植物生态学报 ›› 2020, Vol. 44 ›› Issue (10): 1007-1014.DOI: 10.17521/cjpe.2020.0174
车俭1,3, 郑洁1,3, 蒋娅3, 金毅1,3,*(), 乙引1,2,*()
收稿日期:
2020-05-29
接受日期:
2020-08-10
出版日期:
2020-10-20
发布日期:
2020-10-11
通讯作者:
金毅,乙引
作者简介:
Yi Y: gzklppdr@gznu.edu.cn基金资助:
CHE Jian1,3, ZHENG Jie1,3, JIANG Ya3, JIN Yi1,3,*(), YI Yin1,2,*()
Received:
2020-05-29
Accepted:
2020-08-10
Online:
2020-10-20
Published:
2020-10-11
Contact:
JIN Yi,YI Yin
Supported by:
摘要:
常绿和落叶木本被子植物是组成东亚地区亚热带阔叶林的两个主要植物类群。探索常绿和落叶木本被子植物的生态位差异, 对于推测亚热带阔叶林群落的生物多样性维持机制, 具有重要意义。该研究采用线性回归模型和Mantel检验多元回归等统计手段, 分析了中国亚热带地区8个森林动态监测样地的常绿和落叶木本被子植物谱系和生态习性差异。主要结果: (1)该研究的788个被子植物分类单元的叶习性(常绿和落叶)具有一定的谱系保守性。常绿和落叶植物对光照、温度、水分、土壤反应和土壤肥力因子的生态习性均有差异, 表现为常绿植物偏好较低的光照和土壤pH, 以及较高的温度、水分和土壤肥力; 落叶植物则相反。(2)样地内落叶较常绿植物的种间谱系散布更收敛, 但生态习性散布更发散; 样地间落叶较常绿类群的谱系组成差异更小, 但生态习性差异更大; 样地间落叶类群的谱系组成差异随年平均气温差异的增大而增大。(3)落叶/常绿植物物种数量的比例随年平均气温升高而降低, 而旱季持续时间和年降水量等因子的影响不明显。该研究证实了我国亚热带地区8个森林动态监测样地内的常绿和落叶木本被子植物在谱系和生态习性上均存在巨大差异, 生态位分化在很大程度上是促进亚热带阔叶林群落内生物多样性维持的重要机制。
车俭, 郑洁, 蒋娅, 金毅, 乙引. 中国亚热带森林动态监测样地常绿和落叶木本被子植物谱系结构及生态习性差异. 植物生态学报, 2020, 44(10): 1007-1014. DOI: 10.17521/cjpe.2020.0174
CHE Jian, ZHENG Jie, JIANG Ya, JIN Yi, YI Yin. Separation of phylogeny and ecological behaviors between evergreen and deciduous woody angiosperms in the subtropical forest dynamics plots of China. Chinese Journal of Plant Ecology, 2020, 44(10): 1007-1014. DOI: 10.17521/cjpe.2020.0174
图1 常绿和落叶木本被子植物的各项生态习性对比(平均值±标准误差)。D, 落叶木本被子植物; E, 常绿木本被子植物。柱形上方字母不同, 说明两者间有显著差异(p < 0.05), p值由谱系线性回归模型估计(附录II)。
Fig. 1 Difference in each ecological behavior between evergreen and deciduous plants (mean ± SE). D, deciduous woody angiosperms; E, evergreen woody angiosperms. Different letters above the bars indicate significant difference (p < 0.05). p-value is estimated by the phylogenetic linear regression model (Supplement II).
图2 样地常绿和落叶物种的谱系(A)和生态习性聚集情况(B)。D, 落叶木本被子植物; E, 常绿木本被子植物。箱线图上方字母不同说明两者间有显著差异(p < 0.05, Wilcoxon符合秩检验)。
Fig. 2 Phylogenetic (A) and ecological behavior dispersions (B) of evergreen and deciduous plants of the eight plots. D, deciduous woody angiosperms; E, evergreen woody angiosperms. NRI, net relatedness index; NFRI, net functional relatedness index. Different lowercase letters above the boxes indicate significant difference (p < 0.05, Wilcoxon signed- rank test with p-value adjusted by false discovery rate).
图3 样地常绿和落叶木本被子植物类群的谱系(A)和生态习性组成差异情况(B)。D, 落叶木本被子植物; E, 常绿木本被子植物。箱线图上方字母不同说明两者间有显著差异(p < 0.05, Wilcoxon秩和检验, p值经过伪发现率法校正)。
Fig. 3 Phylogenetic (A) and ecological behavior compositional differences (B) of evergreen and deciduous woody angiosperms of the eight plots. D, deciduous woody angiosperms; E, evergreen woody angiosperms. Different letters above the boxes indicate significant difference (p < 0.05, Wilcoxon signed-rank test with p-value adjusted by false discovery rate). βNRI, inter-sample net relatedness index; βNFRI, inter-sample net functional relatedness index.
影响因子 | 落叶木本被子植物 D | 常绿木本被子植物 E | ||
---|---|---|---|---|
Predictor variable | βNRI | βNFRI | βNRI | βNFRI |
样地面积 A | 0.225 | 0.303 | 0.063 | 0.716 |
岛屿 I | 0.211 | 0.783 | -0.617 | 2.154 |
年降水量 AP | 0.156 | 0.574 | 0.425 | -0.465 |
旱季时间 DS | 0.090 | 0.168 | -0.035 | 0.667 |
年平均气温 MAT | -0.222* | -0.217 | -0.018 | -0.332 |
表1 中国亚热带8个森林样地间常绿和落叶木本被子植物谱系组成差异指数(βNRI)和生态习性组成差异指数(βNFRI)的Mantel检验多元回归手段分析结果
Table 1 Results of the multiple regression method of Mantel test of net relatedness index among samples (βNRI) and net functional relatedness index among samples (βNFRI) of deciduous and evergreen woody angiosperms among the eight forest plots
影响因子 | 落叶木本被子植物 D | 常绿木本被子植物 E | ||
---|---|---|---|---|
Predictor variable | βNRI | βNFRI | βNRI | βNFRI |
样地面积 A | 0.225 | 0.303 | 0.063 | 0.716 |
岛屿 I | 0.211 | 0.783 | -0.617 | 2.154 |
年降水量 AP | 0.156 | 0.574 | 0.425 | -0.465 |
旱季时间 DS | 0.090 | 0.168 | -0.035 | 0.667 |
年平均气温 MAT | -0.222* | -0.217 | -0.018 | -0.332 |
图4 落叶和常绿木本被子植物物种数比例随年平均气温的变化。BDGS, 八大公山; BSZ, 百山祖; DHS, 鼎湖山; FS, 福山; GTS, 古田山; HSD, 黑石顶; LHC, 莲花池; TT, 天童。黑色实心点表示样地, 深灰色线段表示最优线性回归模型(附录III)拟合的落叶和常绿植物丰富度比例的均值, 灰色阴影部分为均值的95%置信区间。线性回归模型的R2adj = 0.707。
Fig. 4 Variation in the ratio of deciduous: evergreen woody angiosperm richness with mean annual temperature. MAT, mean annual temperature; D:E, the ratio of deciduous and evergreen woody angiosperms in species richness. BDGS, Badagongshan; BSZ, Baishanzu; DHS, Dinghushan; FS, Fushan; GTS, Gutianshan; HSD, Heishiding; LHC, Lienhuachi; TT, Tiantong. Each soild black circle represents a plot, the dark grey line represents the mean of deciduous: evergreen plants richness ratio, and the grey area represents 95% confidence interval of the mean, as fitted by the best supported linear regression model (Supplement III). Adjusted r-square of the linear regression model is R2adj = 0.707.
[1] | Axelrod (1966). Origin of deciduous and evergreen habits in temperate forests. Evolution, 20, 1-15. |
[2] | Bartoń K (2016). MuMIn: Multi-Model Inference. R package version 1.15.6. [2019-12-21] https://CRAN.R-project.org/ package=MuMIn. |
[3] | Bews JW (1927). Studies in the ecological evolution of angiosperms. The New Phytologist, 26(2), 65-84. |
[4] | Cadotte MW, Davies TJ (2016). Phylogenies in Ecology. Princeton University Press, Princeton, USA. |
[5] | Cadotte MW, Davies TJ, Peresneto PR (2017). Why phylogenies do not always predict ecological differences. Ecological Monographs, 87, 535-551. |
[6] | Duan R, Huang M, Kong X, Wang Z, Fan W (2015). Ecophysiological responses to different forest patch type of two codominant tree seedlings. Ecology and Evolution, 5, 265-274. |
[7] | Ellenberg H, Weber HE, Duell R, Wirth V, Werner W (2001). Zeigerwerte der Gefasspflanzen Mitteleuropas (3 Aufl). Scripta Geobotanica, 18, 1-262. |
[8] | Escudero A, del Arco JM (1987). Ecological significance of the phenology of leaf abscission. Oikos, 49, 11-14. |
[9] | Fang XF, Shen GC, Yang QS, Liu HM, Ma ZP, Deane DC, Wang XH (2017). Habitat heterogeneity explains mosaics of evergreen and deciduous trees at local-scales in a subtropical evergreen broad-leaved forest. Journal of Vegetation Science, 28, 379-388. |
[10] | Fang XF, Yang QS, Liu HM, Ma ZP, Dong S, Cao Y, Yuan MJ, Fei XY, Sun XY, Wang XH (2016). Distribution of species abundance of evergreen and deciduous woody plants in the evergreen broad-leaved forests at Tiantong, Zhejiang. Biodiversity Science, 24, 629-638. |
[ 方晓峰, 杨庆松, 刘何铭, 马遵平, 董舒, 曹烨, 袁铭皎, 费希旸, 孙小颖, 王希华 (2016). 天童常绿阔叶林中常绿与落叶物种的物种多度分布格局. 生物多样性, 24, 629-638.] | |
[11] | Ge JL, Xie ZQ (2017). Geographical and climatic gradients of evergreen versus deciduous broad-leaved tree species in subtropical China: implications for the definition of the mixed forest. Ecology and Evolution, 7, 3636-3644. |
[12] | Givnish TJ (1979). On the adaptive significance of leaf form//Solbrig OT, Jain S, Johnson GB, Raven PH. Topics in Plant Population Biology. Palgrave, London, 375-407. |
[13] | Givnish TJ (2002). Adaptive signifi cance of evergreen vs. deciduous leaves: solving the triple paradox. Silva Fennica, 36, 703-743. |
[14] | Goslee SC, Urban DL (2007). The ecodist package for dissimilarity-based analysis of ecological data. Journal of Statistical Software, 22, 1-19. |
[15] | Huang YT, Yao L, Ai XR, Lü SA, Ding Y (2015). Quantitative classification of the subtropical evergreen-deciduous broadleaved mixed forest and the deciduous and evergreen species composition structure across two national nature reserves in the southwest of Hubei, China. Chinese Journal of Plant Ecology, 39, 990-1002. |
[ 黄永涛, 姚兰, 艾训儒, 吕世安, 丁易 (2015). 鄂西南两个自然保护区亚热带常绿落叶阔叶混交林类型及其常绿和落叶物种组成结构分析. 植物生态学报, 39, 990-1002.] | |
[16] | Jin Y, Russo SE, Yu M (2018). Effects of light and topography on regeneration and coexistence of evergreen and deciduous tree species in a Chinese subtropical forest. Journal of Ecology, 106, 1634-1645. |
[17] | Kira T (1991). Forest ecosystems of east and southeast Asia in a global perspective. Ecological Research, 6, 185-200. |
[18] | Kraft NJ, Godoy O, Levine JM (2015). Plant functional traits and the multidimensional nature of species coexistence. Proceedings of the National Academy of Sciences of the United States of America, 112, 797-802. |
[19] | Mi XC, Guo J, Hao ZQ, Xie ZQ, Guo K, Ma KP (2016). Chinese forest biodiversity monitoring: scientific foundations and strategic planning. Biodiversity Science, 24, 1203-1219. |
[ 米湘成, 郭静, 郝占庆, 谢宗强, 郭柯, 马克平 (2016). 中国森林生物多样性监测: 科学基础与执行计划. 生物多样性, 24, 1203-1219.] | |
[20] | Miura M, Manabe T, Nishimura N, Yamamoto S (2001). Forest canopy and community dynamics in a temperate old- growth evergreen broad-leaved forest, south-western Japan: a 7-year study of a 4-ha plot. Journal of Ecology, 89, 841-849. |
[21] | Oksanen JF, Blanchet G, Friendly M, Kindt R, Legendre P, McGlinn D, Minchin PR, OʼHara RB, Simpson GL, Solymos P, Stevens MHH, Szoecs E, Wagner H (2017). vegan: Community Ecology Package. R package version 2.4-3. [2020-04-09]. https://CRAN.R-project.org/package=vegan. |
[22] | Paradis E, Claude J, Strimmer K (2004). Analyses of phylogenetics and evolution in R language. Bioinformatics, 20, 289-290. |
[23] | Pennell MW, Eastman JM, Slater GJ, Brown JW, Uyeda JC, Fitzjohn RG, Alfaro ME, Harmon LJ (2014). geiger v2.0: an expanded suite of methods for fitting macroevolutionary models to phylogenetic trees. Bioinformatics, 30, 2216-2218. |
[24] | Qian H, Jin Y (2016). An updated megaphylogeny of plants, a tool for generating plant phylogenies and an analysis of phylogenetic community structure. Journal of Plant Ecology, 9, 233-239. |
[25] | R Core Team (2016). R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. [2020-04-12]. https://www.R-project.org/. |
[26] | Reich PB (2014). The world-wide “fast-slow” plant economics spectrum: a traits manifesto. Journal of Ecology, 102, 275-301. |
[27] | Ricklefs RE, He F (2016). Region effects influence local tree species diversity. Proceedings of the National Academy of Sciences of the United States of America, 113, 674-679. |
[28] | Song K, Kohyama T, Da L (2014). Transition patterns across an evergreen-deciduous broad-leaved forest ecotone: the effect of topographies. Journal of Vegetation Science, 25, 1257-1266. |
[29] | Song YC (1999). Perspective of the vegetation zonafion of forest region in eastern China. Acta Botanica Sinica, 41, 541-552. |
[ 宋永昌 (1999). 中国东部森林植被带划分之我见. 植物学报, 41, 541-552.] | |
[30] | Song YC (2013). Evergreen Broad-leaved Forests in China. Science Press. Beijing. |
[ 宋永昌 (2013). 中国常绿阔叶林 科学出版社, 北京.] | |
[31] | Song YC, Yan ER, Song K (2015). Synthetic comparison of eight dynamics plots in evergreen broadleaf forests, China. Biodiversity Science, 23, 139-148. |
[ 宋永昌, 阎恩荣, 宋坤 (2015). 中国常绿阔叶林8大动态监测样地植被的综合比较. 生物多样性, 23, 139-148.] | |
[32] | Tang CQ, Ohsawa M (2002). Coexistence mechanisms of evergreen, deciduous and coniferous trees in a mid-montane mixed forest on Mt. Emei, Sichuan, China. Plant Ecology, 161, 215-230. |
[33] | Webb CO, Ackerly DD, Kembel SW (2008). Phylocom: software for the analysis of phylogenetic community structure and trait evolution. Bioinformatics, 24, 2098-2100. |
[34] | Wu ZY (1980). Vegetation of China. Science Press, Beijing. |
[ 吴征镒 (1980). 中国植被. 科学出版社, 北京.] | |
[35] | Zhang L, Luo T, Zhu H, Daly C, Deng K (2009). Leaf life span as a simple predictor of evergreen forest zonation in China. Journal of Biogeography, 37, 27-36. |
[36] | Zhang TT, Wang X, Jin Y, Yu JP, Ren HB, Qian HY, Chen SW, Ma KP, Yu MJ (2020). Comparative study on species composition between Gutianshan and other eastern typical evergreen broad-leaved forests in China. Guihaia, 40, 1061-1070. |
[ 张田田, 王璇, 金毅, 余建平, 任海保, 钱海源, 陈声文, 马克平, 于明坚 (2020). 古田山与中国其他东部典型常绿阔叶林物种组成特征的比较. 广西植物, 40, 1061-1070.] | |
[37] |
Zhu Y, Zhao GF, Zhang LW, Shen GC, Mi XC, Ren HB, Yu MJ, Chen JH, Chen SW, Fang T, Ma KP (2008). Community composition and structure of Gutianshan forest dynamic plot in a mid-subtropical evergreen broad-leaved forest, East China. Chinese Journal of Plant Ecology (Chinese Version), 32, 262-273.
DOI URL |
[ 祝燕, 赵谷风, 张俪文, 沈国春, 米湘成, 任海保, 于明坚, 陈建华, 陈声文, 方腾, 马克平 (2008). 古田山中亚热带常绿阔叶林动态监测样地——群落组成与结构. 植物生态学报, 32, 262-273.] |
[1] | 张慧玲, 张耀艺, 彭清清, 杨静, 倪祥银, 吴福忠. 中亚热带同质园不同生活型树种微量元素重吸收效率的差异[J]. 植物生态学报, 2023, 47(7): 978-987. |
[2] | 冉松松, 余再鹏, 万晓华, 傅彦榕, 邹秉章, 王思荣, 黄志群. 邻域树种多样性对杉木叶片氮磷生态化学计量比的影响[J]. 植物生态学报, 2023, 47(7): 932-942. |
[3] | 张中扬, 宋希强, 任明迅, 张哲. 附生维管植物生境营建作用的生态学功能[J]. 植物生态学报, 2023, 47(7): 895-911. |
[4] | 杨佳绒, 戴冬, 陈俊芳, 吴宪, 刘啸林, 刘宇. 丛枝菌根真菌多样性对植物群落构建和稀有种维持的研究进展[J]. 植物生态学报, 2023, 47(6): 745-755. |
[5] | 张琦, 冯可, 常智慧, 何双辉, 徐维启. 灌丛化对林草交错带植物和土壤微生物的影响[J]. 植物生态学报, 2023, 47(6): 770-781. |
[6] | 冯可, 刘冬梅, 张琦, 安菁, 何双辉. 旅游干扰对松山油松林土壤微生物多样性及群落结构的影响[J]. 植物生态学报, 2023, 47(4): 584-596. |
[7] | 祝维, 周欧, 孙一鸣, 古丽米热·依力哈木, 王亚飞, 杨红青, 贾黎明, 席本野. 混交林内毛白杨和刺槐根系吸水的动态生态位划分[J]. 植物生态学报, 2023, 47(3): 389-403. |
[8] | 李耀琪, 王志恒. 植物功能生物地理学的研究进展与展望[J]. 植物生态学报, 2023, 47(2): 145-169. |
[9] | 杨玲, 梁思琪, 潘佳明, 韦金鑫, 丁涛, 蒋日红, 邵毅贞, 张宪春, 刘勇波, 向巧萍. 濒危植物百山祖冷杉和资源冷杉的物种划分及其遗传资源的保护[J]. 植物生态学报, 2023, 47(12): 1629-1645. |
[10] | 李杰, 郝珉辉, 范春雨, 张春雨, 赵秀海. 东北温带森林树种和功能多样性对生态系统多功能性的影响[J]. 植物生态学报, 2023, 47(11): 1507-1522. |
[11] | 叶洁泓, 于成龙, 卓少菲, 陈新兰, 杨科明, 文印, 刘慧. 木兰科植物叶片光合系统耐热性与叶片形态及温度生态位的关系[J]. 植物生态学报, 2023, 47(10): 1432-1440. |
[12] | 万春燕, 余俊瑞, 朱师丹. 喀斯特与非喀斯特森林乔木叶性状及其相关性网络的差异[J]. 植物生态学报, 2023, 47(10): 1386-1397. |
[13] | 马和平, 王瑞红, 屈兴乐, 袁敏, 慕金勇, 李金航. 不同生境对藏东南地面生苔藓多样性和生物量的影响[J]. 植物生态学报, 2022, 46(5): 552-560. |
[14] | 张零念, 朱贵青, 杨宽, 刘星月, 巩合德, 郑丽. 滇中云南杨梅灌丛主要木本植物生态位与种间联结[J]. 植物生态学报, 2022, 46(11): 1400-1410. |
[15] | 田佳玉, 王彬, 张志明, 林露湘. 光谱多样性在植物多样性监测与评估中的应用[J]. 植物生态学报, 2022, 46(10): 1129-1150. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19