植物生态学报 ›› 2021, Vol. 45 ›› Issue (8): 903-917.DOI: 10.17521/cjpe.2020.0421
收稿日期:
2020-12-17
修回日期:
2021-04-13
出版日期:
2021-08-20
发布日期:
2021-04-25
通讯作者:
刘艳红
作者简介:
* liuyh@bjfu.edu.cn基金资助:
QIN Qian-Qian1, QIU Cong1, ZHENG Da-Cheng3, LIU Yan-Hong2,*()
Received:
2020-12-17
Revised:
2021-04-13
Online:
2021-08-20
Published:
2021-04-25
Contact:
LIU Yan-Hong
Supported by:
摘要:
土壤入渗是决定雨水或融水通过地表再分配给土壤的关键, 影响着森林生态水文过程。为研究北京油松(Pinus tabulaeformis)人工林火烧迹地早期土壤入渗特征及其结构性控制因素, 在火灾发生(2019年3月)的当年对火烧和对照样地的0-20 cm土壤进行为期8个月(5-12月)的采集, 测定分析土壤结构和入渗对火烧干扰的响应及随土壤深度和时间的变化, 并通过路径分析探讨火烧和土壤结构性质对土壤入渗的作用机制。结果表明: 1)土壤各结构指标(除小团聚体外)随土壤深度和时间变化总体具有浅层>深层和6-8月>其他月份的趋势。火烧改变了土壤结构原有的垂直分布特征和季节动态规律, 火烧后2个月土壤>5、2-5和1-2 mm团聚体含量和容重显著增加, 其余指标均显著减少。随土层加深和时间推移, 火烧的作用减弱, 但与土壤深度和时间变化具有明显的交互效应。2)土壤入渗特征随土壤深度变化缓慢, 但随时间变化显著, 表现为雨水较多且出现强降雨事件的8月土壤初渗速率、稳渗速率、入渗总量和饱和导水率最大。火烧后0-5 cm和6-9月的土壤入渗过程与对照相比差异较大, 各月土壤入渗特征均下降, 出现峰值时间提前1-2个月。3)火烧显著影响土壤结构性质, 而土壤入渗性主要受土壤结构性质的直接影响。在未受火烧干扰的情况下, 土壤的入渗性受到土壤团聚体、容重和持水量的正效应以及孔隙度的负效应, 有机质含量和初始含水率对入渗性的直接影响均不显著, 但有机质含量可以通过影响孔隙度或持水量间接影响入渗性。火烧后土壤初始含水率是唯一显著且直接影响入渗性的因素, 且初始含水率越高, 土壤入渗越慢。综上所述, 火烧会改变或解耦火烧迹地早期土壤结构对土壤入渗及其内部的作用程度及途径而间接影响土壤入渗。
秦倩倩, 邱聪, 郑大柽, 刘艳红. 油松人工林火烧迹地早期土壤入渗动态. 植物生态学报, 2021, 45(8): 903-917. DOI: 10.17521/cjpe.2020.0421
QIN Qian-Qian, QIU Cong, ZHENG Da-Cheng, LIU Yan-Hong. Soil infiltration dynamics in early period of a post-fire Pinus tabulaeformis plantation. Chinese Journal of Plant Ecology, 2021, 45(8): 903-917. DOI: 10.17521/cjpe.2020.0421
指标 Index | 火烧干扰 Fire disturbance (df = 1) | 土壤深度 Soil depth (df = 3) | 时间 Time (df = 7) | 火烧×深度 Fire × Depth (df = 3) | 火烧×时间 Fire × Time (df = 7) | 深度×时间 Depth × Time (df = 21) | 火烧×深度×时间 Fire × Depth × Time (df = 21) | |
---|---|---|---|---|---|---|---|---|
机械性团聚体含量 Mechanical aggregate content | >5 mm | 13.09*** | 2.76* | 37.85*** | 3.85* | 31.49*** | 8.26*** | 5.33*** |
2-5 mm | 22.73*** | 10.87*** | 168.02*** | 13.63*** | 26.08*** | 5.44*** | 3.04*** | |
1-2 mm | 152.67*** | 4.10** | 73.87*** | 55.90*** | 7.32*** | 4.75*** | 5.43*** | |
0.5-1 mm | 250.59*** | 88.04*** | 248.94*** | 19.25*** | 81.65*** | 45.44*** | 36.07*** | |
0.25-0.5 mm | 75.74*** | 12.68*** | 144.97*** | 11.12*** | 27.16*** | 7.55*** | 5.86*** | |
<0.25 mm | 220.90*** | 5.56** | 505.52*** | 98.28*** | 43.76*** | 14.44*** | 10.70*** | |
初始含水率 Initial water content | 7.04** | 16.99*** | 107.52*** | 45.01*** | 136.38*** | 8.40*** | 12.91*** | |
饱和持水量 Saturation moisture capacity | 236.75*** | 6.13** | 11.61*** | 5.71** | 1.07 | 2.61** | 2.59** | |
毛管持水量 Capillary moisture capacity | 144.93*** | 7.43*** | 9.18*** | 1.55 | 1.29 | 1.89* | 1.69 | |
田间持水量 Field moisture capacity | 147.69*** | 6.24** | 37.18*** | 0.68 | 1.46 | 3.42*** | 1.53 | |
容重 Bulk density | 290.39*** | 4.49** | 5.80*** | 5.45** | 3.44** | 2.47** | 4.49*** | |
总孔隙度 Total porosity | 90.39*** | 2.03 | 18.35*** | 7.12*** | 3.56** | 2.17* | 0.93 | |
毛管孔隙度 Capillary porosity | 70.17*** | 6.13** | 14.13*** | 2.79* | 6.00*** | 2.51** | 1.28 | |
非毛管孔隙度 Non-capillary porosity | 33.90*** | 26.91*** | 39.63*** | 17.38*** | 10.96*** | 3.36*** | 3.88*** | |
有机质含量 Organic matter content | 196.99*** | 100.15*** | 3.48** | 1.82 | 1.99 | 1.06 | 0.71 |
表1 油松人工林土壤结构性质的三因素方差分析
Table 1 Three-way ANOVA analysis of soil structural properties in a Pinus tabulaeformis plantation
指标 Index | 火烧干扰 Fire disturbance (df = 1) | 土壤深度 Soil depth (df = 3) | 时间 Time (df = 7) | 火烧×深度 Fire × Depth (df = 3) | 火烧×时间 Fire × Time (df = 7) | 深度×时间 Depth × Time (df = 21) | 火烧×深度×时间 Fire × Depth × Time (df = 21) | |
---|---|---|---|---|---|---|---|---|
机械性团聚体含量 Mechanical aggregate content | >5 mm | 13.09*** | 2.76* | 37.85*** | 3.85* | 31.49*** | 8.26*** | 5.33*** |
2-5 mm | 22.73*** | 10.87*** | 168.02*** | 13.63*** | 26.08*** | 5.44*** | 3.04*** | |
1-2 mm | 152.67*** | 4.10** | 73.87*** | 55.90*** | 7.32*** | 4.75*** | 5.43*** | |
0.5-1 mm | 250.59*** | 88.04*** | 248.94*** | 19.25*** | 81.65*** | 45.44*** | 36.07*** | |
0.25-0.5 mm | 75.74*** | 12.68*** | 144.97*** | 11.12*** | 27.16*** | 7.55*** | 5.86*** | |
<0.25 mm | 220.90*** | 5.56** | 505.52*** | 98.28*** | 43.76*** | 14.44*** | 10.70*** | |
初始含水率 Initial water content | 7.04** | 16.99*** | 107.52*** | 45.01*** | 136.38*** | 8.40*** | 12.91*** | |
饱和持水量 Saturation moisture capacity | 236.75*** | 6.13** | 11.61*** | 5.71** | 1.07 | 2.61** | 2.59** | |
毛管持水量 Capillary moisture capacity | 144.93*** | 7.43*** | 9.18*** | 1.55 | 1.29 | 1.89* | 1.69 | |
田间持水量 Field moisture capacity | 147.69*** | 6.24** | 37.18*** | 0.68 | 1.46 | 3.42*** | 1.53 | |
容重 Bulk density | 290.39*** | 4.49** | 5.80*** | 5.45** | 3.44** | 2.47** | 4.49*** | |
总孔隙度 Total porosity | 90.39*** | 2.03 | 18.35*** | 7.12*** | 3.56** | 2.17* | 0.93 | |
毛管孔隙度 Capillary porosity | 70.17*** | 6.13** | 14.13*** | 2.79* | 6.00*** | 2.51** | 1.28 | |
非毛管孔隙度 Non-capillary porosity | 33.90*** | 26.91*** | 39.63*** | 17.38*** | 10.96*** | 3.36*** | 3.88*** | |
有机质含量 Organic matter content | 196.99*** | 100.15*** | 3.48** | 1.82 | 1.99 | 1.06 | 0.71 |
图2 油松人工林火烧迹地早期土壤结构性质(平均值±标准差)。CK, 对照样地; PF, 火烧样地。*表示火烧和对照差异显著(p < 0.05)。不同大写字母表示不同月份间差异显著(p < 0.05), 不同小写字母表示不同土壤深度差异显著(p < 0.05)。
Fig. 2 Soil structural properties in the early period of a post-fire Pinus tabulaeformis plantation (mean ± SD). CK, control plot; PF, post-fire plot. * means significant difference between post-fire and control plots (p < 0.05). Different uppercase letters indicate significant differences among months (p < 0.05), and different lowercase letters indicate significant differences among soil depths (p < 0.05).
图3 油松人工林火烧迹地早期土壤入渗曲线。CK, 对照样地; PF, 火烧样地。
Fig. 3 Soil infiltration curve in the early period of a post-fire Pinus tabulaeformis plantation. CK, control plot; PF, post-fire plot.
指标 Index | 火烧干扰 Fire disturbance (df = 1) | 土壤深度 Soil depth (df = 3) | 时间 Time (df = 7) | 火烧 × 深度 Fire × Depth (df = 3) | 火烧 × 时间 Fire × Time (df = 7) | 深度 × 时间 Depth × Time (df = 21) | 火烧 × 深度 × 时间 Fire × Depth × Time (df = 21) |
---|---|---|---|---|---|---|---|
初渗速率 Initial infiltration rate (mm·min-1) | 2.10 | 0.22 | 8.93*** | 0.75 | 1.05 | 0.49 | 0.38 |
稳渗速率 Steady infiltration rate (mm·min-1) | 0.06 | 0.69 | 8.37*** | 0.25 | 2.70* | 0.43 | 0.60 |
入渗总量 Cumulative-infiltration volume (mm) | 0.28 | 0.62 | 8.93*** | 0.36 | 2.06 | 0.48 | 0.55 |
饱和导水率 Saturated hydraulic conductivity (mm·min-1) | 0.51 | 0.38 | 9.31*** | 0.49 | 1.67 | 0.43 | 0.47 |
表2 油松人工林土壤入渗特征的三因素方差分析
Table 2 Three-way ANOVA analysis of soil infiltration characteristics in a Pinus tabulaeformis plantation
指标 Index | 火烧干扰 Fire disturbance (df = 1) | 土壤深度 Soil depth (df = 3) | 时间 Time (df = 7) | 火烧 × 深度 Fire × Depth (df = 3) | 火烧 × 时间 Fire × Time (df = 7) | 深度 × 时间 Depth × Time (df = 21) | 火烧 × 深度 × 时间 Fire × Depth × Time (df = 21) |
---|---|---|---|---|---|---|---|
初渗速率 Initial infiltration rate (mm·min-1) | 2.10 | 0.22 | 8.93*** | 0.75 | 1.05 | 0.49 | 0.38 |
稳渗速率 Steady infiltration rate (mm·min-1) | 0.06 | 0.69 | 8.37*** | 0.25 | 2.70* | 0.43 | 0.60 |
入渗总量 Cumulative-infiltration volume (mm) | 0.28 | 0.62 | 8.93*** | 0.36 | 2.06 | 0.48 | 0.55 |
饱和导水率 Saturated hydraulic conductivity (mm·min-1) | 0.51 | 0.38 | 9.31*** | 0.49 | 1.67 | 0.43 | 0.47 |
样地 Plot | 月份 Month | 初渗速率 Initial infiltration rate (mm·min-1) | 稳渗速率 Steady infiltration rate (mm·min-1) | 入渗总量 Cumulative-infiltration volume (mm) | 饱和导水率 Saturated hydraulic conductivity (mm·min-1) |
---|---|---|---|---|---|
对照样地(CK) Control plot | 5 | 3.15 ± 1.36BC | 1.62 ± 0.71AB | 104.89 ± 45.94AB | 2.22 ± 0.98B |
6 | 6.49 ± 3.44A | 2.50 ± 0.86A | 176.10 ± 73.71A | 3.89 ± 1.66A | |
7 | 5.75 ± 2.52AB | 1.63 ± 0.75AB | 119.54 ± 52.15AB | 2.73 ± 1.16AB | |
8 | 7.34 ± 4.20A | 2.52 ± 0.92A | 173.66 ± 70.10A | 3.81 ± 1.56A | |
9 | 2.46 ± 1.97C | 1.06 ± 0.89B | 70.06 ± 59.47B | 1.53 ± 1.26B | |
10 | 3.26 ± 1.66BC | 1.36 ± 0.65B | 88.79 ± 41.02B | 1.98 ± 0.91B | |
11 | 2.17 ± 1.39C | 0.90 ± 0.67B | 59.81 ± 41.45B | 1.32 ± 0.87B | |
12 | 3.41 ± 1.82BC | 1.29 ± 0.70B | 90.55 ± 50.80B | 1.93 ± 1.04B | |
平均值 Mean | 4.25 ± 2.30 | 1.61 ± 0.77 | 110.43 ± 54.33 | 2.43 ± 1.18 | |
火烧样地(PF) Post-fire plot | 5 | 3.64 ± 2.66AB | 1.57 ± 1.02ABC | 112.34 ± 77.20AB | 2.35 ± 1.60ABC |
6 | 6.00 ± 2.94A | 2.34 ± 0.83A | 156.78 ± 62.87A | 3.46 ± 1.40A | |
7 | 5.04 ± 2.37AB | 2.48 ± 1.12A* | 163.99 ± 69.79A | 3.50 ± 1.45A | |
8 | 4.77 ± 2.77AB* | 1.82 ± 0.99AB* | 122.48 ± 64.21AB* | 2.74 ± 1.48AB* | |
9 | 2.94 ± 1.40AB | 1.53 ± 0.78ABC | 94.37 ± 45.32AB | 1.99 ± 0.89ABC | |
10 | 2.06 ± 1.28B | 0.72 ± 0.42C | 49.63 ± 28.54B | 1.12 ± 0.64C | |
11 | 2.37 ± 1.22B | 1.10 ± 0.70BC | 61.29 ± 36.89B | 1.28 ± 0.75BC | |
12 | 3.03 ± 2.57AB | 1.10 ± 0.86BC | 73.27 ± 56.09B | 1.64 ± 1.30BC | |
平均值 Mean | 3.73 ± 2.15 | 1.58 ± 0.84 | 104.27 ± 55.11 | 2.26 ± 1.19 |
表3 油松人工林火烧迹地早期土壤入渗特征(平均值±标准差)
Table 3 Soil infiltration characteristics in the early period of a post-fire Pinus tabulaeformis plantation (mean ± SD)
样地 Plot | 月份 Month | 初渗速率 Initial infiltration rate (mm·min-1) | 稳渗速率 Steady infiltration rate (mm·min-1) | 入渗总量 Cumulative-infiltration volume (mm) | 饱和导水率 Saturated hydraulic conductivity (mm·min-1) |
---|---|---|---|---|---|
对照样地(CK) Control plot | 5 | 3.15 ± 1.36BC | 1.62 ± 0.71AB | 104.89 ± 45.94AB | 2.22 ± 0.98B |
6 | 6.49 ± 3.44A | 2.50 ± 0.86A | 176.10 ± 73.71A | 3.89 ± 1.66A | |
7 | 5.75 ± 2.52AB | 1.63 ± 0.75AB | 119.54 ± 52.15AB | 2.73 ± 1.16AB | |
8 | 7.34 ± 4.20A | 2.52 ± 0.92A | 173.66 ± 70.10A | 3.81 ± 1.56A | |
9 | 2.46 ± 1.97C | 1.06 ± 0.89B | 70.06 ± 59.47B | 1.53 ± 1.26B | |
10 | 3.26 ± 1.66BC | 1.36 ± 0.65B | 88.79 ± 41.02B | 1.98 ± 0.91B | |
11 | 2.17 ± 1.39C | 0.90 ± 0.67B | 59.81 ± 41.45B | 1.32 ± 0.87B | |
12 | 3.41 ± 1.82BC | 1.29 ± 0.70B | 90.55 ± 50.80B | 1.93 ± 1.04B | |
平均值 Mean | 4.25 ± 2.30 | 1.61 ± 0.77 | 110.43 ± 54.33 | 2.43 ± 1.18 | |
火烧样地(PF) Post-fire plot | 5 | 3.64 ± 2.66AB | 1.57 ± 1.02ABC | 112.34 ± 77.20AB | 2.35 ± 1.60ABC |
6 | 6.00 ± 2.94A | 2.34 ± 0.83A | 156.78 ± 62.87A | 3.46 ± 1.40A | |
7 | 5.04 ± 2.37AB | 2.48 ± 1.12A* | 163.99 ± 69.79A | 3.50 ± 1.45A | |
8 | 4.77 ± 2.77AB* | 1.82 ± 0.99AB* | 122.48 ± 64.21AB* | 2.74 ± 1.48AB* | |
9 | 2.94 ± 1.40AB | 1.53 ± 0.78ABC | 94.37 ± 45.32AB | 1.99 ± 0.89ABC | |
10 | 2.06 ± 1.28B | 0.72 ± 0.42C | 49.63 ± 28.54B | 1.12 ± 0.64C | |
11 | 2.37 ± 1.22B | 1.10 ± 0.70BC | 61.29 ± 36.89B | 1.28 ± 0.75BC | |
12 | 3.03 ± 2.57AB | 1.10 ± 0.86BC | 73.27 ± 56.09B | 1.64 ± 1.30BC | |
平均值 Mean | 3.73 ± 2.15 | 1.58 ± 0.84 | 104.27 ± 55.11 | 2.26 ± 1.19 |
变量 Variable | 因子 Factor | 直接效应 Direct effect | 间接效应 Indirect effect | 总效应 Total effect | p | 决定系数 Determination coefficient (R2) |
---|---|---|---|---|---|---|
土壤结构性质 Soil structural property | 火烧干扰 Fire disturbance | 0.633 | - | 0.633 | <0.001 | 0.40 |
土壤入渗性 Soil infiltrability | 火烧干扰 Fire disturbance | - | -0.118 | -0.118 | - | 0.10 |
土壤结构性质 Soil structural property | -0.187 | - | -0.187 | 0.009 |
表4 火烧对油松人工林土壤入渗性的作用
Table 4 Effects of fire on soil infiltrability in a Pinus tabulaeformis plantation
变量 Variable | 因子 Factor | 直接效应 Direct effect | 间接效应 Indirect effect | 总效应 Total effect | p | 决定系数 Determination coefficient (R2) |
---|---|---|---|---|---|---|
土壤结构性质 Soil structural property | 火烧干扰 Fire disturbance | 0.633 | - | 0.633 | <0.001 | 0.40 |
土壤入渗性 Soil infiltrability | 火烧干扰 Fire disturbance | - | -0.118 | -0.118 | - | 0.10 |
土壤结构性质 Soil structural property | -0.187 | - | -0.187 | 0.009 |
图4 油松人工林火烧迹地早期土壤结构性质对入渗性的作用。实线和虚线分别表示达到显著水平的正负作用(p < 0.05), 未达显著水平的作用不显示。线条粗细表示作用大小, 数值表示直接路径系数, 即标准化的回归系数(β)。R2为模型对土壤入渗的解释能力。Aggr, 团聚体; BD, 容重; CIV, 入渗总量; CMC, 毛管持水量; FMC, 田间持水量; IIR, 初渗速率; IWC, 初始含水率; MC, 持水量; NCP, 非毛管孔隙度; OMC, 有机质含量; Por, 孔隙度; SHC, 饱和导水率; SIR, 稳渗速率; SMC, 饱和持水量; TP, 总孔隙度。
Fig. 4 Effects of soil structural properties on infiltrability in the early period of a post-fire Pinus tabulaeformis plantation. Solid and dashed arrows indicate positive and negative effects at significant level (p < 0.05), respectively. Non-significant effects are not shown. The thickness of the line indicates the effect size. Values associated represent direct path coefficients (β). R2 values indicate the ability of the model to explain soil infiltration. Aggr, aggregate; BD, bulk density; CIV, cumulative-infiltration volume; CMC, capillary moisture capacity; FMC, field moisture capacity; IIR, initial infiltration rate; IWC, initial water content; MC, moisture capacity; NCP, non-capillary porosity; OMC, organic matter content; Por, porosity; SHC, saturated hydraulic conductivity; SIR, steady infiltration rate; SMC, saturation moisture capacity; TP, total porosity.
[1] | Al-Seekh SH, Mohammad AG (2009). The effect of water harvesting techniques on runoff, sedimentation, and soil properties. Environmental Management, 44, 37-45. |
[2] | Aru SULTAN, Chang SL, Zhang YT (2019). Comparative analysis and simulation of soil moisture infiltration characteristics in different communities in the forests of Tianshan Mountains, China. Acta Ecologica Sinica, 39, 9111-9118. |
[阿茹•苏里坦, 常顺利, 张毓涛 (2019). 天山林区不同群落土壤水分入渗特性的对比分析与模拟. 生态学报, 39, 9111-9118.] | |
[3] | Badía-Villas D, González-Pérez JA, Aznar JM, Arjona-Gracia B, Martí-Dalmau C (2014). Changes in water repellency, aggregation and organic matter of a mollic horizon burned in laboratory: soil depth affected by fire. Geoderma, 213, 400-407. |
[4] | Bamutaze Y, Tenywa MM, Majaliwa MJG, Vanacker V, Bagoora F, Magunda M, Obando J, Wasige JE (2010). Infiltration characteristics of volcanic sloping soils on Mt. Elgon, Eastern Uganda. Catena, 80, 122-130. |
[5] | Bao SD (2000). Soil Agrochemistry Analysis Experiment. China Agriculture Press, Beijing. |
[ 鲍士旦 (2000). 土壤农化分析. 中国农业出版社, 北京.] | |
[6] | Bronick CJ, Lal R (2005). Soil structure and management: a review. Geoderma, 124, 3-22. |
[7] | Certini G (2005). Effects of fire on properties of forest soils: a review. Oecologia, 143, 1-10. |
[8] | Chen J, McGuire KJ, Stewart RD (2020). Effect of soil water- repellent layer depth on post-wildfire hydrological processes. Hydrological Processes, 34, 270-283. |
[9] | Chen LX (2005). Soil Experiment Practice Course. Northeast Forestry University Press, Harbin. |
[ 陈立新 (2005). 土壤实验实习教程. 东北林业大学出版社, 哈尔滨.] | |
[10] |
Colombi T, Kirchgessner N, Iseskog D, Alexandersson S, Larsbo M, Keller T (2021). A time-lapse imaging platform for quantification of soil crack development due to simulated root water uptake. Soil & Tillage Research, 205, 104769. DOI: 10.1016/j.still.2020.104769.
DOI |
[11] |
Cui Z, Wu GL, Huang Z, Liu Y (2019). Fine roots determine soil infiltration potential than soil water content in semi-arid grassland soils. Journal of Hydrology, 578, 124023. DOI: 10.1016/j.jhydrol.2019.124023.
DOI |
[12] | Ding K, Xu XX, Chen WY, Kalhoro SA (2017). Soil aggregates and infiltration characteristics under different vegetations in Changwu tableland slope of northwestern China. Journal of Beijing Forestry University, 39(12), 44-51. |
[ 丁康, 徐学选, 陈文媛, Kalhoro SA (2017). 长武塬边坡不同植被下土壤团聚体及入渗特征. 北京林业大学学报, 39(12), 44-51.] | |
[13] | Doerr SH, Douglas P, Evans RC, Morley CP, Mullinger NJ, Bryant R, Shakesby RA (2005). Effects of heating and post-heating equilibration times on soil water repellency. Australian Journal of Soil Research, 43, 261-267. |
[14] | Doerr SH, Shakesby RA, MacDonald LH (2009). Soil water repellency: a key factor in post-fire erosion//Cerda A, Robichaud PR Fire Effects on Soils and Restoration Strategies CRC Press, Enfield a key factor in post-fire erosion//Cerda A, Robichaud PR. Fire Effects on Soils and Restoration Strategies. CRC Press, Enfield,USA. 213-240. |
[15] | Doerr SH, Shakesby RA, Walsh RPD (2000). Soil water repellency: its causes, characteristics and hydro-geomophological significance. Earth-Science Reviews, 51, 33-65. |
[16] |
Ebel BA, Moody JA, Martin DA (2012). Hydrologic conditions controlling runoff generation immediately after wildfire. Water Resources Research, 48, W03529. DOI: 10.1029/2011WR011470.
DOI |
[17] | Flury M, Flühler H, Jury WA, Leuenberger J (1994). Susceptibility of soils to preferential flow of water: a field study. Water Resources Research, 30, 1945-1954. |
[18] | González-Pérez JA, González-Vila FJ, Almendros G, Knicker H (2004). The effect of fire on soil organic matter—A review. Environment International, 30, 855-870. |
[19] | Gordillo-Rivero ÁJ, García-Moreno J, Jordán A, Zavala LM, Granja-Martins FM (2014). Fire severity and surface rock fragments cause patchy distribution of soil water repellency and infiltration rates after burning. Hydrological Processes, 28, 5832-5843. |
[20] | Green RH (1979). Sampling Design and Statistical Methods for Environmental Biologists. John Wiley, New York. |
[21] | Han J, Ying LX, Li GX, Shen ZH (2016). Spatial patterns of species diversity in the herb layer of early post-fire regeneration in mixed Pinus yunnanensis forests. Chinese Journal of Plant Ecology, 40, 200-211. |
[ 韩杰, 应凌霄, 李贵祥, 沈泽昊 (2016). 云南松混交林火烧迹地更新早期草本层物种多样性的空间格局. 植物生态学报, 40, 200-211.] | |
[22] | Hatten JA, Zabowski D, Ogden A, Thies W (2008). Soil organic matter in a ponderosa pine forest with varying seasons and intervals of prescribed burn. Forest Ecology and Management, 255, 2555-2565. |
[23] | He ZM, Jia GD, Liu ZQ, Zhang ZY, Yu XX, Xiao PQ (2020). Field studies on the influence of rainfall intensity, vegetation cover and slope length on soil moisture infiltration on typical watersheds of the Loess Plateau, China. Hydrological Processes, 34, 4904-4919. |
[24] | Huang Z, Tian FP, Wu GL, Liu Y, Dang ZQ (2017). Legume grasslands promote precipitation infiltration better than gramineous grasslands in arid regions. Land Degradation & Development, 28, 309-316. |
[25] | Ibrahimi K, Mowrer J, Amami R, Belaid A (2019). Burn effects on soil aggregate stability and water repellency of two soil types from East and North Tunisia. Communications in Soil Science and Plant Analysis, 50, 827-837. |
[26] | Jiao F, Wen ZM, An SS (2011). Changes in soil properties across a chronosequence of vegetation restoration on the Loess Plateau of China. Catena, 86, 110-116. |
[27] | Jordán A, Zavala LM, Mataix-Solera J, Nava AL, Alanís N (2011). Effect of fire severity on water repellency and aggregate stability on Mexican volcanic soils. Catena, 84, 136-147. |
[28] | Keeley JE (2009). Fire intensity, fire severity and burn severity: a brief review and suggested usage. International Journal of Wildland Fire, 18, 116-126. |
[29] | Keesstra S, Wittenberg L, Maroulis J, Sambalino F, Malkinson D, Cerdà A, Pereira P (2017). The influence of fire history, plant species and post-fire management on soil water repellency in a Mediterranean catchment: the Mount Carmel range, Israel. Catena, 149, 857-866. |
[30] | Lado M, Ben-Hur M, Shainberg I (2004). Soil wetting and texture effects on aggregate stability, seal formation, and erosion. Soil Science Society of America Journal, 68, 1992-1999. |
[31] | Leung AK, Garg A, Coo JL, Ng CWW, Hau BCH (2015). Effects of the roots of Cynodon dactylon and Schefflera heptaphylla on water infiltration rate and soil hydraulic conductivity. Hydrological Processes, 29, 3342-3354. |
[32] | Li MY, Liu TX, Luo YY, Duan LM, Zhang JY, Zhou YJ (2019). Study on soil infiltration process and pedo-transfer functions in semi-arid grasslands. Journal of Hydraulic Engineering, 50, 936-946. |
[ 黎明扬, 刘廷玺, 罗艳云, 段利民, 张俊怡, 周亚军 (2019). 半干旱草原型流域土壤入渗过程及转换函数研究. 水利学报, 50, 936-946.] | |
[33] | Li P, Wang DM, Ding C, Liu RS, Zhang P, Zhang LL (2020). Soil infiltration characteristics and its influencing factors of typical vegetation type in Loess Alpine region. Acta Ecologica Sinica, 40, 1610-1620. |
[ 李平, 王冬梅, 丁聪, 刘若莎, 张鹏, 张琳琳 (2020). 黄土高寒区典型植被类型土壤入渗特征及其影响因素. 生态学报, 40, 1610-1620.] | |
[34] | Li YY, Shao MA (2006). Change of soil physical properties under long-term natural vegetation restoration in the Loess Plateau of China. Journal of Arid Environments, 64, 77-96. |
[35] | Li Z, Wu PT, Feng H, Zhao XN, Huang J, Zhuang WH (2009). Simulated experiment on effect of soil bulk density on soil infiltration capacity. Transactions of the Chinese Society of Agricultural Engineering, 25, 40-45. |
[ 李卓, 吴普特, 冯浩, 赵西宁, 黄俊, 庄文化 (2009). 容重对土壤水分入渗能力影响模拟试验. 农业工程学报, 25, 40-45.] | |
[36] | Liu FL, Chen XW, Zeng SP (2019a). Effects of fire disturbance on soil physiochemical properties in Liquidambar formosana secondary forest. Journal of Soil and Water Conservation, 33, 132-138. |
[ 刘发林, 陈小伟, 曾素平 (2019a). 不同火干扰强度对枫香次生林土壤理化性质的影响. 水土保持学报, 33, 132-138.] | |
[37] | Liu FL, Chen XW, Zeng SP, Peng ZZ (2019b). Progress of the effects of fire disturbance on forest soil water repellency. Acta Ecologica Sinica, 39, 1846-1852. |
[ 刘发林, 陈小伟, 曾素平, 彭早珍 (2019b). 火干扰对森林土壤斥水性的影响研究进展. 生态学报, 39, 1846-1852.] | |
[38] | Liu H, Lei TW, Zhao J, Yuan CP, Fan YT, Qu LQ (2011). Effects of rainfall intensity and antecedent soil water content on soil infiltrability under rainfall conditions using the run off-on-out method. Journal of Hydrology, 396, 24-32. |
[39] | Liu MX, Nie Y, Yu J (2012). The infiltration process of clay soil under different initial soil water contents. Acta Ecologica Sinica, 32, 871-878. |
[ 刘目兴, 聂艳, 于婧 (2012). 不同初始含水率下粘质土壤的入渗过程. 生态学报, 32, 871-878.] | |
[40] | Lundberg A, Ala-Aho P, Eklo O, Klöve B, Kværner J, Stumpp C (2016). Snow and frost: implications for spatiotemporal infiltration patterns—A review. Hydrological Processes, 30, 1230-1250. |
[41] | Luo SS, Luo BZ, Wei SJ, Hu HQ, Li XC, Wu ZP, Wang ZS, Zhou YF, Zhong YX (2020). Effects of forest fires on soil organic carbon density in secondary forests of Pinus massoniana. Chinese Journal of Plant Ecology, 44, 1073-1086. |
[ 罗斯生, 罗碧珍, 魏书精, 胡海清, 李小川, 吴泽鹏, 王振师, 周宇飞, 钟映霞 (2020). 中度强度森林火灾对马尾松次生林土壤有机碳密度的影响. 植物生态学报, 44, 1073-1086.] | |
[42] | Lv G, Wu XY (2008). Review on influential factors of soil infiltration characteristics. Chinese Agricultural Science Bulletin, 24, 494-499. |
[ 吕刚, 吴祥云 (2008). 土壤入渗特性影响因素研究综述. 中国农学通报, 24, 494-499.] | |
[43] | MacDonald LH, Huffman EL (2004). Post-fire soil water repellency. Soil Science Society of America Journal, 68, 1729-1734. |
[44] | Mei XM, Zhu QK, Ma L, Zhang D, Wang Y, Hao WJ (2018). Effect of stand origin and slope position on infiltration pattern and preferential flow on a Loess hillslope. Land Degradation & Development, 29, 1353-1365. |
[45] | Mikita-Barbato RA, Kelly JJ, Tate III RL (2015). Wildfire effects on the properties and microbial community structure of organic horizon soils in the New Jersey pinelands. Soil Biology & Biochemistry, 86, 67-76. |
[46] | Onda Y, Dietrich WE, Booker F (2008). Evolution of overland flow after a severe forest fire, Point Reyes, California. Catena, 72, 13-20. |
[47] | Plante AF, McGill WB (2002). Soil aggregate dynamics and the retention of organic matter in laboratory-incubated soil with differing simulated tillage frequencies. Soil & Tillage Research, 66, 79-92. |
[48] | Qin QQ, Liu YH (2021). Forest soil function after severe fire disturbance. Chinese Journal of Applied and Environmental Biology, 27, 503-512. |
[ 秦倩倩, 刘艳红 (2021). 重度火烧干扰下的森林土壤功能. 应用与环境生物学报, 27, 503-512.] | |
[49] | Rabot E, Wiesmeier M, Schlüter S, Vogel HJ (2018). Soil structure as an indicator of soil functions: a review. Geoderma, 314, 122-137. |
[50] | Ren QS, Xin Y, Zhao YS (2016). Impact of severe burning on organic carbon and black carbon in soil aggregates in natural Larix gmelinii forest of Great Xingʼan Mountains. Journal of Beijing Forestry University, 38(2), 29-36. |
[ 任清胜, 辛颖, 赵雨森 (2016). 重度火烧对大兴安岭落叶松天然林土壤团聚体有机碳和黑碳的影响. 北京林业大学学报, 38(2), 29-36.] | |
[51] | Robichaud PR (2000). Fire effects on infiltration rates after prescribed fire in Northern Rocky Mountain forests, USA. Journal of Hydrology, 231- 232, 220-229. |
[52] | She DL, Liu DD, Xia YQ, Shao MA (2014). Modeling effects of land use and vegetation density on soil water dynamics: implications on water resource management. Water Resources Management, 28, 2063-2076. |
[53] | Sheng F, Wang K, Zhang RD, Liu HH (2015). Modeling the heterogeneous soil water flow and solute transport by two-region-two-stage model. Journal of Hydraulic Engineering, 46, 433-442. |
[ 盛丰, 王康, 张仁铎, 刘会海 (2015). 土壤非均匀水流运动与溶质运移的两区-两阶段模型. 水利学报, 46, 433-442.] | |
[54] | Singer MJ, Southard RJ, Warrington DN, Janitzky P (1992). Stability of synthetic sand clay aggregates after wetting and drying cycles. Soil Science Society of America Journal, 56, 1843-1848. |
[55] | Varela ME, Benito E, Keizer JJ (2015). Influence of wildfire severity on soil physical degradation in two pine forest stands of NW Spain. Catena, 133, 342-348. |
[56] | Vieira DCS, Fernández C, Vega JA, Keizer JJ (2015). Does soil burn severity affect the post-fire runoff and interrill erosion response? A review based on meta-analysis of field rainfall simulation data. Journal of Hydrology, 523, 452-464. |
[57] |
Wang J, Pan F, Soininen J, Heino J, Shen J (2016). Nutrient enrichment modifies temperature-biodiversity relationships in large-scale field experiments. Nature Communications, 7, 13960. DOI: 10.1038/ncomms13960.
DOI |
[58] | Wang Y, Hu XW, Yang Y, Yu ZJ, Cao XC (2019). Research on the change in soil water repellency and permeability in burned areas. Hydrogeology & Engineering Geology, 46, 40-45. |
[ 王严, 胡卸文, 杨瀛, 于振江, 曹希超 (2019). 火烧迹地土壤斥水性和渗透性变化特性. 水文地质工程地质, 46, 40-45.] | |
[59] | Wang YH, Peng ZD, Li Y (2020). Soil nutrient and structure characteristics of Robinia pseudoacacia in different generations in the shallow mountain areas of western Henan Province, central China. Journal of Beijing Forestry University, 42(3), 54-64. |
[ 王雅慧, 彭祚登, 李云 (2020). 豫西浅山区不同世代刺槐林土壤养分与结构特征. 北京林业大学学报, 42(3), 54-64.] | |
[60] | Woods SW, Balfour VN (2008). The effect of ash on runoff and erosion after a severe forest wildfire, Montana, USA. International Journal of Wildland Fire, 17, 535-548. |
[61] | Wu GL, Yang Z, Cui Z, Liu Y, Fang NF, Shi ZH (2016). Mixed artificial grasslands with more roots improved mine soil infiltration capacity. Journal of Hydrology, 535, 54-60. |
[62] | Xu QX, Li CM, Chen HS, Fu ZY, Wu P, Wang KL (2018). Characteristics of soil moisture infiltration in shrub land and terraces dryland in karst peaks hillslopes. Transactions of the Chinese Society of Agricultural Engineering, 34, 124-131. |
[ 徐勤学, 李春茂, 陈洪松, 付智勇, 吴攀, 王克林 (2018). 喀斯特峰丛坡地灌木林地与梯田旱地土壤水分入渗特征. 农业工程学报, 34, 124-131.] | |
[63] | Yu MM, Xie ZS (2011). Study on soil permeability capability of five forest types in Baiyunshan scenic spot of Guangzhou. Research of Soil and Water Conservation, 18, 153-156. |
[ 喻明美, 谢正生 (2011). 广州市白云山五种森林类型的土壤渗透性研究. 水土保持研究, 18, 153-156.] | |
[64] | Zeng SP, Liu FL, Zhao MF, Wang GJ, Chen XW (2020). Effects of fire disturbance intensities on soil physiochemical properties of four subtropical forest types. Acta Ecologica Sinica, 40, 233-246. |
[ 曾素平, 刘发林, 赵梅芳, 王光军, 陈小伟 (2020). 火干扰强度对亚热带四种森林类型土壤理化性质的影响. 生态学报, 40, 233-246.] | |
[65] | Zhang JB, Luo WQ, Zhang HA, He LC, Yang QY, Hu BQ (2019). Response of soil structure to different cultivation patterns in the typical karst peak-cluster depression of northwest Guangxi. Research of Soil and Water Conservation, 26, 37-42. |
[ 张建兵, 罗为群, 张海安, 何柳春, 杨奇勇, 胡宝清 (2019). 桂西北峰丛洼地土壤结构对不同耕作模式的响应. 水土保持研究, 26, 37-42.] | |
[66] | Zhang YX, Shi CQ, Yang H, Wang ZY, Zhao TN, Yan YC, An YZ (2019). Saturated hydraulic conductivity of soils of typical forests of the south coast of Guanting Reservoir in Yongding River Watershed. Acta Ecologica Sinica, 39, 6681-6689. |
[ 张一璇, 史常青, 杨浩, 王占永, 赵廷宁, 闫烨琛, 安一喆 (2019). 永定河流域官厅水库南岸典型林分土壤饱和导水率研究. 生态学报, 39, 6681-6689.] | |
[67] | Zhao CH, Gao JE, Huang YF, Wang GQ, Xu Z (2016). The contribution of Astragalus adsurgens roots and canopy to water erosion control in the water-wind crisscrossed erosion region of the Loess Plateau, China. Land Degradation & Development, 28, 265-273. |
[68] | Zhu LQ, Huang RZ, Huang GM, Huang SH, Yi ZQ, Zhang WF, Jia L, Wang H, Liu Y (2017). Effects of different artificially restored forests on aggregate composition and organic carbon in degraded red soil. Science of Soil and Water Conservation, 15, 58-66. |
[ 朱丽琴, 黄荣珍, 黄国敏, 黄诗华, 易志强, 张文锋, 贾龙, 王赫, 刘勇 (2017). 不同人工恢复林对退化红壤团聚体组成及其有机碳的影响. 中国水土保持科学, 15, 58-66.] |
[1] | 朱玉荷, 肖虹, 王冰, 吴颖, 白永飞, 陈迪马. 蒙古高原草地不同深度土壤碳氮磷化学计量特征对气候因子的响应[J]. 植物生态学报, 2022, 46(3): 340-349. |
[2] | 黄振英, Yitzchak GUTTERMAN, 胡正海, 张新时. 白沙蒿种子萌发特性的研究 II. 环境因素的影响[J]. 植物生态学报, 2001, 25(2): 240-246. |
[3] | 叶勇, 谭凤仪, 卢昌义. 土壤结构与光照水平对秋茄某些生长和生理参数的影响[J]. 植物生态学报, 2001, 25(1): 42-49. |
[4] | 郭柯, 董学军, 刘志茂. 毛乌素沙地沙丘土壤含水量特点——兼论老固定沙地上油蒿衰退原因[J]. 植物生态学报, 2000, 24(3): 275-279. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19