植物生态学报 ›› 2021, Vol. 45 ›› Issue (8): 891-902.DOI: 10.17521/cjpe.2021.0085
所属专题: 微生物生态学
毛瑾1, 朵莹1, 邓军2, 程杰3, 程积民4, 彭长辉4,5, 郭梁4,6,*()
收稿日期:
2021-03-12
修回日期:
2021-05-26
出版日期:
2021-08-20
发布日期:
2021-05-29
通讯作者:
郭梁
作者简介:
* guoliang2014@nwsuaf.edu.cn基金资助:
MAO Jin1, DUO Ying1, DENG Jun2, CHENG Jie3, CHENG Ji-Min4, PENG Chang-Hui4,5, GUO Liang4,6,*()
Received:
2021-03-12
Revised:
2021-05-26
Online:
2021-08-20
Published:
2021-05-29
Contact:
GUO Liang
Supported by:
摘要:
冬季增温和积雪变化可改变土壤-微生物系统结构和功能。微生物作为陆地生态系统关键生物因子, 发挥着调控土壤养分循环的重要作用, 并对环境扰动, 特别是冬季气候变化十分敏感。开展半干旱区典型草原土壤养分和微生物特性对冬季气候变化的响应研究, 对预测未来气候变化情景下草地生态过程和功能变化意义重大。该研究以宁夏云雾山国家级自然保护区半干旱草原为研究对象, 于冬季布设增温、减雪、增温减雪互作及对照4种处理, 探究了黄土高原典型草原0-5 cm土层土壤养分、酶活性、土壤细菌群落组成对冬季温度和积雪变化的响应规律。结果表明: (1)冬季增温、减雪及互作均提高了0-5 cm土壤温度, 降低了土壤相对湿度, 但却显著增加了土壤冻融循环次数; (2)与对照相比, 不同处理整体上降低了微生物生物量及其多样性, 降低了土壤β-1,4-葡萄糖苷酶(BG)、β-1,4-N-乙酰基氨基葡萄糖苷酶(NAG)、碱性磷酸酶(AKP)活性, 增加了土壤有机碳、全氮、速效磷及铵态氮含量, 硝态氮含量有所下降; (3)研究区土壤细菌以酸杆菌门、变形菌门、放线菌门、芽单胞菌门为主, 优势菌纲以酸杆菌纲、γ-变形杆菌纲、嗜热油菌纲及σ-变形菌纲为主。冗余分析显示, 速效磷含量对细菌群落构成影响最显著, 对群落变异的解释度为21.3%。总之, 冬季气候变化可通过影响土壤温湿度, 特别是冻融循环进而作用于土壤养分循环、酶活性和土壤细菌多样性变化, 这些结果对丰富和拓展气候变化对草地生态系统影响过程与机制的认识, 准确预测典型草原中长期动态变化具有重要意义。
毛瑾, 朵莹, 邓军, 程杰, 程积民, 彭长辉, 郭梁. 冬季增温和减雪对黄土高原典型草原土壤养分和细菌群落组成的影响. 植物生态学报, 2021, 45(8): 891-902. DOI: 10.17521/cjpe.2021.0085
MAO Jin, DUO Ying, DENG Jun, CHENG Jie, CHENG Ji-Min, PENG Chang-Hui, GUO Liang. Influences of warming and snow reduction in winter on soil nutrients and bacterial communities composition in a typical grassland of the Loess Plateau. Chinese Journal of Plant Ecology, 2021, 45(8): 891-902. DOI: 10.17521/cjpe.2021.0085
图2 2018年11月至2019年3月不同处理对地下5 cm处土壤温湿度的影响。CK, 对照; S, 减雪; W, 增温; WS, 增温和减雪互作。
Fig. 2 Influence of different treatments on the soil temperature and relative humidity underground 5 cm from November 2018 to March 2019. CK, control; S, snow reduction; W, warming; WS, interaction of warming and snow reduction.
处理 Treatment | 年份-月份 Year-month | 冻融循环次数 Numbers of freeze-thaw cycle | 总计 Sum |
---|---|---|---|
对照 CK | 2018-11 | 2 | 29 |
2018-12 | 0 | ||
2019-01 | 0 | ||
2019-02 | 8 | ||
2019-03 | 19 | ||
增温 W | 2018-11 | 7 | 53 |
2018-12 | 22 | ||
2019-01 | 0 | ||
2019-02 | 24 | ||
2019-03 | 0 | ||
减雪 S | 2018-11 | 8 | 51 |
2018-12 | 21 | ||
2019-01 | 9 | ||
2019-02 | 13 | ||
2019-03 | 0 | ||
互作 WS | 2018-11 | 2 | 61 |
2018-12 | 16 | ||
2019-01 | 14 | ||
2019-02 | 23 | ||
2019-03 | 6 |
表1 冬季土壤冻融循环次数在不同处理下的比较
Table 1 Comparison of the numbers of soil freeze-thaw cycles under different treatments in winter
处理 Treatment | 年份-月份 Year-month | 冻融循环次数 Numbers of freeze-thaw cycle | 总计 Sum |
---|---|---|---|
对照 CK | 2018-11 | 2 | 29 |
2018-12 | 0 | ||
2019-01 | 0 | ||
2019-02 | 8 | ||
2019-03 | 19 | ||
增温 W | 2018-11 | 7 | 53 |
2018-12 | 22 | ||
2019-01 | 0 | ||
2019-02 | 24 | ||
2019-03 | 0 | ||
减雪 S | 2018-11 | 8 | 51 |
2018-12 | 21 | ||
2019-01 | 9 | ||
2019-02 | 13 | ||
2019-03 | 0 | ||
互作 WS | 2018-11 | 2 | 61 |
2018-12 | 16 | ||
2019-01 | 14 | ||
2019-02 | 23 | ||
2019-03 | 6 |
土壤指标 Soil indicator | 对照 CK | 增温 W | 减雪 S | 互作 WS | F | p |
---|---|---|---|---|---|---|
土壤有机碳含量 SOC content (g·kg-1) | 23.66 ± 1.87b | 30.92 ± 0.28a | 25.00 ± 0.94b | 25.15 ± 1.09b | 7.39 | * |
全氮含量 TN content (g·kg-1) | 2.47 ± 0.06c | 3.03 ± 0.03a | 2.97 ± 0.03a | 2.71 ± 0.02b | 47.28 | *** |
速效磷含量 AP content (mg·kg-1) | 3.30 ± 0.15c | 3.97 ± 0.15ab | 4.17 ± 0.03a | 3.53 ± 0.2bc | 7.23 | * |
硝态氮含量 NO- 3-N content (mg·kg-1) | 6.33 ± 0.41a | 4.37 ± 0.12b | 6.40 ± 0.55a | 4.83 ± 0.24b | 7.93 | ** |
铵态氮含量 NH+ 4-N content (mg·kg-1) | 3.90 ± 0.41b | 4.03 ± 0.12b | 3.33 ± 0.55b | 5.83 ± 0.24a | 4.73 | * |
pH | 7.51 ± 0.02a | 7.51 ± 0.01a | 7.48 ± 0a | 7.52 ± 0.02a | 1.54 | NS |
微生物生物量碳含量 MBC content (mg·kg-1) | 820.08 ± 23.97b | 951.73 ± 6.91a | 807.58 ± 48.58b | 696.02 ± 17.49c | 13.33 | ** |
微生物生物量氮含量 MBN content (mg·kg-1) | 63.48 ± 1.51a | 67.57 ± 2.57a | 61.39 ± 9.10a | 54.60 ± 1.26a | 1.26 | NS |
β-1,4-葡萄糖苷酶活性 BG activity (nmol·g-1·h-1) | 203.37 ± 16.45a | 211.55 ± 13.82a | 197.87 ± 16.04ab | 157.08 ± 4.32b | 3.19 | NS |
β-1,4-N-乙酰基氨基葡萄糖苷酶活性 NAG activity (nmol·g-1·h-1) | 76.85 ± 1.67a | 70.94 ± 2.33a | 74.33 ± 5.31a | 56.33 ± 1.63b | 8.64 | ** |
碱性磷酸酶活性 AKP activity (nmol·g-1·h-1) | 656.61 ± 14.04a | 642.68 ± 46.49a | 586.07 ± 30.72ab | 539.64 ± 4.12b | 3.60 | NS |
表2 土壤理化性质和酶活性在不同处理下的比较(平均值±标准差, n = 4)
Table 2 Comparison of soil physical and chemical properties and enzyme activities under different treatments (means ± SD, n = 4)
土壤指标 Soil indicator | 对照 CK | 增温 W | 减雪 S | 互作 WS | F | p |
---|---|---|---|---|---|---|
土壤有机碳含量 SOC content (g·kg-1) | 23.66 ± 1.87b | 30.92 ± 0.28a | 25.00 ± 0.94b | 25.15 ± 1.09b | 7.39 | * |
全氮含量 TN content (g·kg-1) | 2.47 ± 0.06c | 3.03 ± 0.03a | 2.97 ± 0.03a | 2.71 ± 0.02b | 47.28 | *** |
速效磷含量 AP content (mg·kg-1) | 3.30 ± 0.15c | 3.97 ± 0.15ab | 4.17 ± 0.03a | 3.53 ± 0.2bc | 7.23 | * |
硝态氮含量 NO- 3-N content (mg·kg-1) | 6.33 ± 0.41a | 4.37 ± 0.12b | 6.40 ± 0.55a | 4.83 ± 0.24b | 7.93 | ** |
铵态氮含量 NH+ 4-N content (mg·kg-1) | 3.90 ± 0.41b | 4.03 ± 0.12b | 3.33 ± 0.55b | 5.83 ± 0.24a | 4.73 | * |
pH | 7.51 ± 0.02a | 7.51 ± 0.01a | 7.48 ± 0a | 7.52 ± 0.02a | 1.54 | NS |
微生物生物量碳含量 MBC content (mg·kg-1) | 820.08 ± 23.97b | 951.73 ± 6.91a | 807.58 ± 48.58b | 696.02 ± 17.49c | 13.33 | ** |
微生物生物量氮含量 MBN content (mg·kg-1) | 63.48 ± 1.51a | 67.57 ± 2.57a | 61.39 ± 9.10a | 54.60 ± 1.26a | 1.26 | NS |
β-1,4-葡萄糖苷酶活性 BG activity (nmol·g-1·h-1) | 203.37 ± 16.45a | 211.55 ± 13.82a | 197.87 ± 16.04ab | 157.08 ± 4.32b | 3.19 | NS |
β-1,4-N-乙酰基氨基葡萄糖苷酶活性 NAG activity (nmol·g-1·h-1) | 76.85 ± 1.67a | 70.94 ± 2.33a | 74.33 ± 5.31a | 56.33 ± 1.63b | 8.64 | ** |
碱性磷酸酶活性 AKP activity (nmol·g-1·h-1) | 656.61 ± 14.04a | 642.68 ± 46.49a | 586.07 ± 30.72ab | 539.64 ± 4.12b | 3.60 | NS |
图3 土壤细菌多样性在不同处理下的比较。CK, 对照; S, 减雪; W, 增温; WS, 增温减雪互作。不同小写字母表示不同处理之间差异显著(p < 0.05)。
Fig. 3 Comparison of soil bacterial diversity under different treatments. CK, control; S, snow reduction; W, warming; WS, interaction of warming and snow reduction. Different lowercase letters indicate significant differences among different treatments (p < 0.05).
图4 不同处理下土壤细菌在不同分类学水平上的相对丰度比较。A, 门水平细菌相对丰度。B, 纲水平细菌相对丰度。CK, 对照; S, 减雪; W, 增温; WS, 增温减雪互作。同一分类群不同小写字母表示不同处理间丰度差异显著(p < 0.05), 标注于对应的分类群相对丰度柱状图中央部位。
Fig. 4 Comparison of the relative abundance of soil bacteria at different taxonomic levels under different experimental treatments. A, Relative abundance of bacteria at phylum level. B, Relative abundance of bacteria at class level. CK, control; S, snow reduction; W, warming; WS, interaction of warming and snow reduction. Different lowercase letters of the same taxon indicate significant differences in abundance between different treatments (p < 0.05). The lowercase letters are marked in the center of the corresponding bar graph of taxon relative abundance.
图5 土壤细菌群落与土壤理化性质的冗余分析(RDA)。AP, 速效磷含量; MBC, 微生物生物量碳含量; MBN, 微生物生物量氮含量; NH4+-N, 铵态氮含量; NO3--N, 硝态氮含量; SOC, 土壤有机碳含量; TN, 全氮含量。蓝色箭头表示门水平下土壤细菌种群分布, 红色箭头表示环境因子。
Fig. 5 Redundancy analysis (RDA) of soil bacterial communities and soil physical and chemical properties. CK, control; S, snow reduction; W, warming; WS, interaction of warming and snow reduction. AP, available phosphorus content; MBC, microbial biomass carbon content; MBN, microbial biomass nitrogen content; NH4+-N, ammonium nitrogen content; NO3--N, nitrate nitrogen content; SOC, soil organic carbon content; TN, total nitrogen content. The blue arrows indicate the distribution of soil bacterial populations at the phylum level, and the red arrows indicate environmental factors.
Sha. | Chao1 | Ric. | Aci. | Pro. | Act. | Gem. | Chl. | Pla. | Rok. | Ver. | Bac. | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
SOC | 0.23 | -0.26 | -0.06 | -0.36 | 0.19 | 0.36 | -0.16 | -0.09 | -0.13 | -0.14 | 0.19 | 0.22 |
TN | 0.12 | -0.14 | -0.07 | -0.23 | 0.36 | 0.17 | -0.42 | -0.05 | -0.05 | 0.21 | -0.09 | 0.00 |
AP | 0.15 | 0.11 | 0.19 | 0.43 | 0.46 | -0.28 | -0.32 | -0.10 | -0.11 | 0.32 | 0.11 | -0.02 |
NO- 3-N | 0.47 | 0.80* | 0.78** | 0.54* | 0.32 | -0.02 | -0.08 | -0.48 | -0.16 | -0.22 | -0.23 | -0.11 |
NH+ 4-N | -0.58* | -0.45 | -0.55* | -0.27 | -0.25 | -0.20 | -0.06 | 0.65** | -0.02 | 0.39 | 0.48 | 0.09 |
pH | -0.08 | -0.10 | -0.19 | 0.01 | 0.02 | -0.27 | -0.01 | -0.14 | 0.54* | -0.10 | -0.35 | 0.35 |
MBC | 0.56* | 0.22 | 0.43 | -0.07 | 0.38 | 0.43 | -0.02 | -0.54* | -0.14 | -0.43 | -0.15 | 0.25 |
MBN | 0.63** | 0.27 | 0.51* | -0.16 | 0.70** | 0.16 | -0.33 | -0.40 | 0.04 | -0.26 | -0.20 | 0.40 |
BG | 0.77** | 0.42 | 0.70** | 0.06 | 0.47 | 0.27 | -0.11 | -0.62* | 0.02 | -0.47 | -0.24 | 0.25 |
NAG | 0.49 | 0.31 | 0.54* | 0.38 | 0.42 | -0.01 | 0.05 | -0.41 | -0.12 | -0.19 | -0.20 | 0.04 |
AKP | 0.56* | 0.35 | 0.49 | -0.02 | 0.18 | 0.51* | 0.22 | -0.61* | -0.25 | -0.66** | -0.05 | 0.21 |
表3 土壤细菌多样性和各分类群丰度与土壤理化性质和酶活性的Pearson相关性分析
Table 3 Pearson correlation coefficients of soil bacterial diversity and abundance of various taxon with soil physical and chemical properties and enzyme activities
Sha. | Chao1 | Ric. | Aci. | Pro. | Act. | Gem. | Chl. | Pla. | Rok. | Ver. | Bac. | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
SOC | 0.23 | -0.26 | -0.06 | -0.36 | 0.19 | 0.36 | -0.16 | -0.09 | -0.13 | -0.14 | 0.19 | 0.22 |
TN | 0.12 | -0.14 | -0.07 | -0.23 | 0.36 | 0.17 | -0.42 | -0.05 | -0.05 | 0.21 | -0.09 | 0.00 |
AP | 0.15 | 0.11 | 0.19 | 0.43 | 0.46 | -0.28 | -0.32 | -0.10 | -0.11 | 0.32 | 0.11 | -0.02 |
NO- 3-N | 0.47 | 0.80* | 0.78** | 0.54* | 0.32 | -0.02 | -0.08 | -0.48 | -0.16 | -0.22 | -0.23 | -0.11 |
NH+ 4-N | -0.58* | -0.45 | -0.55* | -0.27 | -0.25 | -0.20 | -0.06 | 0.65** | -0.02 | 0.39 | 0.48 | 0.09 |
pH | -0.08 | -0.10 | -0.19 | 0.01 | 0.02 | -0.27 | -0.01 | -0.14 | 0.54* | -0.10 | -0.35 | 0.35 |
MBC | 0.56* | 0.22 | 0.43 | -0.07 | 0.38 | 0.43 | -0.02 | -0.54* | -0.14 | -0.43 | -0.15 | 0.25 |
MBN | 0.63** | 0.27 | 0.51* | -0.16 | 0.70** | 0.16 | -0.33 | -0.40 | 0.04 | -0.26 | -0.20 | 0.40 |
BG | 0.77** | 0.42 | 0.70** | 0.06 | 0.47 | 0.27 | -0.11 | -0.62* | 0.02 | -0.47 | -0.24 | 0.25 |
NAG | 0.49 | 0.31 | 0.54* | 0.38 | 0.42 | -0.01 | 0.05 | -0.41 | -0.12 | -0.19 | -0.20 | 0.04 |
AKP | 0.56* | 0.35 | 0.49 | -0.02 | 0.18 | 0.51* | 0.22 | -0.61* | -0.25 | -0.66** | -0.05 | 0.21 |
图6 冬季增温、减雪及其互作影响土壤微生物群落、酶活性及养分有效性的潜在途径。SOC, 土壤有机碳; TN, 土壤全氮。图中红色粗箭头代表该指标含量或频率的变化。
Fig. 6 Potential influencing paths of soil warming, snow reduction and interactions between the above two treatments on soil microbial community, enzyme activity, and nutrient availability. SOC, soil organic carbon; TN, soil total nitrogen. The thick red arrow in the figure represents the change in the content or frequency of the index.
[1] | Bai E, Li SL, Xu WH, Li W, Dai WW, Jiang P (2013). A meta- analysis of experimental warming effects on terrestrial nitrogen pools and dynamics. New Phytologist, 199, 441-451. |
[2] | Bao SD (2000). Agrochemical Analysis of Soil. Agricultural Press, Beijing. 30-83. |
[ 鲍士旦 (2000). 土壤农化分析. 农业出版社, 北京. 30-83.] | |
[3] | Bardgett RD, Freeman C, Ostle NJ (2008). Microbial contributions to climate change through carbon cycle feedbacks. The ISME Journal, 2, 805-814. |
[4] | Blankinship JC, Hart SC (2012). Consequences of manipulated snow cover on soil gaseous emission and N retention in the growing season: a meta-analysis. Ecosphere, 3, 1-20. |
[5] | Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Peña AG, Goodrich JK, Gordon JI, Huttley GA, Kelley ST, Knights D, Koenig JE, Ley RE, et al. (2010). QIIME allows analysis of high-throughput community sequencing data. Nature Methods, 7, 335-336. |
[6] | Chaer GM, Myrold DD, Bottomley PJ (2009). A soil quality index based on the equilibrium between soil organic matter and biochemical properties of undisturbed coniferous forest soils of the Pacific Northwest. Soil Biology & Biochemistry, 41, 822-830. |
[7] | Cheng JM (2014). Grassland Ecosystem of the Loess Plateau in China—Yunwushan National Nature Reserve. Science Press, Beijing. |
[ 程积民 (2014). 黄土高原草原生态系统研究——云雾山国家级自然保护区. 科学出版社, 北京.] | |
[8] | Chinnadurai C, Gopalaswamy G, Balachandar D (2014). Impact of long-term organic and inorganic nutrient managements on the biological properties and eubacterial community diversity of the Indian semi-arid Alfisol. Archives of Agronomy and Soil Science, 60, 531-548. |
[9] | DeForest JL, Smemo KA, Burke DJ, Elliott HL, Becker JC (2012). Soil microbial responses to elevated phosphorus and pH in acidic temperate deciduous forests. Biogeochemistry, 109, 189-202. |
[10] |
Delgado-Baquerizo M, Maestre FT, Reich PB, Jeffries TC, Gaitan JJ, Encinar D, Berdugo M, Campbell CD, Singh BK (2016). Microbial diversity drives multifunctionality in terrestrial ecosystems. Nature Communications, 7, 10541. DOI: 10.1038/ncomms10541.
DOI |
[11] | Durán J, Morse JL, Groffman PM, Campbell JL, Christenson LM, Driscoll CT, Fahey TJ, Fisk MC, Mitchell MJ, Templer PH (2014). Winter climate change affects growing- season soil microbial biomass and activity in northern hardwood forests. Global Change Biology, 20, 3568-3577. |
[12] | Edgar RC (2013). UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nature Methods, 10, 996-998. |
[13] | Eisenhauer N, Dobies T, Cesarz S, Hobbie SE, Meyer RJ, Worm K, Reich PB (2013). Plant diversity effects on soil food webs are stronger than those of elevated CO2 and N deposition in a long-term grassland experiment. Proceedings of the National Academy of Sciences of the United States of America, 110, 6889-6894. |
[14] | Freppaz M, Williams BL, Edwards AC, Scalenghe R, Zanini E (2007). Simulating soil freeze/thaw cycles typical of winter alpine conditions: implications for N and P availability. Applied Soil Ecology, 35, 247-255. |
[15] | Grimm NB, Chapin III FS, Bierwagen B, Gonzalez P, Groffman PM, Luo YQ, Melton F, Nadelhoffer K, Pairis A, Raymond PA, Schimel J, Williamson CE (2013). The impacts of climate change on ecosystem structure and function. Frontiers in Ecology and the Environment, 11, 474-482. |
[16] | Guo L, Cheng J, Luedeling E, Koerner SE, He JS, Xu J, Gang C, Li W, Luo R, Peng C (2017). Critical climate periods for grassland productivity on China’s Loess Plateau. Agricultural and Forest Meteorology, 233, 101-109. |
[17] | Hardy JP, Groffman PM, Fitzhugh RD, Henry KS, Welman AT, Demers JD, Fahey TJ, Driscoll CT, Tierney GL, Nolan S (2001). Snow depth manipulation and its influence on soil frost and water dynamics in a northern hardwood forest. Biogeochemistry, 56, 151-174. |
[18] | Hudson JMG, Henry GHR (2009). Increased plant biomass in a High Arctic heath community from 1981 to 2008. Ecology, 90, 2657-2663. |
[19] | IPCC (2014). The Physical Science Basis—Summary for Policymakers. Contribution of WG1 to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK. |
[20] | Knapp AK, Smith MD (2001). Variation among biomes in temporal dynamics of aboveground primary production. Science, 291, 481-484. |
[21] | Kreyling J, Beierkuhnlein C, Jentsch A (2010). Effects of soil freeze-thaw cycles differ between experimental plant communities. Basic and Applied Ecology, 11, 65-75. |
[22] | Larsen KS, Jonasson S, Michelsen A (2002). Repeated freeze- thaw cycles and their effects on biological processes in two arctic ecosystem types. Applied Soil Ecology, 21, 187-195. |
[23] | Li W, Wu J, Bai E, Guan D, Wang A, Yuan F, Wang S, Jin C (2016). Response of terrestrial nitrogen dynamics to snow cover change: a meta-analysis of experimental manipulation. Soil Biology & Biochemistry, 100, 51-58. |
[24] | Lladó S, Žifčáková L, Větrovský T, Eichlerová I, Baldrian P (2016). Functional screening of abundant bacteria from acidic forest soil indicates the metabolic potential of Acidobacteria subdivision 1 for polysaccharide decomposition. Biology and Fertility of Soils, 52, 251-260. |
[25] | López-Aizpún M, Arango-Mora C, Santamaría C, Lasheras E, Santamaría JM, Ciganda VS, Cárdenas LM, Elustondo D (2018). Atmospheric ammonia concentration modulates soil enzyme and microbial activity in an oak forest affecting soil microbial biomass. Soil Biology & Biochemistry, 116, 378-387. |
[26] | Luo Y, Wan S, Hui D, Wallace LL (2001). Acclimatization of soil respiration to warming in a tall grass prairie. Nature, 413, 622-625. |
[27] | Magoč T, Salzberg SL (2011). FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics, 27, 2957-2963. |
[28] | Marx MC, Wood M, Jarvis SC (2001). A microplate fluorimetric assay for the study of enzyme diversity in soils. Soil Biology & Biochemistry, 33, 1633-1640. |
[29] | Melillo JM, Steudler PA, Aber JD, Newkirk K, Lux H, Bowles FP, Catricala C, Magill A, Ahrens T, Morrisseau S (2002). Soil warming and carbon-cycle feedbacks to the climate system. Science, 298, 2173-2176. |
[30] | Niu SL, Han XG, Ma KP, Wan SQ (2007). Field facilities in global warming and terrestrial ecosystem research. Journal of Plant Ecology (Chinese Version), 31, 262-271. |
[ 牛书丽, 韩兴国, 马克平, 万师强 (2007). 全球变暖与陆地生态系统研究中的野外增温装置. 植物生态学报, 31, 262-271.] | |
[31] | Peng SS, Piao SL, Ciais P, Fang JY, Wang XH (2010). Change in winter snow depth and its impacts on vegetation in China. Global Change Biology, 16, 3004-3013. |
[32] | Qin DH (2014). Climate change science and sustainable development. Progress in Geography, 33, 874-883. |
[ 秦大河 (2014). 气候变化科学与人类可持续发展. 地理科学进展, 33, 874-883.] | |
[33] | Reinmann AB, Susser JR, Demaria EMC, Templer PH (2019). Declines in northern forest tree growth following snowpack decline and soil freezing. Global Change Biology, 25, 420-430. |
[34] |
Rognes T, Flouri T, Nichols B, Quince C, Mahé F (2016). VSEARCH: a versatile open source tool for metagenomics. PeerJ, 4, e2584. DOI: 10.7717/peerj.2584.
DOI |
[35] | Romero-Olivares AL, Allison SD, Treseder KK (2017). Soil microbes and their response to experimental warming over time: a meta-analysis of field studies. Soil Biology & Biochemistry, 107, 32-40. |
[36] | Schmidt SK, Costello EK, Nemergut DR, Cleveland CC, Reed SC, Weintraub MN, Meyer AF, Martin AM (2007). Biogeochemical consequences of rapid microbial turnover and seasonal succession in soil. Ecology, 88, 1379-1385. |
[37] | Schuerings J, Jentsch A, Walter J, Kreyling J (2014). Winter warming pulses differently affect plant performance in temperate heathland and grassland communities. Ecological Research, 29, 561-570. |
[38] | Shen JP, He JZ (2011). Responses of microbes-mediated carbon and nitrogen cycles to global climate change. Acta Ecologica Sinica, 31, 2957-2967. |
[ 沈菊培, 贺纪正 (2011). 微生物介导的碳氮循环过程对全球气候变化的响应. 生态学报, 31, 2957-2967.] | |
[39] | Sjursen H, Michelsen A, Holmstrup M (2005). Effects of freeze-thaw cycles on microarthropods and nutrient availability in a sub-Arctic soil. Applied Soil Ecology, 28, 79-93. |
[40] | Song Y, Zou YC, Wang GP, Yu XF (2017). Altered soil carbon and nitrogen cycles due to the freeze-thaw effect: a meta-analysis. Soil Biology & Biochemistry, 109, 35-49. |
[41] | Sorensen PO, Finzi AC, Giasson MA, Reinmann AB, Sanders- DeMott R, Templer PH, Biochemistry (2018). Winter soil freeze-thaw cycles lead to reductions in soil microbial biomass and activity not compensated for by soil warming. Soil Biology & Biochemistry, 116, 39-47. |
[42] | Sulkava P, Huhta V (2003). Effects of hard frost and freeze-thaw cycles on decomposer communities and N mineralisation in boreal forest soil. Applied Soil Ecology, 22, 225-239. |
[43] | Tan B, Wu FZ, Yang WQ, Yang YL, Wang A, Kang LN (2011). Effects of snow pack removal on the dynamics of winter-time soil temperature, carbon, nitrogen, and phosphorus in alpine forests of west Sichuan. Chinese Journal of Applied Ecology, 22, 2553-2559. |
[ 谭波, 吴福忠, 杨万勤, 杨玉莲, 王奥, 康丽娜 (2011). 雪被去除对川西高山森林冬季土壤温度及碳、氮、磷动态的影响. 应用生态学报, 22, 2553-2559.] | |
[44] | Tierney GL, Fahey TJ, Groffman PM, Hardy JP, Fitzhugh RD, Driscoll CT, Yavitt JB (2003). Environmental control of fine root dynamics in a northern hardwood forest. Global Change Biology, 9, 670-679. |
[45] | Tierney GL, Fahey TJ, Groffman PM, Hardy JP, Fitzhugh RD, Driscoll CT (2001). Soil freezing alters fine root dynamics in a northern hardwood forest. Biogeochemistry, 56, 175-190. |
[46] | Torres IF, Bastida F, Hernández T, Albaladejo J, García C (2015). Enzyme activity, microbial biomass and community structure in a long-term restored soil under semi-arid conditions. Soil Research, 53, 553-560. |
[47] | Vance ED, Brookes PC, Jenkinson DS (1987). An extraction method for measuring soil microbial biomass C. Soil Biology & Biochemistry, 19, 703-707. |
[48] | Wang N, Wang S, Gao Q, Zhao LP, Tian T, Zhang JJ (2014). Effect of nitrogen application levels on microbiological characteristics of soils with different fertility basics. Journal of Soil and Water Conservation, 28, 148-152. |
[ 王楠, 王帅, 高强, 赵兰坡, 田特, 张晋京 (2014). 施氮水平对不同肥力土壤微生物学特性的影响. 水土保持学报, 28, 148-152.] | |
[49] | Wang Q, Garrity GM, Tiedje JM, Cole JR (2007). Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Applied and Environmental Microbiology, 73, 5261-5267. |
[50] | Wang Y, Liu JS, Wang GP, Zhou WM (2007). Study on the effect of freezing and thawing action to soil physical and chemical characteristics. Geography and Geo-information Science, 23, 91-96. |
[ 王洋, 刘景双, 王国平, 周旺明 (2007). 冻融作用与土壤理化效应的关系研究. 地理与地理信息科学, 23, 91-96.] | |
[51] | Weintraub SR, Wieder WR, Cleveland CC, Townsend AR (2013). Organic matter inputs shift soil enzyme activity and allocation patterns in a wet tropical forest. Biogeochemistry, 114, 313-326. |
[52] | Xiao W, Chen X, Jing X, Zhu BA (2018). A meta-analysis of soil extracellular enzyme activities in response to global change. Soil Biology & Biochemistry, 123, 21-32. |
[53] |
Yu XJ, Yang JS, Wang ET, Li BZ, Yuan HL (2015). Effects of growth stage and fulvic acid on the diversity and dynamics of endophytic bacterial community in Stevia rebaudiana Bertoni leaves. Frontiers in Microbiology, 6, 867. DOI: 10.3389/fmicb.2015.00867.
DOI |
[54] | Yue H, Wang M, Wang S, Gilbert JA, Sun X, Wu L, Lin Q, Hu Y, Li X, He Z, Zhou J, Yang Y (2015). The microbe- mediated mechanisms affecting topsoil carbon stock in Tibetan grasslands. The ISME Journal, 9, 2012-2020. |
[55] | Zhou W, Chen H, Zhou L, Lewis BJ, Ye Y, Tian J, Li G, Dai L (2011). Effect of freezing-thawing on nitrogen mineralization in vegetation soils of four landscape zones of Changbai Mountain. Annals of Forest Science, 68, 943-951. |
[1] | 龙吉兰, 蒋铮, 刘定琴, 缪宇轩, 周灵燕, 冯颖, 裴佳宁, 刘瑞强, 周旭辉, 伏玉玲. 干旱下植物根系分泌物及其介导的根际激发效应研究进展[J]. 植物生态学报, 2024, 48(7): 817-827. |
[2] | 刘瑶, 钟全林, 徐朝斌, 程栋梁, 郑跃芳, 邹宇星, 张雪, 郑新杰, 周云若. 不同大小刨花楠细根功能性状与根际微环境关系[J]. 植物生态学报, 2024, 48(6): 744-759. |
[3] | 索南吉, 李博文, 吕汪汪, 王文颖, 拉本, 陆徐伟, 宋扎磋, 陈程浩, 苗琪, 孙芳慧, 汪诗平. 增温增水情景下钉柱委陵菜物候序列的变化及其抗冻性[J]. 植物生态学报, 2024, 48(2): 158-170. |
[4] | 李伟斌, 张红霞, 张玉书, 陈妮娜. 昼夜不对称增温对长白山阔叶红松林碳汇能力的影响[J]. 植物生态学报, 2023, 47(9): 1225-1233. |
[5] | 赵艳超, 陈立同. 土壤养分对青藏高原高寒草地生物量响应增温的调节作用[J]. 植物生态学报, 2023, 47(8): 1071-1081. |
[6] | 郭敏, 罗林, 梁进, 王彦杰, 赵春章. 冻融变化对西南亚高山森林优势种云杉和华西箭竹根区土壤理化性质与酶活性的影响[J]. 植物生态学报, 2023, 47(6): 882-894. |
[7] | 吴帆, 吴晨, 张宇辉, 余恒, 魏智华, 郑蔚, 刘小飞, 陈仕东, 杨智杰, 熊德成. 增温对成熟杉木人工林不同季节细根生长、形态及生理代谢特征的影响[J]. 植物生态学报, 2023, 47(6): 856-866. |
[8] | 张琦, 冯可, 常智慧, 何双辉, 徐维启. 灌丛化对林草交错带植物和土壤微生物的影响[J]. 植物生态学报, 2023, 47(6): 770-781. |
[9] | 赵小祥, 朱彬彬, 田秋香, 林巧玲, 陈龙, 刘峰. 叶片凋落物分解的主场优势研究进展[J]. 植物生态学报, 2023, 47(5): 597-607. |
[10] | 郑炀, 孙学广, 熊洋阳, 袁贵云, 丁贵杰. 叶际微生物对马尾松凋落针叶分解的影响[J]. 植物生态学报, 2023, 47(5): 687-698. |
[11] | 夏璟钰, 张扬建, 郑周涛, 赵广, 赵然, 朱艺旋, 高洁, 沈若楠, 李文宇, 郑家禾, 张雨雪, 朱军涛, 孙建新. 青藏高原那曲高山嵩草草甸植物物候对增温的异步响应[J]. 植物生态学报, 2023, 47(2): 183-194. |
[12] | 迪力夏旦木·塔什买买提, 刘会良. 荒漠一年生植物异时萌发研究进展[J]. 植物生态学报, 2023, 47(12): 1611-1628. |
[13] | 李万年, 罗益敏, 黄则月, 杨梅. 望天树人工幼林混交对土壤微生物功能多样性与碳源利用的影响[J]. 植物生态学报, 2022, 46(9): 1109-1124. |
[14] | 孙彩丽, 仇模升, 黄朝相, 王艺伟. 黔西南石漠化过程中土壤胞外酶活性及其化学计量变化特征[J]. 植物生态学报, 2022, 46(7): 834-845. |
[15] | 吴赞, 彭云峰, 杨贵彪, 李秦鲁, 刘洋, 马黎华, 杨元合, 蒋先军. 青藏高原高寒草地退化对土壤及微生物化学计量特征的影响[J]. 植物生态学报, 2022, 46(4): 461-472. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19