植物生态学报 ›› 2014, Vol. 38 ›› Issue (6): 529-539.DOI: 10.3724/SP.J.1258.2014.00049
• 研究论文 • 下一篇
唐仕姗1,杨万勤1,殷睿1,熊莉1,王海鹏2,王滨1,张艳1,彭艳君1,陈青松3,徐振锋1,*()
收稿日期:
2014-01-02
接受日期:
2014-03-27
出版日期:
2014-01-02
发布日期:
2014-06-10
通讯作者:
徐振锋
基金资助:
TANG Shi-Shan1,YANG Wan-Qin1,YIN Rui1,XIONG Li1,WANG Hai-Peng2,Wang Bin1,ZHANG Yan1,PENG Yan-Jun1,CHEN Qing-Song3,XU Zhen-Feng1,*()
Received:
2014-01-02
Accepted:
2014-03-27
Online:
2014-01-02
Published:
2014-06-10
Contact:
XU Zhen-Feng
摘要:
凋落物分解是森林生态系统碳循环的重要组成部分。建立中国森林凋落叶分解速率数据库, 分析凋落叶分解速率与其主要影响因素之间的关系, 对精确地预测中国森林生态系统碳收支具有重要意义。该研究通过收集已报道的中国森林凋落叶分解常数(k)及其相关变量, 分析探讨地理因素(纬度、经度和海拔)、气候因素(年平均气温和年降水量)、凋落叶质量(氮、磷、钾、木质素、木质素:氮和碳氮比)和叶特性(常绿与落叶、阔叶与针叶)对中国森林凋落叶分解速率的影响。结果表明, 在国家尺度上, k随年平均气温、年降水量、氮、磷和钾的增加而增加, 随纬度、经度、海拔、碳氮比、木质素和木质素:氮的增大而减小, 叶特性对k的影响不显著。气候与地理因素(年平均气温、年降水量和纬度)能解释k值变异的34.1%, 凋落叶质量(氮、钾、木质素和木质素:氮)能解释k值变异的21.7%, 它们能共同解释k值变异的74.4%。了解森林凋落叶分解速率在国家尺度上的格局和主控因素可为中国森林生态系统碳循环相关模型提供基础参数。
唐仕姗,杨万勤,殷睿,熊莉,王海鹏,王滨,张艳,彭艳君,陈青松,徐振锋. 中国森林生态系统凋落叶分解速率的分布特征及其控制因子. 植物生态学报, 2014, 38(6): 529-539. DOI: 10.3724/SP.J.1258.2014.00049
TANG Shi-Shan,YANG Wan-Qin,YIN Rui,XIONG Li,WANG Hai-Peng,Wang Bin,ZHANG Yan,PENG Yan-Jun,CHEN Qing-Song,XU Zhen-Feng. Spatial characteristics in decomposition rate of foliar litter and controlling factors in Chinese forest ecosystems. Chinese Journal of Plant Ecology, 2014, 38(6): 529-539. DOI: 10.3724/SP.J.1258.2014.00049
图2 凋落物分解常数(k)与地理因素之间的关系。A, 纬度。B, 气候带(热带, 亚热带, 温带)。C, 经度。D, 海拔。
Fig. 2 Relationships between litter decomposition constant (k) and geographical factors. A, Latitude. B, Climate zone (tropical zone, subtropical zone, and temperate zone). C, Longitude. D, Altitude.
变量 Variable | 回归分析 Regression analysis | n | R2 |
---|---|---|---|
气候或地理因素 | k = 0.288 + 0.023MAT | 311 | 0.303** |
Climatic or geographic factor | k = 0.501 + 0.018MAT - 0.005LAT | 311 | 0.306** |
k = 0.204 + 0.016MAT + 0.0001MAP | 311 | 0.341** | |
k = 0.240 - 0.0008LAT + 0.015MAT + 0.0001MAP | 311 | 0.341** | |
质量因素 Quality factor | k = 0.387 + 0.013N | 159 | 0.038* |
k = 0.405 + 0.034K | 119 | 0.090** | |
k = 0.109 + 0.021N + 0.028K + 0.002LIGN/N | 76 | 0.192** | |
k = -0.090 + 0.037N + 0.031K + 0.012 LIGN/N - 0.0009LIGN | 76 | 0.217** | |
综合因素 Comprehensive factor | k = 0.446 + 0.023MAT - 0.007LIGN/N | 76 | 0.560** |
k = 1.283 - 0.002MAT - 0.018LAT - 0.007LIGN/N | 76 | 0.627** | |
k = 0.056 + 0.001MAT + 0.0002MAP - 0.003LAT + 0.010N + 0.032K | 76 | 0.733** | |
k = 0.300 + 0.001MAT + 0.0002MAP - 0.003LAT + 0.001N + 0.027K - 0.004LIGN/N | 76 | 0.744** |
表1 凋落物分解速率与地理、气候因素及凋落物质量之间的回归分析
Table 1 Regressions of litter decomposition with geographic factors, climatic factors, and litter quality
变量 Variable | 回归分析 Regression analysis | n | R2 |
---|---|---|---|
气候或地理因素 | k = 0.288 + 0.023MAT | 311 | 0.303** |
Climatic or geographic factor | k = 0.501 + 0.018MAT - 0.005LAT | 311 | 0.306** |
k = 0.204 + 0.016MAT + 0.0001MAP | 311 | 0.341** | |
k = 0.240 - 0.0008LAT + 0.015MAT + 0.0001MAP | 311 | 0.341** | |
质量因素 Quality factor | k = 0.387 + 0.013N | 159 | 0.038* |
k = 0.405 + 0.034K | 119 | 0.090** | |
k = 0.109 + 0.021N + 0.028K + 0.002LIGN/N | 76 | 0.192** | |
k = -0.090 + 0.037N + 0.031K + 0.012 LIGN/N - 0.0009LIGN | 76 | 0.217** | |
综合因素 Comprehensive factor | k = 0.446 + 0.023MAT - 0.007LIGN/N | 76 | 0.560** |
k = 1.283 - 0.002MAT - 0.018LAT - 0.007LIGN/N | 76 | 0.627** | |
k = 0.056 + 0.001MAT + 0.0002MAP - 0.003LAT + 0.010N + 0.032K | 76 | 0.733** | |
k = 0.300 + 0.001MAT + 0.0002MAP - 0.003LAT + 0.001N + 0.027K - 0.004LIGN/N | 76 | 0.744** |
图3 凋落物分解常数(k)与气候因素之间的关系。A, 年平均气温。B, 年降水量。
Fig. 3 Relationships between litter decomposition constant (k) and climatic factors. A, Mean annual temperature. B, Mean annual precipitation.
图4 凋落物分解常数(k)与初始质量之间的关系。A, 初始氮含量。B, 初始磷含量。C, 初始钾含量。D, 初始木质素含量。E, 初始C:N。F, 初始木质素:N。
Fig. 4 Relationships between litter decomposition constant (k) and initial litter quality. A, Initial N content. B, Initial P content. C, Initial K content. D, Initial lignin content. E, Initial C:N. F, Initial lignin:N.
图5 凋落物分解常数(k)与叶性质之间的关系(平均值±标准偏差)。A, 叶习性(常绿, 落叶)。B, 树种类型(阔叶, 针叶)。
Fig. 5 Relationships between litter decomposition constant (k) and leaf characters (mean ± SD). A, Leaf habit (evergreen and deciduous). B, Tree species type (broad-leaved and coniferous).
[1] |
Aerts R (1997). Climate, leaf litter chemistry and leaf litter decomposition in terrestrial ecosystems: a triangular relationship. Oikos, 79, 439-449.
DOI URL |
[2] |
Aerts R (2006). The freezer defrosting: global warming and litter decomposition rates in cold biomes. Journal of Ecology, 94, 713-724.
DOI URL |
[3] |
Berg B, Berg MP, Bottenr P, Box E, Breymeyer A, Ca de Anta R, Couteaux M, Escudero A, Gallardo A, Kratz W, Madeira M, Mälköne E, McClaugherty C, Meentemeyer V, Muñoz F, Piussi P, Remacle J, Vi de Santo A (1993). Litter mass loss rates in pine forests of Europe and Eastern United States: some relationships with climate and litter quality. Biogeochemistry, 20, 127-159.
DOI URL |
[4] | Berg B, Laskowski R, Luo YQ (2006). Litter Decomposition: a Guide to Carbon and Nutrient Turnover. Academic Press, London. |
[5] |
Berg B, Matzner E (1997). Effect of N deposition on decomposition of plant litter and soil organic matter in forest systems. Environmental Reviews, 5, 1-25.
DOI URL |
[6] |
Berg B, McClaugherty C (1989). Nitrogen and phosphorus release from decomposing litter in relation to the disappearance of lignin. Canadian Journal of Botany, 67, 1148-1156.
DOI URL |
[7] |
Couteaux MM, Bottner B, Berg B (1995). Litter decomposition, climate and liter quality. Trends in Ecology and Evolution, 10, 63-66.
DOI URL PMID |
[8] |
Cusack DF, Chou WW, Yang WH, Harmon ME, Silver WL, Lidet T (2009). Controls on long-term root and leaf litter decomposition in neotropical forests. Global Change Biology, 15, 1339-1355.
DOI URL |
[9] | Dai LM, Xu ZB, Zhang YJ, Chen H (2001). Study on decomposition rate and fall of Pinus koraiensis needle. Acta Ecologica Sinica, 21, 1296-1300. |
[10] |
de Angelis P, Kesari SC, Giuseppe ESM (2000). Litter quality and decomposition in a CO2-enriched Mediterranean forest ecosystem. Plant and Soil, 224, 31-41.
DOI URL |
[11] |
Fog K (1988). The effect of added nitrogen on the rate of decomposition of organic matter. Biological Reviews, 63, 433-462.
DOI URL |
[12] |
Gholz HL, Wedin DA, Smitherman SM, Harmon ME, Parton WJ (2000). Long-term dynamics of pine and hardwood litter in contrasting environments: toward a global model of decomposition. Global Change Biology, 6, 751-765.
DOI URL |
[13] |
Guo JF, Yang YS, Chen GS, Lin P, Xie JS (2006). A review on litter decomposition in forest ecosystem. Scientia Silvae Sinicae, 42, 93-100.
DOI URL |
[14] | Guo PP, Jiang H, Yu SQ, Ma YD, Dou RP, Song XZ (2009). Comparison of litter decomposition of six species of coniferous and broad-leaved trees in subtropical China. Chinese Journal of Applied and Environmental Biology, 15, 655-659. (in Chinese with English abstract) |
[ 郭培培, 江洪, 余树全, 马元丹, 窦荣鹏, 宋新章 (2009). 亚热带6种针叶和阔叶树种凋落叶分解比较. 应用与环境生物学报, 15, 655-659.] | |
[15] | Guo W, Zhang J, Huang YM, Liu X, Wang W, Xue L (2009). Research progress on the influencing factors of forest litter. Journal of Anhui Agricultural Science, 37, 1544-1546. (in Chinese with English abstract) |
[ 郭伟, 张健, 黄玉梅, 刘旭, 王伟, 薛林 (2009). 森林凋落物影响因子研究进展. 安徽农业科学, 37, 1544-1546.] | |
[16] | Guo ZL, Zheng JP, Ma YD, Li QK, Yu GD, Han SJ, Fan CN, Liu WD (2006). Researches on litter fall decomposition rates and model simulating of main species in various forest vegetations of Changbai Mountains, China. Acta Ecologica Sinica, 26, 1037-1046. (in Chinese with English abstract) |
[ 郭忠玲, 郑金萍, 马元丹, 李庆康, 于贵瑞, 韩士杰, 范春楠, 刘万德 (2006). 长白山各植被带主要树种凋落物分解速率及模型模拟的试验研究. 生态学报, 26, 1037-1046.] | |
[17] | Huang JX, Huang LM, Lin ZC, Chen GS (2010). Controlling factors of litter decomposition rate in China’s forests. Journal of Subtropical Resources and Environment, 5(3), 56-62. (in Chinese with English abstract) |
[ 黄锦学, 黄李梅, 林智超, 陈光水 (2010). 中国森林凋落物分解速率影响因素分析. 亚热带资源与环境学报, 5(3), 56-62.] | |
[18] |
Kemp PR, Waldecker DG, Owensby CE, Reynolds JF, Virginia RA (1994). Effects of elevated CO2 and nitrogen fertilization pretreatments on decomposition on tallgrass prairie leaf litter. Plant and Soil, 165, 115-127.
DOI URL |
[19] |
Köchy M, Wilson SD (1997). Litter decomposition and nitrogen dynamics in aspen forest and mixed-grass prairie. Ecology, 78, 732-739.
DOI URL |
[20] |
Li RH, Deng Q, Zhou GY, Zhang DQ (2011). Effect of incubation starting time on litter decomposition rate in a subtropical forest in China. Chinese Journal of Plant Ecology, 35, 699-706. (in Chinese with English abstract)
DOI URL |
[ 李荣华, 邓琦, 周国逸, 张德强 (2011). 起始时间对亚热带森林凋落物分解速率的影响. 植物生态学报, 35, 699-706.]
DOI URL |
|
[21] | Ling H, Chen GS, Chen ZQ (2009). Controlling factors of litter fall in China’s forests. Journal of Subtropical Resources and Environment, 4(4), 66-71. (in Chinese with English abstract) |
[ 凌华, 陈光水, 陈志勤 (2009). 中国森林凋落量的影响因素. 亚热带资源与环境学报, 4(4), 66-71.] | |
[22] |
Liu P, Huang JH, Han XG, Sun OJ, Zhou ZY (2006). Differential responses of litter decomposition to increased soil nutrients and water between two contrasting grassland plant species of Inner Mongolia, China. Applied Soil Ecology, 34, 266-275.
DOI URL |
[23] | Liu Q, Peng SL, Bi H, Zhang HY, Li ZA, Ma WH, Li NY (2005). Nutrient dynamics of foliar litter in reciprocal decomposition in tropical and subtropical forests. Journal of Beijing Forestry University, 27(1), 24-32. (in Chinese with English abstract) |
[ 刘强, 彭少麟, 毕华, 张洪溢, 李志安, 马文辉, 李妮亚 (2005). 热带亚热带森林凋落物交互分解的养分动态. 北京林业大学学报, 27(1), 24-32.] | |
[24] | Liu Y, Wu YX, Han SJ, Lin L (2009). Litterfall decomposition in four forest types in Changbai Mountains of China. Chinese Journal of Ecology, 28, 400-404. (in Chinese with English abstract) |
[ 刘颖, 武耀祥, 韩士杰, 林鹿 (2009). 长白山四种森林类型凋落物分解动态. 生态学杂志, 28, 400-404.] | |
[25] |
Moretto AS, Distel RA, Didone NG (2001). Decomposition and nutrient dynamic of leaf litter and roots from palatable and unpalatable grasses in a semi-arid grassland. Applied Soil Ecology, 18, 31-37.
DOI URL |
[26] |
Olson JS (1963). Energy storage and the balance of producers and decomposers in ecological systems. Ecology, 44, 322-331.
DOI URL |
[27] | Peng SL, Liu Q (2002). The dynamics of forest litter and its responses to global warming. Acta Ecologica Sinica, 22, 1534-1544. (in Chinese with English abstract) |
[ 彭少麟, 刘强 (2002). 森林凋落物动态及其对全球变暖的响应. 生态学报, 22, 1534-1544.] | |
[28] |
Polyakova O, Billor N (2007). Impact of deciduous tree species on litterfall quality, decomposition rates and nutrient circulation in pine stands. Forest Ecology and Management, 253, 11-18.
DOI URL |
[29] |
Prescott CE (2005). Do rates of litter decomposition tell us anything we really need to know? Forest Ecology and Management, 220, 66-74.
DOI URL |
[30] |
Singh KP, Singh PK, Tripathi SK (1999). Litterfall, litter decomposition and nutrient release patterns in four native tree species raised on coal mine spoil at Singrauli, India. Biology and Fertility of Soils, 29, 371-378.
DOI URL |
[31] | Song XZ, Jiang H, Ma YD, Yu SQ, Zhou GM, Peng SL, Dou RP, Guo PP (2009). Litter decomposition across climate zone in Eastern China: the integrated influence of climate and litter quality. Acta Ecologica Sinica, 29, 5219-5225. (in Chinese with English abstract) |
[ 宋新章, 江洪, 马元丹, 余树全, 周国模, 彭少麟, 窦荣鹏, 郭培培 (2009). 中国东部气候带凋落物分解特征——气候和基质质量的综合影响. 生态学报, 29, 5219-5225.] | |
[32] |
Sun OJ, Campbell J, Law BE, Wolf V (2004). Dynamics of carbon stocks in soils and detritus across chronosequences of different forest types in the Pacific Northwest USA. Global Change Biology, 10, 1470-1481.
DOI URL |
[33] | Swift MJ, Heal OW, Anderson JM (1979). Decomposition in Terrestrial Ecosystems. Blackwell, Oxford, UK. |
[34] |
Taylor BR, Parkinson D, Parsons WFJ (1989). Nitrogen and lignin content as predictors of litter decay rates: a microcosm test. Ecology, 70, 97-104.
DOI URL |
[35] | Tripathi SK, Singh KP (1992). Abiotic and litter quality control during the decomposition of different plant parts in dry tropical bamboo savanna in India. Pedobiologia, 36, 241-256. |
[36] | van Cleve K (1974). Organic matter quality in relation to decomposition. In: Holding AJ ed. Soil Organisms and Decomposition in Tundra. Tundra Biome Steering Committee, Stockholm, Sweden. 311-324. |
[37] |
Vitousek PM (1994). Beyond global warming: ecology and global change. Ecology, 75, 1861-1876.
DOI URL |
[38] | Vitousek PM (2004). Nutrient Cycling and Limitation: Hawaii as a Model System. Princeton University Press, Princeton. |
[39] | Wang FY (1989). Forest litter quantity research review. Advances in Ecology, 2, 82-89. (in Chinese with English abstract) |
[ 王凤友 (1989). 森林凋落量研究综述. 生态学进展, 2, 82-89.] | |
[40] | Wang LX, Wang J, Huang JH (2003). Comparison of major nutrient release patterns of Quercus liaotungensis: leaf litter decomposition in different climatic zones. Acta Botanica Sinica, 45, 399-407. |
[41] | Wang XH, Huang JJ, Yan ER (2004). Leaf litter decomposition of common trees in Tiantong. Acta Phytoecologica Sinica, 28, 457-467. (in Chinese with English abstract) |
[ 王希华, 黄建军, 闫恩荣 (2004). 天童国家森林公园常见植物凋落叶分解的研究. 植物生态学报, 28, 457-467.] | |
[42] | Wang YK, Fang SZ, Qu HH, Tang LZ, Song H (2012). The influence factors of forest litter decomposition. China Forestry Science and Technology, 26(1), 5-9. (in Chinese with English abstract) |
[ 王意锟, 方升佐, 曲宏辉, 唐罗忠, 宋浩 (2012). 森林凋落物分解的影响因素. 林业科技开发, 26(1), 5-9.] | |
[43] | Wu CZ, Hong W, Jiang ZL, Zheng FH (2000). The research progress of forest litter in our country. Journal of Jiangxi Agricultural University, 22, 405-410. (in Chinese with English abstract) |
[ 吴承祯, 洪伟, 姜志林, 郑发辉 (2000). 我国森林凋落物研究进展. 江西农业大学学报, 22, 405-410.] | |
[44] |
Xu ZF, Yin HJ, Zhao CZ, Cao G, Wan ML, Liu Q (2009). A review of responses of litter decomposition in terrestrial ecosystems to global warming. Chinese Journal of Plant Ecology, 33, 1208-1219. (in Chinese with English abstract)
DOI URL |
[ 徐振锋, 尹华军, 赵春章, 曹刚, 万名利, 刘庆 (2009). 陆地生态系统凋落物分解对全球气候变暖的响应. 植物生态学报, 33, 1208-1219.]
DOI URL |
|
[45] | You WB, Liu YS, He DJ, Wu CZ, Hong W, Zheng KJ, Wang QB, Li XJ, Luo SM (2010). Characteristics of decomposition of litter from different natural forests in Wuyishan scenery district. Journal of Sichuan Agricultural University, 28, 141-147. (in Chinese with English abstract) |
[ 游巍斌, 刘勇生, 何东进, 吴承祯, 洪伟, 郑开基, 王其炳, 李晓景, 罗素梅 (2010). 武夷山风景名胜区不同天然林凋落物分解特征. 四川农业大学学报, 28, 141-147.] | |
[46] |
Zhang DQ, Hui DF, Luo YQ, Zhou GY (2008). Rates of litter decomposition in terrestrial ecosystems: global patterns and controlling factors. Journal of Plant Ecology, 1, 85-93.
DOI URL |
[47] | Zhang H, Zhuang XY (2008). The leaf litter decomposition of four native broad-leaved tree species in South China. Acta Ecologica Sinica, 28, 2395-2403. (in Chinese with English abstract) |
[ 张浩, 庄雪影 (2008). 华南4种乡土阔叶树种枯落叶分解能力. 生态学报, 28, 2395-2403.] | |
[48] |
Zhou GY, Guan LL, Wei XH, Tang XL, Liu SG, Liu JX, Zhang DQ, Yan JH (2008). Factors influencing leaf litter decomposition: an intersite decomposition experiment across China. Plant and Soil, 311, 61-72.
DOI URL |
[1] | 常晨晖 朱彪 朱江玲 吉成均 杨万勤. 森林粗木质残体分解研究进展[J]. 植物生态学报, 2024, 48(5): 541-560. |
[2] | 朱蔚娜, 张国龙, 张璞进, 张迁迁, 任瑾涛, 徐步云, 清华. 大针茅草原6种主要植物叶凋落物和根系分解特征与功能性状的关系[J]. 植物生态学报, 2021, 45(6): 606-616. |
[3] | 石娇星, 许洺山, 方晓晨, 郑丽婷, 张宇, 鲍迪峰, 杨安娜, 阎恩荣. 中国东部海岛黑松群落功能多样性的纬度变异及其影响因素[J]. 植物生态学报, 2021, 45(2): 163-173. |
[4] | 王丽华, 薛晶月, 谢雨, 吴彦. 不同气候类型下四川草地土壤有机碳空间分布及影响因素[J]. 植物生态学报, 2018, 42(3): 297-306. |
[5] | 李荣华, 邓琦, 周国逸, 张德强. 起始时间对亚热带森林凋落物分解速率的影响[J]. 植物生态学报, 2011, 35(7): 699-706. |
[6] | 许自成, 黎妍妍, 肖汉乾, 王林. 湘南烟区生态因素与烤烟质量的综合评价[J]. 植物生态学报, 2008, 32(1): 226-234. |
[7] | 廖利平, 马越强, 汪思龙, 高洪, 于小军. 杉木与主要阔叶造林树种叶凋落物的混合分解[J]. 植物生态学报, 2000, 24(1): 27-33. |
[8] | 廖利平, 高洪, 汪思龙, 马越强, 黄志群, 于小军. 外加氮源对杉木叶凋落物分解及土壤养分淋失的影响[J]. 植物生态学报, 2000, 24(1): 34-39. |
[9] | 马祥庆, 刘爱琴, 何智英, 俞立煊. 杉木幼林生态系统凋落物及其分解作用研究[J]. 植物生态学报, 1997, 21(6): 564-570. |
[10] | 胡肄慧, 陈灵芝, 陈清郎, 孔繁志, 缪有贵. 几种树木枯叶分解速率的试验研究[J]. 植物生态学报, 1987, 11(2): 124-132. |
[11] | 胡肄慧, 陈灵芝, 孔繁志, 鲍显诚. 两种中国特有树种的枯叶分解速率[J]. 植物生态学报, 1986, 10(1): 35-43. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19