植物生态学报 ›› 2023, Vol. 47 ›› Issue (7): 978-987.DOI: 10.17521/cjpe.2022.0087
张慧玲1, 张耀艺1, 彭清清1, 杨静1, 倪祥银1,2, 吴福忠1,2,*()
收稿日期:
2022-03-08
接受日期:
2022-09-28
出版日期:
2023-07-20
发布日期:
2023-07-21
通讯作者:
*吴福忠(基金资助:
ZHANG Hui-Ling1, ZHANG Yao-Yi1, PENG Qing-Qing1, YANG Jing1, NI Xiang-Yin1,2, WU Fu-Zhong1,2,*()
Received:
2022-03-08
Accepted:
2022-09-28
Online:
2023-07-20
Published:
2023-07-21
Contact:
*WU Fu-Zhong(Supported by:
摘要:
林木叶片对营养元素的重吸收作用可以减少对外界环境的依赖并适应外界环境的改变, 但相对于关注较多的大量元素, 微量元素重吸收规律仍然未知。因此, 该研究主要比较同一立地条件下不同生活型树种对微量元素的重吸收效率差异。以中亚热带同质园中处于生长旺盛期的8个树种为研究对象, 于2019年8月调查了不同树种成熟叶和衰老叶中微量元素Al、Fe、Mn、Zn和Cu的含量, 并分析元素的重吸收效率, 探索其养分利用策略。结果显示: 常绿树种(包括针叶和阔叶)对Mn、Zn和Cu的重吸收效率均明显高于落叶阔叶树种, 但8个树种对Al和Fe均未表现出明显的元素重吸收特征。相对于其他树种, 马尾松(Pinus massoniana)和樟(Cinnamomum camphora)对Mn的重吸收效率较高(>30%), 米槠(Castanopsis carlesii)、醉香含笑(Michelia macclurei)和无患子(Sapindus saponaria)对Mn的重吸收不明显。樟对Zn的重吸收效率达67%, 鹅掌楸(Liriodendron chinense)对Cu的重吸收效率达52%, 枫香树(Liquidambar formosana)对Zn和Cu表现为在衰老叶中积累(-30%和-23%)。此外, 微量元素重吸收效率与土壤元素含量之间表现出明显的负相关关系, 微量元素的重吸收效率与大量元素重吸收效率之间也存在一定的协同性。这些结果充分证明常绿阔叶树种相对于其他生活型树种对微量元素的重吸收效率更高, 具有更好的微量元素利用效率。
张慧玲, 张耀艺, 彭清清, 杨静, 倪祥银, 吴福忠. 中亚热带同质园不同生活型树种微量元素重吸收效率的差异. 植物生态学报, 2023, 47(7): 978-987. DOI: 10.17521/cjpe.2022.0087
ZHANG Hui-Ling, ZHANG Yao-Yi, PENG Qing-Qing, YANG Jing, NI Xiang-Yin, WU Fu-Zhong. Variations of trace-elements resorption efficiency in leaves of different tree species as affected by life forms in a mid-subtropical common garden. Chinese Journal of Plant Ecology, 2023, 47(7): 978-987. DOI: 10.17521/cjpe.2022.0087
树种 Tree species | 树龄 Tree age (a) | 平均胸径 Mean diameter at breast height (cm) | 平均树高 Mean tree height (m) | 土壤表层元素含量 Soil surface element content (g·kg-1) | ||||
---|---|---|---|---|---|---|---|---|
Al | Fe | Mn | Zn | Cu | ||||
马尾松 Pinus massoniana | 7 | 9.71 | 6.29 | 59.80 ± 1.05 | 26.97 ± 0.84 | 295.93 ± 97.12 | 35.41 ± 4.21 | 14.40 ± 0.58 |
樟 Cinnamomum camphora | 7 | 8.79 | 5.96 | 67.09 ± 1.12 | 26.93 ± 1.14 | 170.75 ± 52.33 | 31.80 ± 2.05 | 15.13 ± 1.84 |
米槠 Castanopsis carlesii | 7 | 11.82 | 7.20 | 62.34 ± 4.42 | 26.78 ± 0.17 | 178.84 ± 32.08 | 34.68 ± 2.04 | 14.14 ± 1.44 |
醉香含笑 Michelia macclurei | 7 | 8.40 | 6.13 | 66.59 ± 3.25 | 24.11 ± 1.14 | 172.49 ± 16.56 | 30.27 ± 3.95 | 14.41 ± 1.71 |
杜英 Elaeocarpus decipiens | 7 | 12.63 | 6.80 | 72.26 ± 6.90 | 25.41 ± 3.66 | 200.89 ± 97.05 | 31.00 ± 5.53 | 13.69 ± 0.49 |
枫香树 Liquidambar formosana | 7 | 9.44 | 8.69 | 56.43 ± 0.98 | 20.87 ± 0.39 | 141.86 ± 15.85 | 27.93 ± 2.86 | 15.06 ± 1.73 |
无患子 Sapindus saponaria | 7 | 8.33 | 7.09 | 64.62 ± 6.82 | 23.22 ± 0.21 | 567.02 ± 101.99 | 42.17 ± 3.46 | 16.35 ± 1.58 |
鹅掌楸 Liriodendron chinense | 7 | 8.08 | 6.78 | 66.77 ± 3.07 | 27.03 ± 0.65 | 106.61 ± 0.48 | 26.26 ± 1.19 | 14.21 ± 1.90 |
表1 中亚热带同质园8个树种的基本概况(平均值±标准误, n = 3)
Table 1 Basic information of eight tree species in the common garden in mid-subtropical region (mean ± SE, n = 3)
树种 Tree species | 树龄 Tree age (a) | 平均胸径 Mean diameter at breast height (cm) | 平均树高 Mean tree height (m) | 土壤表层元素含量 Soil surface element content (g·kg-1) | ||||
---|---|---|---|---|---|---|---|---|
Al | Fe | Mn | Zn | Cu | ||||
马尾松 Pinus massoniana | 7 | 9.71 | 6.29 | 59.80 ± 1.05 | 26.97 ± 0.84 | 295.93 ± 97.12 | 35.41 ± 4.21 | 14.40 ± 0.58 |
樟 Cinnamomum camphora | 7 | 8.79 | 5.96 | 67.09 ± 1.12 | 26.93 ± 1.14 | 170.75 ± 52.33 | 31.80 ± 2.05 | 15.13 ± 1.84 |
米槠 Castanopsis carlesii | 7 | 11.82 | 7.20 | 62.34 ± 4.42 | 26.78 ± 0.17 | 178.84 ± 32.08 | 34.68 ± 2.04 | 14.14 ± 1.44 |
醉香含笑 Michelia macclurei | 7 | 8.40 | 6.13 | 66.59 ± 3.25 | 24.11 ± 1.14 | 172.49 ± 16.56 | 30.27 ± 3.95 | 14.41 ± 1.71 |
杜英 Elaeocarpus decipiens | 7 | 12.63 | 6.80 | 72.26 ± 6.90 | 25.41 ± 3.66 | 200.89 ± 97.05 | 31.00 ± 5.53 | 13.69 ± 0.49 |
枫香树 Liquidambar formosana | 7 | 9.44 | 8.69 | 56.43 ± 0.98 | 20.87 ± 0.39 | 141.86 ± 15.85 | 27.93 ± 2.86 | 15.06 ± 1.73 |
无患子 Sapindus saponaria | 7 | 8.33 | 7.09 | 64.62 ± 6.82 | 23.22 ± 0.21 | 567.02 ± 101.99 | 42.17 ± 3.46 | 16.35 ± 1.58 |
鹅掌楸 Liriodendron chinense | 7 | 8.08 | 6.78 | 66.77 ± 3.07 | 27.03 ± 0.65 | 106.61 ± 0.48 | 26.26 ± 1.19 | 14.21 ± 1.90 |
图1 中亚热带同质园8个树种成熟叶(A、C、E、G、I)和衰老叶(B、D、F、H、J)微量元素含量(平均值±标准误, n = 3)。DBL, 落叶阔叶树种(n = 9) ; EBL, 常绿阔叶树种(n = 12); EC, 常绿针叶树种(n = 3)。PM, 马尾松; CCam, 樟; CCar, 米槠; MM, 醉香含笑; ED, 杜英; LF, 枫香树; SS, 无患子; LCh, 鹅掌楸。不同小写字母表示不同树种间元素含量差异显著(p < 0.05)。
Fig. 1 Content of trace elements in green (A, C, E, G, I) and senescent leaves (B, D, F, H, J) of eight tree species in the common garden in mid-subtropical region (mean ± SE, n = 3). DBL, deciduous broadleaf species (n = 9); EBL, evergreen broadleaf species (n = 12); EC, evergreen coniferous species (n = 3). PM, Pinus massoniana; CCam, Cinnamomum camphora; CCar, Castanopsis carlesii; MM, Michelia macclurei; ED, Elaeocarpus decipiens; LF, Liquidambar formosana; SS, Sapindus saponaria; LCh, Liriodendron chinense. Different lowercase letters meant significant difference among tree species (p < 0.05).
图2 中亚热带同质园不同生活型树种成熟叶和衰老叶微量元素含量(平均值±标准误, n = 3)。DBL, 落叶阔叶树种(n = 9) ; EBL, 常绿阔叶树种(n = 12); EC, 常绿针叶树种(n = 3)。不同小写字母表示不同树种间元素含量差异显著(p < 0.05)。
Fig. 2 Content of trace elements in green and senescent leaves of different life forms in the common garden in mid-subtropical region (mean ± SE, n = 3). DBL, deciduous broadleaf species (n = 9); EBL, evergreen broadleaf species (n = 12); EC, evergreen coniferous species (n = 3). Different lowercase letters meant significant difference among tree species (p < 0.05).
图3 中亚热带同质园8个树种成熟叶和衰老叶之间微量元素的含量变化(衰老叶-成熟叶) (平均值±标准误, n = 3)。DBL, 落叶阔叶树种(n = 9); EBL, 常绿阔叶树种(n = 12); EC, 常绿针叶树种(n = 3)。PM, 马尾松; CCam, 樟; CCar, 米槠; MM, 醉香含笑; ED, 杜英; LF, 枫香树; SS, 无患子; LCh, 鹅掌楸。不同小写字母表示不同树种间差异显著(p < 0.05)。
Fig. 3 Changes in the content of trace elements between green and senescent leaves of eight tree species in the common garden in mid-subtropical region (nutrient content in green leaves minus that in senescent leaves) (mean ± SE, n = 3). DBL, deciduous broadleaf species (n = 9); EBL, evergreen broadleaf species (n = 12); EC, evergreen coniferous species (n = 3). PM, Pinus massoniana; CCam, Cinnamomum camphora; CCar, Castanopsis carlesii; MM, Michelia macclurei; ED, Elaeocarpus decipiens; LF, Liquidambar formosana; SS, Sapindus saponaria; LCh, Liriodendron chinense. Different lowercase letters meant significant difference among tree species (p < 0.05).
图4 中亚热带同质园8个树种微量元素重吸收效率(平均值±标准误, n = 3)。DBL, 落叶阔叶树种(n = 9); EBL, 常绿阔叶树种(n = 12); EC, 常绿针叶树种(n = 3)。PM, 马尾松; CCam, 樟; CCar, 米槠; MM, 醉香含笑; ED, 杜英; LF, 枫香树; SS, 无患子; LCh, 鹅掌楸。不同小写字母表示不同树种间元素含量差异显著(p < 0.05)。
Fig. 4 Resorption efficiencies of trace elements of eight tree species in the common garden in mid-subtropical region (mean ± SE, n = 3). DBL, deciduous broadleaf species (n = 9); EBL, evergreen broadleaf species (n = 12); EC, evergreen coniferous species (n = 3). PM, Pinus massoniana; CCam, Cinnamomum camphora; CCar, Castanopsis carlesii; MM, Michelia macclurei; ED, Elaeocarpus decipiens; LF, Liquidambar formosana; SS, Sapindus saponaria; LCh, Liriodendron chinense. Different lowercase letters meant significant difference among tree species (p < 0.05).
图5 中亚热带同质园常绿树种和落叶树种微量元素重吸收效率与土壤元素含量的相关关系。其中, AlRE表示Al的重吸收效率, AlS表示土壤中Al的含量, 依次类推。数值为相关系数, 星号表示相关显著性(*, p < 0.05; **, p < 0.01)。
Fig. 5 Correlation between trace element resorption efficiency and soil element content of evergreen and deciduous trees in the common garden in mid-subtropical region. AlRE represents the resorption efficiency of Al, AlS represents the content of Al in soil, and so on. The values are correlation coefficient, asterisks denote significant correlations (*, p < 0.05; **, p < 0.01).
图6 中亚热带同质园树种微量元素重吸收效率与大量元素重吸收效率的相关关系。部分数据引自张耀艺等(2021, 2022)。其中, AlRE表示Al的重吸收效率, FeRE表示Fe的重吸收效率, 依次类推。数值为相关系数, 星号表示相关显著性(*, p < 0.05; **, p < 0.01)。
Fig. 6 Correlation of resorption efficiency between trace elements and major elements in the common garden in mid-subtropical region. Some data were from Zhang et al. (2021, 2022). AlRE represents the resorption efficiency of Al element, FeRE represents the resorption efficiency of Fe element, and so on. The values are correlation coefficient, asterisks denote significant correlations (*, p < 0.05; **, p < 0.01).
元素 Nutrient | 常绿树种 Evergreen trees | 落叶树种 Deciduous trees | ||||
---|---|---|---|---|---|---|
本研究 This study | Chen et al., | Liu et al., | 本研究 This study | Chen et al., | Liu et al., | |
Al | -266.35 ± 60.90a | -99.14 ± 38.97a | - | -160.46 ± 88.68a | -141.55 ± 31.50a | - |
Fe | -135.65 ± 35.10a | -25.43 ± 8.90a | -117.34 ± 28.00a | -61.81 ± 31.41a | -33.33 ± 13.07a | -108.87 ± 21.00a |
Mn | 14.13 ± 9.05a | -28.82 ± 37.00a | -44.71 ± 11.76a | 7.87 ± 9.93a | -19.48 ± 8.30a | -41.18 ± 10.58a |
Zn | 32.98 ± 9.98a | 36.03 ± 7.93a | -148.22 ± 34.60a | -2.90 ± 13.56a | 13.79 ± 5.00b | -111.16 ± 11.41a |
Cu | 41.38 ± 1.52a | 48.65 ± 5.99a | 12.79 ± 9.51a | 19.20 ± 22.19a | 26.97 ± 4.38b | -20.33 ± 7.54b |
表2 两种生活型树种叶片中微量元素重吸收效率的比较(平均值±标准误, n = 3) (%)
Table 2 Comparison of trace element resorption efficiencies between two life forms (mean ± SE, n = 3) (%)
元素 Nutrient | 常绿树种 Evergreen trees | 落叶树种 Deciduous trees | ||||
---|---|---|---|---|---|---|
本研究 This study | Chen et al., | Liu et al., | 本研究 This study | Chen et al., | Liu et al., | |
Al | -266.35 ± 60.90a | -99.14 ± 38.97a | - | -160.46 ± 88.68a | -141.55 ± 31.50a | - |
Fe | -135.65 ± 35.10a | -25.43 ± 8.90a | -117.34 ± 28.00a | -61.81 ± 31.41a | -33.33 ± 13.07a | -108.87 ± 21.00a |
Mn | 14.13 ± 9.05a | -28.82 ± 37.00a | -44.71 ± 11.76a | 7.87 ± 9.93a | -19.48 ± 8.30a | -41.18 ± 10.58a |
Zn | 32.98 ± 9.98a | 36.03 ± 7.93a | -148.22 ± 34.60a | -2.90 ± 13.56a | 13.79 ± 5.00b | -111.16 ± 11.41a |
Cu | 41.38 ± 1.52a | 48.65 ± 5.99a | 12.79 ± 9.51a | 19.20 ± 22.19a | 26.97 ± 4.38b | -20.33 ± 7.54b |
[1] |
Ågren GI, Weih M (2012). Plant stoichiometry at different scales: element concentration patterns reflect environment more than genotype. New Phytologist, 194, 944-952.
DOI PMID |
[2] |
Alvarenga ICA, Boldrin PF, Pacheco FV, Silva ST, Bertolucci SKV, Pinto JEBP (2015). Effects on growth, essential oil content and composition of the volatile fraction of Achillea millefolium L. cultivated in hydroponic systems deficient in macro- and microelements. Scientia Horticulturae, 197, 329-338.
DOI URL |
[3] |
Chen H, Reed SC, Lü XT, Xiao KC, Wang KL, Li DJ (2021). Global resorption efficiencies of trace elements in leaves of terrestrial plants. Functional Ecology, 35, 1596-1602.
DOI URL |
[4] | Chen YG, Ding LX, Ge HL, Zhang MZ, Hu Y (2011). Hyperspectral bambusoideae discrimination based on Mann-Whitney non-parametric test and SVM. Spectroscopy and Spectral Analysis, 31, 3010-3013. |
[陈永刚, 丁丽霞, 葛宏立, 张茂震, 胡芸 (2011). 基于Mann- Whitney非参数检验和SVM的竹类高光谱识别. 光谱学与光谱分析, 31, 3010-3013.] | |
[5] | Deng MF, Liu LL, Jiang L, Liu WX, Wang X, Li SP, Yang S, Wang B (2018). Ecosystem scale trade-off in nitrogen acquisition pathways. Nature Ecology & Evolution, 2, 1724-1734. |
[6] |
Du BM, Ji HW, Peng C, Liu XJ, Liu CJ (2017). Altitudinal patterns of leaf stoichiometry and nutrient resorption in Quercus variabilis in the Baotianman Mountains, China. Plant and Soil, 413, 193-202.
DOI URL |
[7] |
Field C, Merino J, Mooney HA (1983). Compromises between water-use efficiency and nitrogen-use efficiency in five species of California evergreens. Oecologia, 60, 384-389.
DOI PMID |
[8] |
Guo K, Liu CC, Dong M (2011). Ecological adaptation of plants and control of rocky-desertification on karst region of Southwest China. Chinese Journal of Plant Ecology, 35, 991-999.
DOI |
[郭柯, 刘长成, 董鸣 (2011). 我国西南喀斯特植物生态适应性与石漠化治理. 植物生态学报, 35, 991-999.]
DOI |
|
[9] |
Han WX, Fang JY, Reich PB, Woodward FI, Wang ZH (2011). Biogeography and variability of eleven mineral elements in plant functional type in China. Ecology Letters, 14, 788-796.
DOI PMID |
[10] | Jiang DL, Xu X, Ruan HH (2017). Review of nutrient resorption and its regulating in plants. Journal of Nanjing Forestry University (Natural Sciences Edition), 41, 183-188. |
[江大龙, 徐侠, 阮宏华 (2017). 植物养分重吸收及其影响研究进展. 南京林业大学学报(自然科学版), 41, 183-188.] | |
[11] |
Kobe RK, Lepczyk CA, Iyer M (2005). Resorption efficiency decreases with increasing green leaf nutrients in a global data set. Ecology, 86, 2780-2792.
DOI URL |
[12] |
Kunstler G, Falster D, Coomes DA, Hui F, Kooyman RM, Laughlin DC, Poorter L, Vanderwel M, Vieilledent G, Wright SJ, Aiba M, Baraloto C, Caspersen J, Cornelissen JHC, Gourlet-Fleury S (2016). Plant functional traits have globally consistent effects on competition. Nature, 529, 204-207.
DOI |
[13] |
Liu CC, Liu YG, Guo K, Wang SJ, Yang Y (2014). Concentrations and resorption patterns of 13 nutrients in different plant functional types in the karst region of south-western China. Annals of Botany, 113, 873-885.
DOI PMID |
[14] |
Peñarrubia L, Romero P, Carrió-Seguí A, Andrés-Bordería A, Moreno J, Sanz A (2015). Temporal aspects of copper homeostasis and its crosstalk with hormones. Frontiers in Plant Science, 6, 255. DOI: 10.3389/fpls.2015.00255.
DOI PMID |
[15] |
Scalon MC, Wright IJ, Franco AC (2017). To recycle or steal? Nutrient resorption in Australian and Brazilian mistletoes from three low-phosphorus sites. Oikos, 126, 32-39.
DOI URL |
[16] |
Seidel F, Lopez MCL, Celi L, Bonifacio E, Oikawa A, Yamanaka T (2019). N isotope fractionation in tree tissues during N reabsorption and remobilization in Fagus crenata Blume. Forests, 10, 300. DOI: 10.3390/f10040330.
DOI URL |
[17] | Tan B, Ni XY, Wu FZ, Li J (2019). Conventional Analysis Method of Forest Soil Experiment. Sichuan University Press, Chengdu. |
[谭波, 倪祥银, 吴福忠, 李娇 (2019). 森林土壤实验常规分析方法. 四川大学出版社, 成都.] | |
[18] |
Tian DS, Reich PB, Chen HYH, Xiang YZ, Luo YQ, Shen Y, Meng C, Han WX, Niu SL (2019). Global changes alter plant multi-element stoichiometric coupling. New Phytologist, 221, 807-817.
DOI PMID |
[19] |
van Heerwaarden LM, Toet S, Aerts R (2003). Current measures of nutrient resorption efficiency lead to a substantial underestimation of real resorption efficiency: facts and solutions. Oikos, 101, 664-669.
DOI URL |
[20] |
Vergutz L, Manzoni S, Porporato A, Novais RF, Jackson RB (2012). Global resorption efficiencies and concentrations of carbon and nutrients in leaves of terrestrial plants. Ecological Monographs, 82, 205-220.
DOI URL |
[21] |
Wang M, Murphy MT, Moore TR (2014). Nutrient resorption of two evergreen shrubs in response to long-term fertilization in a bog. Oecologia, 174, 365-377.
DOI URL |
[22] | Wei FS, Yang GZ, Jiang DZ, Liu ZH, Sun BM (1991). Basic statistics and characteristics of background value of soil elements in China. Environmental Monitoring in China, 7(1), 1-6. |
[魏复盛, 杨国治, 蒋德珍, 刘志虹, 孙本民 (1991). 中国土壤元素背景值基本统计量及其特征. 中国环境监测, 7(1), 1-6.] | |
[23] |
Westoby M, Wright IJ (2003). The leaf size-twig size spectrum and its relationship to other important spectra of variation among species. Oecologia, 135, 621-628.
PMID |
[24] |
Wright IJ, Westoby M (2003). Nutrient concentration, resorption and lifespan: leaf traits of Australian sclerophyll species. Functional Ecology, 17, 10-19.
DOI URL |
[25] | Wu J, Jiang ZY, Fu XZ, Sun Q, Yang K (2021). Effects of climate change on vegetation dynamics of winter wheat crops in subtropical region. Journal of Subtropical Resources and Environment, 16(4), 26-31. |
[吴瑾, 姜紫阳, 傅学振, 孙齐, 杨昆 (2021). 气候变化对亚热带冬小麦植被动态变化的影响. 亚热带资源与环境学报, 16(4), 26-31.] | |
[26] | Xu PC, You ZT, Ji YH, Zhou JC, Zhang QF, Zheng W, Liu XF, Lin WS, Yang ZJ, Yang YS (2019). Study on ecological strategies of 22 common woody plants in Castanopsis kawakami nature reserve. Journal of Subtropical Resources and Environment, 14(4), 23-29. |
[徐鹏程, 游章湉, 纪宇皝, 周嘉聪, 张秋芳, 郑蔚, 刘小飞, 林伟盛, 杨智杰, 杨玉盛 (2019). 格氏栲自然保护区22种常见木本植物的生态策略. 亚热带资源与环境学报, 14(4), 23-29.] | |
[27] | Yan ER, Wang XH, Guo M, Zhong Q, Zhou W (2010). C:N:P stoichiometry across evergreen broad-leaved forests, evergreen coniferous forests and deciduous broad-leaved forests in the Tiantong region, Zhejiang Province, Eastern China. Chinese Journal of Plant Ecology, 34, 48-57. |
[阎恩荣, 王希华, 郭明, 仲强, 周武 (2010). 浙江天童常绿阔叶林、常绿针叶林与落叶阔叶林的C:N:P化学计量特征. 植物生态学报, 34, 48-57.]
DOI |
|
[28] | Yang J, Zhang YY, Tan SY, Wang DY, Yue K, Ni XY, Liao S, Wu FZ, Yang YS (2020). Soil water conservation functions of different plantations in subtropical forest. Acta Ecologica Sinica, 40, 4594-4604. |
[杨静, 张耀艺, 谭思懿, 王定一, 岳楷, 倪祥银, 廖姝, 吴福忠, 杨玉盛 (2020). 亚热带不同树种土壤水源涵养功能. 生态学报, 40, 4594-4604.] | |
[29] | Yang YS, Xie JS, Sheng H, Chen GS, Li X (2007). The impact of land use/cover change on soil organic carbon stocks and quality in mid-subtropical mountainous area of Southern China. Acta Geographica Sinica, 62, 1123-1131. |
[杨玉盛, 谢锦升, 盛浩, 陈光水, 李旭 (2007). 中亚热带山区土地利用变化对土壤有机碳储量和质量的影响. 地理学报, 62, 1123-1131.] | |
[30] |
Yuan ZY, Chen HYH (2009). Global-scale patterns of nutrient resorption associated with latitude, temperature and precipitation. Global Ecology and Biogeography, 18, 11-18.
DOI URL |
[31] |
Yuan ZY, Shi XR, Jiao F, Han FP (2017). N and P resorption as functions of the needle age class in two conifer trees. Journal of Plant Ecology, 11, 780-788.
DOI URL |
[32] |
Zhang H, Wang JN, Wang JY, Guo ZW, Wang GG, Zeng DH, Wu TG (2018). Tree stoichiometry and nutrient resorption along a chronosequence of Metasequoia glyptostroboides forests in coastal China. Forest Ecology and Management, 430, 445-450.
DOI URL |
[33] |
Zhang MX, Luo Y, Yan ZB, Chen J, Eziz A, Li KH, Han WX (2019). Resorptions of 10 mineral elements in leaves of desert shrubs and their contrasting responses to aridity. Journal of Plant Ecology, 12, 358-366.
DOI URL |
[34] |
Zhang SB, Zhang JL, Slik JWF, Cao KF (2012). Leaf element concentrations of terrestrial plants across China are influenced by taxonomy and the environment. Global Ecology and Biogeography, 21, 809-818.
DOI URL |
[35] |
Zhang YY, Ni XY, Yang J, Tan SY, Liao S, Wang DY, Yue K, Wu FZ (2022). Resorption efficiency of four cations in different tree species in a subtropical common garden. Phyton, 91, 185-196.
DOI URL |
[36] | Zhang YY, Ni XY, Yang J, Tan SY, Liao S, Wu FZ (2021). Nitrogen and phosphorus resorption and stoichiometric characteristics of different tree species in a mid-subtropical common-garden, China. Chinese Journal of Applied Ecology, 32, 1154-1162. |
[张耀艺, 倪祥银, 杨静, 谭思懿, 廖姝, 吴福忠 (2021). 中亚热带同质园不同树种氮磷重吸收及化学计量特征. 应用生态学报, 32, 1154-1162.]
DOI |
|
[37] |
Zong N, Song MH, Zhao GS, Shi PL (2020). Nitrogen economy of alpine plants on the north Tibetan Plateau: nitrogen conservation by resorption rather than open sources through biological symbiotic fixation. Ecology and Evolution, 10, 2051-2061.
DOI PMID |
[1] | 胡昭佚, 陈天松, 赵丽, 许培轩, 吴正江, 董李勤, 张昆. 水位下降对若尔盖高寒草本沼泽木里薹草氮磷重吸收的影响[J]. 植物生态学报, 2023, 47(6): 847-855. |
[2] | 万春燕, 余俊瑞, 朱师丹. 喀斯特与非喀斯特森林乔木叶性状及其相关性网络的差异[J]. 植物生态学报, 2023, 47(10): 1386-1397. |
[3] | 袁春阳, 李济宏, 韩鑫, 洪宗文, 刘宣, 杜婷, 游成铭, 李晗, 谭波, 徐振锋. 树种对土壤微生物生物量碳氮的影响: 同质园实验[J]. 植物生态学报, 2022, 46(8): 882-889. |
[4] | 吴秋霞, 吴福忠, 胡仪, 康自佳, 张耀艺, 杨静, 岳楷, 倪祥银, 杨玉盛. 亚热带同质园11个树种新老叶非结构性碳水化合物含量比较[J]. 植物生态学报, 2021, 45(7): 771-779. |
[5] | 曹嘉瑜, 刘建峰, 袁泉, 徐德宇, 樊海东, 陈海燕, 谭斌, 刘立斌, 叶铎, 倪健. 森林与灌丛的灌木性状揭示不同的生活策略[J]. 植物生态学报, 2020, 44(7): 715-729. |
[6] | 陈思路, 蔡劲松, 林成芳, 宋豪威, 杨玉盛. 亚热带不同树种凋落叶分解对氮添加的响应[J]. 植物生态学报, 2020, 44(3): 214-227. |
[7] | 纪若璇, 于笑, 常远, 沈超, 白雪卡, 夏新莉, 尹伟伦, 刘超. 蒙古莸叶片解剖结构的地理种源变异及其对环境变化响应的意义[J]. 植物生态学报, 2020, 44(3): 277-286. |
[8] | 梅孔灿, 程蕾, 张秋芳, 林开淼, 周嘉聪, 曾泉鑫, 吴玥, 徐建国, 周锦容, 陈岳民. 不同植物来源可溶性有机质对亚热带森林土壤酶活性的影响[J]. 植物生态学报, 2020, 44(12): 1273-1284. |
[9] | 车俭, 郑洁, 蒋娅, 金毅, 乙引. 中国亚热带森林动态监测样地常绿和落叶木本被子植物谱系结构及生态习性差异[J]. 植物生态学报, 2020, 44(10): 1007-1014. |
[10] | 张振振, 赵平, 张锦秀, 斯瑶. 亚热带常绿阔叶林散孔材和环孔材树种导管及叶片功能性状的比较[J]. 植物生态学报, 2019, 43(2): 131-138. |
[11] | 闫帮国, 刘刚才, 樊博, 何光熊, 史亮涛, 李纪潮, 纪中华. 干热河谷植物化学计量特征与生物量之间的关系[J]. 植物生态学报, 2015, 39(8): 807-815. |
[12] | 谭正洪, 于贵瑞, 周国逸, 韩士杰, 夏禹九, 前田高尚, 小杉绿子, 山野井克己, 李胜功, 太田岳史, 平田竜一, 安田幸生, 中野隆志, 小南裕志, 北村兼三, 溝口康子, 廖志勇, 赵俊福, 杨廉雁. 亚洲东部森林的小气候特征: 1. 辐射和能量的平衡[J]. 植物生态学报, 2015, 39(6): 541-553. |
[13] | 徐婷, 曹林, 申鑫, 佘光辉. 基于机载激光雷达与Landsat 8 OLI数据的亚热带森林生物量估算[J]. 植物生态学报, 2015, 39(4): 309-321. |
[14] | 申鑫, 曹林, 徐婷, 佘光辉. 基于高分辨率与高光谱遥感影像的北亚热带马尾松及次生落叶树种的分类[J]. 植物生态学报, 2015, 39(12): 1125-1135. |
[15] | 韩天丰, 周国逸, 李跃林, 刘菊秀, 张德强. 中国南亚热带森林不同演替阶段土壤呼吸的分离量化[J]. 植物生态学报, 2011, 35(9): 946-954. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19