植物生态学报 ›› 2011, Vol. 35 ›› Issue (7): 699-706.DOI: 10.3724/SP.J.1258.2011.00699
发布日期:
2011-08-18
通讯作者:
张德强
作者简介:
*E-mail: zhangdeq@scib.ac.cn
LI Rong-Hua1,2, DENG Qi1,2, ZHOU Guo-Yi1, ZHANG De-Qiang1,*()
Published:
2011-08-18
Contact:
ZHANG De-Qiang
摘要:
运用分解袋法研究了不同布置时间的凋落物在亚热带森林分解的初期过程, 探讨了不同布置时间的凋落物经过相同时间分解的差异及环境因子对其分解速率特别是分解速率常数k的影响。结果表明: 在凋落物分解较快的鼎湖山季风常绿阔叶林, 不同时间布置的凋落物经过12个月的分解, 其残留率及k均存在较大的差异。不同布置时间的凋落物的分解率在前期(0-6个月)与其相应阶段的环境因子呈显著相关关系, 但与后期的环境因子相关性并不显著。不同布置时间的k值的变化范围为0.78-1.30, 起始于雨季的k值较大, 起始于旱季的较小(p < 0.001), 其大小与分解前期的环境因子相关性较高, 与整个分解过程中的环境因子相关性较低。因此, 凋落物的凋落时间可能影响其分解速率; 由于布置时间不同而导致k值估算的不准确将对森林生态系统的养分循环及其碳平衡的评估产生很大影响。
李荣华, 邓琦, 周国逸, 张德强. 起始时间对亚热带森林凋落物分解速率的影响. 植物生态学报, 2011, 35(7): 699-706. DOI: 10.3724/SP.J.1258.2011.00699
LI Rong-Hua, DENG Qi, ZHOU Guo-Yi, ZHANG De-Qiang. Effect of incubation starting time on litter decomposition rate in a subtropical forest in China. Chinese Journal of Plant Ecology, 2011, 35(7): 699-706. DOI: 10.3724/SP.J.1258.2011.00699
图2 不同布置时间凋落物的残留率随分解时间的变化(平均值±标准误差)。不同字母表示差异显著(p < 0.05)。
Fig. 2 Dynamics of litter remaining after different decomposition time with different incubation time (mean ± SE). Different letters indicate significant differences at p < 0.05.
分解时段 Incubated period | 气温 Air temperature | 相对湿度 Relative humidity | 光合有效辐射 Photosynthetically available radiation | 土壤含水量 Soil water content | 土壤温度 Soil temperature | 降水量 Precipitation | |
---|---|---|---|---|---|---|---|
分解率 Decompo- sition rate | 3个月 3 months | 0.82 (0.01) | 0.08 (0.86) | 0.75 (0.03) | 0.65 (0.08) | 0.73 (0.04) | 0.83 (0.01) |
6个月 6 months | 0.77 (0.02) | 0.06 (0.88) | 0.69 (0.06) | 0.49 (0.22) | 0.74 (0.04) | 0.86 (0.01) | |
9个月 9 months | 0.71 (0.05) | -0.53 (0.17) | 0.68 (0.06) | 0.33 (0.42) | 0.78 (0.02) | 0.08 (0.86) | |
12个月 12 months | 0.35 (0.44) | -0.35 (0.44) | 0.57 (0.19) | 0.46 (0.30) | 0.35 (0.44) | 0.66 (0.10) |
表1 凋落物分解率与相应分解时段环境因子之间的Pearson相关系数(r(p))
Table 1 Pearson correlation coefficient between litter decomposition rate and climate variables of correspondence time (r(p))
分解时段 Incubated period | 气温 Air temperature | 相对湿度 Relative humidity | 光合有效辐射 Photosynthetically available radiation | 土壤含水量 Soil water content | 土壤温度 Soil temperature | 降水量 Precipitation | |
---|---|---|---|---|---|---|---|
分解率 Decompo- sition rate | 3个月 3 months | 0.82 (0.01) | 0.08 (0.86) | 0.75 (0.03) | 0.65 (0.08) | 0.73 (0.04) | 0.83 (0.01) |
6个月 6 months | 0.77 (0.02) | 0.06 (0.88) | 0.69 (0.06) | 0.49 (0.22) | 0.74 (0.04) | 0.86 (0.01) | |
9个月 9 months | 0.71 (0.05) | -0.53 (0.17) | 0.68 (0.06) | 0.33 (0.42) | 0.78 (0.02) | 0.08 (0.86) | |
12个月 12 months | 0.35 (0.44) | -0.35 (0.44) | 0.57 (0.19) | 0.46 (0.30) | 0.35 (0.44) | 0.66 (0.10) |
图3 不同布置时间凋落物分解的负指数模型(Mt = M0e-kt)拟合曲线。
Fig. 3 Fitted curve of litter decomposition under different incubation time using exponential decay model (Mt = M0e-kt).
分解时段 Incubated period | 气温 Air temperature | 相对湿度 Relative humidity | 光合有效辐射Photosynthetically available radiation | 土壤含水量 Soil water content | 土壤温度 Soil temperature | 降水量 Precipitation | |
---|---|---|---|---|---|---|---|
k值 k value | 3个月 3 months | 0.42 (0.30) | 0.54 (0.11) | 0.34 (0.41) | 0.76 (0.03) | 0.29 (0.49) | 0.73 (0.04) |
6个月 6 months | 0.76 (0.03) | -0.05 (0.92) | 0.71 (0.05) | 0.46 (0.25) | 0.71 (0.05) | 0.79 (0.02) | |
9个月 9 months | 0.75 (0.03) | -0.58 (0.13) | 0.72 (0.04) | 0.40 (0.32) | 0.80 (0.02) | -0.05 (0.91) | |
12个月 12 months | 0.55 (0.20) | -0.59 (0.16) | 0.55 (0.21) | -0.54 (0.21) | 0.54 (0.21) | -0.70 (0.05) |
表2 分解速率常数k值与不同分解时段环境因子之间的Pearson相关系数(r(p))
Table 2 Pearson correlation coefficient between decomposition constant k value and climate variables of different incubated period (r(p))
分解时段 Incubated period | 气温 Air temperature | 相对湿度 Relative humidity | 光合有效辐射Photosynthetically available radiation | 土壤含水量 Soil water content | 土壤温度 Soil temperature | 降水量 Precipitation | |
---|---|---|---|---|---|---|---|
k值 k value | 3个月 3 months | 0.42 (0.30) | 0.54 (0.11) | 0.34 (0.41) | 0.76 (0.03) | 0.29 (0.49) | 0.73 (0.04) |
6个月 6 months | 0.76 (0.03) | -0.05 (0.92) | 0.71 (0.05) | 0.46 (0.25) | 0.71 (0.05) | 0.79 (0.02) | |
9个月 9 months | 0.75 (0.03) | -0.58 (0.13) | 0.72 (0.04) | 0.40 (0.32) | 0.80 (0.02) | -0.05 (0.91) | |
12个月 12 months | 0.55 (0.20) | -0.59 (0.16) | 0.55 (0.21) | -0.54 (0.21) | 0.54 (0.21) | -0.70 (0.05) |
[1] |
Adair EC, Hobbie SE, Hobbie RK (2010). Single-pool exponential decomposition models: potential pitfalls in their use in ecological studies. Ecology, 91, 1225-1236.
DOI URL PMID |
[2] | Adair EC, Parton WJ, Del Grosso SJ, Silver WL, Harmon ME, Hall SA, Burke IC, Hart SC (2008). Simple three-pool model accurately describes patterns of long-term litter decomposition in diverse climates. Global Change Biology, 14, 2636-2660. |
[3] | Aerts R (1997). Climate, leaf litter chemistry and leaf litter decomposition in terrestrial ecosystems: a triangular relationship. Oikos, 79, 439-449. |
[4] | Berg B (2000). Litter decomposition and organic turnover in northern forest soils. Forest Ecology and Management, 133, 13-22. |
[5] | Berg B, Johansson MB, Meentemeyer V (2000). Litter decomposition in a transect of Norway spruce forests: substrate quality and climate control. Canadian Journal of Forest Research, 30, 1136-1147. |
[6] | Chapin FS III, Matson PA, Mooney HA (2002). Principal of Terrestrial Ecosystem Ecology. Springer-Verlag, New York. 151. |
[7] | Finzi AC, Schlesinger WH (2002). Species control variation in litter decomposition in a pine forest exposed to elevated CO2. Global Change Biology, 8, 1217-1229. |
[8] | Gholz HL, Wedin DA, Smitherman SM, Harmon ME, Parton WJ (2000). Long-term dynamics of pine and hardwood litter in contrasting environments: toward a global model of decomposition. Global Change Biology, 6, 751-765. |
[9] | Guan LL (官丽莉), Zhou GY (周国逸), Zhang DQ (张德强), Liu JX (刘菊秀), Zhang QM (张倩媚) (2004). Twenty years of litter fall dynamics in subtropical evergreen broad-leaved forests at the Dinghushan Forest Ecosystem Research Station. Acta Phytoecologica Sinica (植物生态学报), 28, 449-456. (in Chinese with English abstract) |
[10] | Huang YH, Li YL, Xiao Y, Wenigmann KO, Zhou GY, Zhang DQ, Wenigmann M, Tang XL, Liu JX (2011). Controls of litter quality on the carbon sink in soils through partitioning the products of decomposing litter in a forest succession series in South China. Forest Ecology and Management, 261, 1170-1177. |
[11] | Ju WM, Chen JM, Black TA, Barr AG, Liu J, Chen BZ (2006). Modelling multi-year coupled carbon and water fluxes in a boreal aspen forest. Agricultural and Forest Meteorology, 140, 136-151. |
[12] | Kumada S, Kawanishi T, Hayashi Y, Ogomori K, Kobayashi Y, Takahashi N, Saito M, Hamano H, Kojima T, Yamada K (2008). Litter carbon dynamics analysis in forests in an arid ecosystem with a model incorporating the physical removal of litter. Ecological Modelling, 215, 190-199. |
[13] | Liu Q (刘强), Peng SL (彭少麟) (2010). Plant Litter Ecology (植物凋落物生态学). Science Press, Beijing. 43. (in Chinese) |
[14] | Liu Q (刘强), Peng SL (彭少麟), Bi H (毕华), Zhang HY (张洪溢), Li ZA (李志安), Ma WH (马文辉), Li NY (李妮亚) (2005). Nutrient dynamics of foliar litter in reciprocal decomposition in tropical and subtropical forests. Journal of Beijing Forestry University (北京林业大学学报), 27(1), 24-32. (in Chinese with English abstract) |
[15] | Liu ZW (刘增文), Gao WJ (高文俊), Pan KW (潘开文), Du HX (杜红霞), Zhang LP (张丽萍) (2006). Discussion on the study methods and models of litter decomposition. Acta Ecologica Sinica (生态学报), 26, 1993-2000. (in Chinese with English abstract) |
[16] | Manzoni S, Porporato A (2009). Soil carbon and nitrogen mineralization: theory and models across scales. Soil Biology & Biochemistry, 41, 1355-1379. |
[17] | Nagy MT, Janssens IA, Yuste JC, Carrara A, Ceulemans R (2006). Footprint-adjusted net ecosystem CO2 exchange and carbon balance components of a temperate forest. Agricultural and Forest Meteorology, 139, 344-360. |
[18] | Olson JS (1963). Energy storage and the balance of producers and decomposers in ecological systems. Ecology, 44, 322-331. |
[19] | Osono T, One Y, Takeda H (2003). Fungal ingrowth on forest floor and decomposing needle litter of Chamaecyparis obtusa in relation to resource availability and moisture condition. Soil Biology & Biochemistry, 35, 1423-1431. |
[20] | Parton WJ, Schimel DS, Cole CV, Ojima DS (1987). Analysis of factors controlling soil organic matter levels in Great Plains grasslands. Soil Science Society of America Journal, 51, 1173-1179. |
[21] | Prescott CE (2005). Do rates of litter decomposition tell us anything we really need to know? Forest Ecology and Management, 220, 66-74. |
[22] | Raich JW, Schlesinger WH (1992). The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate. Tellus B, 44, 81-99. |
[23] | Shen HL (沈海龙), Ding BY (丁宝永), Shen GF (沈国舫), Chen AM (陈爱民) (1996). Decomposing dynamics of several coniferous and broadleaved litters in Mongolian Scots pine plantation. Scientia Silvae Sinicae (林业科学), 32, 393-402. (in Chinese with English abstract) |
[24] | Song XZ (宋新章), Jiang H (江洪), Ma YD (马元丹), Yu SQ (余树全), Zhou GM (周国模), Peng SL (彭少麟), Dou RP (窦荣鹏), Guo PP (郭培培) (2009a). Litter decomposition across climate zone in Eastern China: the integrated influence of climate and litter quality. Acta Ecologica Sinica (生态学报), 29, 5219-5226. (in Chinese with English abstract) |
[25] | Song XZ (宋新章), Jiang H (江洪), Yu SQ (余树全), Ma YD (马元丹), Zhou GM (周国模), Dou RP (窦荣鹏), Guo PP (郭培培) (2009b). Litter decomposition of dominant plant species in successional stages in mid-subtropical zone. Chinese Journal of Applied Ecology (应用生态学报), 20, 537-542. (in Chinese with English abstract) |
[26] | Vitousek PM, Turner DR, Parton WJ, Sanford RL (1994). Litter decomposition on the Mauna Loa environmental matrix, Hawai’i: patterns, mechanisms, and models. Ecology, 75, 418-429. |
[27] | Wang J (王瑾), Huang JH (黄建辉) (2001). Comparison of major nutrient release patterns in leaf litter decomposition in warm temperate zone of China. Acta Phytoecologica Sinica (植物生态学报), 25, 375-380. (in Chinese with English abstract) |
[28] | Zhang CF, Meng FR, Bhatti JS, Trofymow JA, Arp PA (2008a). Modeling forest leaf-litter decomposition and N mineralization in litterbags, placed across Canada: a 5-model comparison. Ecological Modelling, 219, 342-360. |
[29] | Zhang DQ, Hui DF, Luo YQ, Zhou GY (2008b). Rates of litter decomposition in terrestrial ecosystems: global patterns and controlling factors. Journal of Plant Ecology, 1, 85-93. |
[30] | Zhang DQ (张德强), Ye WH (叶万辉), Yu QF (余清发), Kong GH (孔国辉), Zhang YC (张佑倡) (2000). The litter-fall of representative forests of successional series in Dinghushan. Acta Ecologica Sinica (生态学报), 20, 938-944. (in Chinese with English abstract) |
[31] | Zhang DQ (张德强), Yu QF (余清发), Kong GH (孔国辉), Zhang YC (张佑倡) (1998). Chemical properties of forest floor litter in Dinghushan monsoon evergreen broadleaved forest. Acta Ecologica Sinica (生态学报), 18, 96-100. (in Chinese with English abstract) |
[32] | Zhou GY, Guan LL, Wei XH, Tang XL, Liu SG, Liu JX, Zhang DQ, Yan JH (2008). Factors influencing leaf litter decomposition: an intersite decomposition experiment across China. Plant Soil, 311, 61-72. |
[1] | 盘远方, 潘良浩, 邱思婷, 邱广龙, 苏治南, 史小芳, 范航清. 中国沿海红树林树高变异与环境适应机制[J]. 植物生态学报, 2024, 48(4): 483-495. |
[2] | 李安艳, 黄先飞, 田源斌, 董继兴, 郑菲菲, 夏品华. 贵州草海草-藻型稳态转换过程中叶绿素a的变化及其影响因子[J]. 植物生态学报, 2023, 47(8): 1171-1181. |
[3] | 赵孟娟, 金光泽, 刘志理. 阔叶红松林3种典型蕨类叶功能性状的垂直变异[J]. 植物生态学报, 2023, 47(8): 1131-1143. |
[4] | 张慧玲, 张耀艺, 彭清清, 杨静, 倪祥银, 吴福忠. 中亚热带同质园不同生活型树种微量元素重吸收效率的差异[J]. 植物生态学报, 2023, 47(7): 978-987. |
[5] | 赵小祥, 朱彬彬, 田秋香, 林巧玲, 陈龙, 刘峰. 叶片凋落物分解的主场优势研究进展[J]. 植物生态学报, 2023, 47(5): 597-607. |
[6] | 李慧璇, 马红亮, 尹云锋, 高人. 亚热带天然阔叶林凋落物分解过程中活性、惰性碳氮的动态特征[J]. 植物生态学报, 2023, 47(5): 618-628. |
[7] | 杨丽琳, 邢万秋, 王卫光, 曹明珠. 新安江源区杉木树干液流速率变化及其对环境因子的响应[J]. 植物生态学报, 2023, 47(4): 571-583. |
[8] | 张潇, 武娟娟, 贾国栋, 雷自然, 张龙齐, 刘锐, 吕相融, 代远萌. 降水控制对侧柏液流变化特征及其水分来源的影响[J]. 植物生态学报, 2023, 47(11): 1585-1599. |
[9] | 赵镇贤, 陈银萍, 王立龙, 王彤彤, 李玉强. 河西走廊荒漠区不同功能类群植物叶片建成成本的比较[J]. 植物生态学报, 2023, 47(11): 1551-1560. |
[10] | 万春燕, 余俊瑞, 朱师丹. 喀斯特与非喀斯特森林乔木叶性状及其相关性网络的差异[J]. 植物生态学报, 2023, 47(10): 1386-1397. |
[11] | 杨元合, 张典业, 魏斌, 刘洋, 冯雪徽, 毛超, 徐玮婕, 贺美, 王璐, 郑志虎, 王媛媛, 陈蕾伊, 彭云峰. 草地群落多样性和生态系统碳氮循环对氮输入的非线性响应及其机制[J]. 植物生态学报, 2023, 47(1): 1-24. |
[12] | 郑宁, 李素英, 王鑫厅, 吕世海, 赵鹏程, 臧琛, 许玉珑, 何静, 秦文昊, 高恒睿. 基于环境因子对叶绿素影响的典型草原植物生活型优势研究[J]. 植物生态学报, 2022, 46(8): 951-960. |
[13] | 彭鑫, 金光泽. 植物特性和环境因子对阔叶红松林暗多样性的影响[J]. 植物生态学报, 2022, 46(6): 656-666. |
[14] | 王子龙, 胡斌, 包维楷, 李芳兰, 胡慧, 韦丹丹, 杨婷惠, 黎小娟. 西南干旱河谷植物群落组分生物量的纬度格局及其影响因素[J]. 植物生态学报, 2022, 46(5): 539-551. |
[15] | 王俐爽, 同小娟, 孟平, 张劲松, 刘沛荣, 李俊, 张静茹, 周宇. 辽西半干旱地区两种典型人工林生态系统能量通量及蒸散特征[J]. 植物生态学报, 2022, 46(12): 1508-1522. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19