio vegetation index adjusted for soil brightness. International Journal of Remote Sensing, 11, 727-740.
DOI URL |
[50] |
Mallinis G, Chrysafis I, Korakis G, Pana E, Kyriazopoulos AP. (2020). A random forest modelling procedure for a multi-sensor assessment of tree species diversity. Remote Sensing, 12, 1210. DOI: 10.3390/rs12071210.
DOI |
[51] |
Marron N, Villar M, Dreyer E, Delay D, Boudouresque E, Petit JM, Delmotte FM, Guehl JM, Brignolas F. (2005). Diversity of leaf traits related to productivity in 31 Populus deltoides × Populus nigra clones. Tree Physiology, 25, 425-435.
DOI URL |
[52] |
Mason NWH, MacGillivray K, Steel JB, Wilson JB. (2003). An index of functional diversity. Journal of Vegetation Science, 14, 571-578.
DOI URL |
[53] |
Mason NWH, Mouillot D, Lee WG, Wilson JB. (2005). Functional richness, functional evenness and functional divergence: the primary components of functional diversity. Oikos, 111, 112-118.
DOI URL |
[54] |
McFeeters SK. (1996). The use of the normalized difference water index (NDWI) in the delineation of open water features. International Journal of Remote Sensing, 17, 1425-1432.
DOI URL |
[55] |
McMurtrey III JE, Chappelle EW, Kim MS, Meisinger JJ, Corp LA. (1994). Distinguishing nitrogen fertilization levels in field corn (Zea mays L.) with actively induced fluorescence and passive reflectance measurements. Remote Sensing of Environment, 47, 36-44.
DOI URL |
[56] |
Mouillot D, Graham NAJ, Villéger S, Mason NWH, Bellwood DR. (2013). A functional approach reveals community responses to disturbances. Trends in Ecology & Evolution, 28, 167-177.
DOI URL |
[57] |
Mouillot D, Mason WHN, Dumay O, Wilson JB. (2005). Functional regularity: a neglected aspect of functional diversity. Oecologia, 142, 353-359.
PMID |
[58] |
Naeem S, Duffy JE, Zavaleta E. (2012). The functions of biological diversity in an age of extinction. Science, 336, 1401-1406.
DOI PMID |
[59] |
Paganini M, Leidner AK, Geller G, Turner W, Wegmann M. (2016). The role of space agencies in remotely sensed essential biodiversity variables. Remote Sensing in Ecology and Conservation, 2, 132-140.
DOI URL |
[60] | Penuelas J, Baret F, Filella I. (1995). Semi-empirical indices to assess carotenoids/chlorophyll-a ratio from leaf spectral reflectance. Photosynthetica, 31, 221-230. |
[61] |
Petchey OL, Gaston KJ. (2002). Functional diversity (FD), species richness and community composition. Ecology Letters, 5, 402-411.
DOI URL |
[62] |
Petchey OL, Hector A, Gaston KJ. (2004). How do different measures of functional diversity perform? Ecology, 85, 847-857.
DOI URL |
[63] |
Römermann M, Römermann C, Sperlich S, Schmidt W. (2001). Explaining grassland biomass—The contribution of climate, species and functional diversity depends on fertilization and mowing frequency. Journal of Applied Ecology, 48, 1088-1091.
DOI URL |
[64] |
Rondeaux G, Steven M, Baret F. (1996). Optimization of soil-adjusted vegetation indices. Remote Sensing of Environment, 55, 95-107.
DOI URL |
[65] |
Roughgarden J, Running SW, Matson PA. (1991). What does remote sensing do for ecology? Ecology, 72, 1918-1922.
DOI URL |
[66] |
Rozenstein O, Haymann N, Kaplan G, Tanny J. (2019). Validation of the cotton crop coefficient estimation model based on Sentinel-2 imagery and eddy covariance measurements. Agricultural Water Management, 223, 105715. DOI: 10.1016/j.agwat.2019.105715.
DOI |
[67] |
Ruiz-Benito P, Gómez-Aparicio L, Paquette A, Messier C, Kattge J, Zavala MA. (2014). Diversity increases carbon storage and tree productivity in Spanish forests. Global Ecology and Biogeography, 23, 311-322.
DOI URL |
[68] |
Saatchi S, Buermann W, Ter Steege H, Mori S, Smith TB. (2008). Modeling distribution of Amazonian tree species and diversity using remote sensing measurements. Remote Sensing of Environment, 112, 2000-2017.
DOI URL |
[69] |
Schneider FD, Morsdorf F, Schmid B, Petchey OL, Hueni A, Schimel DS, Schaepman ME. (2017). Mapping functional diversity from remotely sensed morphological and physiological forest traits. Nature Communications, 8, 1441. DOI: 10.1038/s41467-017-01530-3.
DOI |
[70] | Schweiger AK, Cavender-Bares J, Townsend PA, Hobbie SE, Madritch MD, Wang R, Tilman D, Gamon JA. (2018). Plant spectral diversity integrates functional and phylogenetic components of biodiversity and predicts ecosystem function. Nature Ecology & Evolution, 2, 976-982. |
[71] |
Schweiger AK, Schütz M, Risch AC, Kneubühler M, Haller R, Schaepman ME. (2017). How to predict plant functional types using imaging spectroscopy: linking vegetation community traits, plant functional types and spectral response. Methods in Ecology and Evolution, 8, 86-95.
DOI URL |
[72] |
Shen M, Tang Y, Klein J, Zhang P, Gu S, Shimono A, Chen J. (2008). Estimation of aboveground biomass using in situ hyperspectral measurements in five major grassland ecosystems on the Tibetan Plateau. Journal of Plant Ecology, 1, 247-257.
DOI URL |
[73] |
Sims DA, Gamon JA. (2002). Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages. Remote Sensing of Environment, 81, 337-354.
DOI URL |
[74] | Sun GJ, Zhang R, Zhou L. (2003). Trend and advances in researches on plant functional diversity and functionals groups. Acta Ecologica Sinica, 7, 1430-1435. |
[孙国钧, 张荣, 周立 (2003). 植物功能多样性与功能群研究进展. 生态学报, 7, 1430-1435.] | |
[75] |
Tilman D. (1997). Distinguishing between the effects of species diversity and species composition. Oikos, 80, 185. DOI: 10.2307/3546532.
DOI |
[76] | Tilman D. (2001). Functional diversity//Levin SA. Encyclopedia of Biodiversity. Elsevier, Amsterdam, the Netherlands. 109-120. |
[77] |
Tilman D, Knops J, Wedin D, Reich P, Ritchie M, Siemann E. (1997). The influence of functional diversity and composition on ecosystem processes. Science, 277, 1300-1302.
DOI URL |
[78] |
Verrelst J, Camps-Valls G, Muñoz-Marí J, Rivera JP, Veroustraete F, Clevers JGPW, Moreno J. (2015). Optical remote sensing and the retrieval of terrestrial vegetation bio-geophysical properties—A review. ISPRS Journal of Photogrammetry and Remote Sensing, 108, 273-290.
DOI URL |
[79] |
Villéger S, Mason NWH, Mouillot D. (2008). New multidimensional functional diversity indices for a multifaceted framework in functional ecology. Ecology, 89, 2290-2301. DOI: 10.1890/07-1206.1.
DOI PMID |
[80] |
Violle C, Navas ML, Vile D, Kazakou E, Fortunel C, Hummel I, Garnier E. (2007). Let the concept of trait be functional! Oikos, 116, 882-892.
DOI URL |
[81] |
Walker B, Kinzig A, Langridge J. (1999). Original articles: plant attribute diversity, resilience, and ecosystem function: the nature and significance of dominant and minor species. Ecosystems, 2, 95-113.
DOI URL |
[82] |
Wan HW, Bai YF, Schöenbach P, Gierus M, Taube F. (2011). Effects of grazing management system on plant community structure and functioning in a semiarid steppe: scaling from species to community. Plant and Soil, 340, 215-226.
DOI URL |
[83] |
Wang HD, Zhang LL, Zhu ZH. (2013). Effects of clipping and fertilizing on the relationships between species diversity and ecosystem functioning and mechanisms of community stability in alpine meadow. Chinese Journal of Plant Ecology, 37, 279-295.
DOI URL |
[王海东, 张璐璐, 朱志红 (2013). 刈割、施肥对高寒草甸物种多样性与生态系统功能关系的影响及群落稳定性机制. 植物生态学报, 37, 279-295.]
DOI |
|
[84] |
Wang R, Gamon JA, Schweiger AK, Cavender-Bares J, Townsend PA, Zygielbaum AI, Kothari S. (2018). Influence of species richness, evenness, and composition on optical diversity: a simulation study. Remote Sensing of Environment, 211, 218-228.
DOI URL |
[85] | Xin XP, Xu DW, He XL, Li ZW, Ding L, Shen BB, Mao PP. (2018). Research progress of grassland carbon cycle using remote sensing technology. China Agricultural Informatics, 30, 1-16. |
[辛晓平, 徐大伟, 何小雷, 李振旺, 丁蕾, 沈贝贝, 毛平平 (2018). 草地碳循环遥感研究进展. 中国农业信息, 30, 1-16.] | |
[86] | Zang YM, Zhu ZH, Li YN, Wang WJ, Xi B. (2009). Effects of species diversity and functional diversity on primary productivity of alpine meadow Chinese. Journal of Ecology, 28, 999-1005. |
[臧岳铭, 朱志红, 李英年, 王文娟, 席博 (2009). 高寒矮嵩草草甸物种多样性与功能多样性对初级生产力的影响. 生态学杂志, 28, 999-1005.] | |
[87] |
Zarco-Tejada PJ, Pushnik JC, Dobrowski S, Ustin SL. (2003). Steady-state chlorophyll a fluorescence detection from canopy derivative reflectance and double-peak red-edge effects. Remote Sensing of Environment, 84, 283-294.
DOI URL |
[88] |
Zhao YJ, Sun YH, Lu XM, Zhao XZ, Yang L, Sun ZY, Bai YF. (2021). Hyperspectral retrieval of leaf physiological traits and their links to ecosystem productivity in grassland monocultures. Ecological Indicators, 122, 107267. DOI: 10.1016/j.ecolind.2020.107267.
DOI |
[1] | 陈科宇 邢森 唐玉 孙佳慧 任世杰 张静 纪宝明. 不同草地型土壤丛枝菌根真菌群落特征及其驱动因素[J]. 植物生态学报, 2024, 48(5): 660-674. |
[2] | 陈以恒 玉素甫江·如素力 阿卜杜热合曼·吾斯曼. 2001-2020年天山新疆段草地植被覆盖度时空变化及驱动因素分析[J]. 植物生态学报, 2024, 48(5): 561-576. |
[3] | 白皓然 侯盟 刘艳杰. 少花蒺藜草入侵与干旱对羊草草原生产力的影响机制[J]. 植物生态学报, 2024, 48(5): 577-589. |
[4] | 茹雅倩, 薛建国, 葛萍, 李钰霖, 李东旭, 韩鹏, 杨天润, 储伟, 陈章, 张晓琳, 李昂, 黄建辉. 高频轮牧对典型草原生产生态效果的影响[J]. 植物生态学报, 2024, 48(2): 171-179. |
[5] | 陈颖洁, 房凯, 秦书琪, 郭彦军, 杨元合. 内蒙古温带草地土壤有机碳组分含量和分解速率的空间格局及其影响因素[J]. 植物生态学报, 2023, 47(9): 1245-1255. |
[6] | 赵艳超, 陈立同. 土壤养分对青藏高原高寒草地生物量响应增温的调节作用[J]. 植物生态学报, 2023, 47(8): 1071-1081. |
[7] | 夏璟钰, 张扬建, 郑周涛, 赵广, 赵然, 朱艺旋, 高洁, 沈若楠, 李文宇, 郑家禾, 张雨雪, 朱军涛, 孙建新. 青藏高原那曲高山嵩草草甸植物物候对增温的异步响应[J]. 植物生态学报, 2023, 47(2): 183-194. |
[8] | 缪丽娟, 张宇阳, 揣小伟, 包刚, 何昱, 朱敬雯. 亚洲旱区草地NDVI对气候变化的响应及滞后效应[J]. 植物生态学报, 2023, 47(10): 1375-1385. |
[9] | 林马震, 黄勇, 李洋, 孙建. 高寒草地植物生存策略地理分布特征及其影响因素[J]. 植物生态学报, 2023, 47(1): 41-50. |
[10] | 杨元合, 张典业, 魏斌, 刘洋, 冯雪徽, 毛超, 徐玮婕, 贺美, 王璐, 郑志虎, 王媛媛, 陈蕾伊, 彭云峰. 草地群落多样性和生态系统碳氮循环对氮输入的非线性响应及其机制[J]. 植物生态学报, 2023, 47(1): 1-24. |
[11] | 董全民, 赵新全, 刘玉祯, 冯斌, 俞旸, 杨晓霞, 张春平, 曹铨, 刘文亭. 放牧方式影响高寒草地矮生嵩草种子大小与数量的关系[J]. 植物生态学报, 2022, 46(9): 1018-1026. |
[12] | 董六文, 任正炜, 张蕊, 谢晨笛, 周小龙. 功能多样性比物种多样性更好解释氮添加对高寒草地生物量的影响[J]. 植物生态学报, 2022, 46(8): 871-881. |
[13] | 白悦, 刘晨, 黄月, 董亚楠, 王露. 科尔沁沙质草地植物群落高度空间异质性对不同放牧方式的响应[J]. 植物生态学报, 2022, 46(4): 394-404. |
[14] | 吴赞, 彭云峰, 杨贵彪, 李秦鲁, 刘洋, 马黎华, 杨元合, 蒋先军. 青藏高原高寒草地退化对土壤及微生物化学计量特征的影响[J]. 植物生态学报, 2022, 46(4): 461-472. |
[15] | 陈丽, 田新民, 任正炜, 董六文, 谢晨笛, 周小龙. 养分添加对天山高寒草地植物多样性和地上生物量的影响[J]. 植物生态学报, 2022, 46(3): 280-289. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19