植物生态学报 ›› 2023, Vol. 47 ›› Issue (10): 1432-1440.DOI: 10.17521/cjpe.2022.0298
所属专题: 光合作用
叶洁泓1, 于成龙1, 卓少菲1, 陈新兰2,3, 杨科明2,3, 文印4,3,*(), 刘慧4,3,*()
收稿日期:
2022-07-20
接受日期:
2022-11-02
出版日期:
2023-10-20
发布日期:
2022-11-02
通讯作者:
* (Wen Y, 基金资助:
YE Jie-Hong1, YU Cheng-Long1, ZHUO Shao-Fei1, CHEN Xin-Lan2,3, YANG Ke-Ming2,3, WEN Yin4,3,*(), LIU Hui4,3,*()
Received:
2022-07-20
Accepted:
2022-11-02
Online:
2023-10-20
Published:
2022-11-02
Contact:
* (Wen Y, Supported by:
摘要:
全球气候变化背景下, 极端高温事件日益频繁, 对植物的生长、存活造成严重威胁, 准确评估植物的耐热性, 对物种保育和适应性预测具有重要作用。木兰科是中国亚热带常绿阔叶林的标志类群, 也是被子植物基部类群, 具有重要的生态价值和演化生物学地位, 然而目前对其耐热性尚缺乏了解。该研究以种植于同质园的23种木兰科植物为研究对象, 利用叶绿素荧光技术研究了叶片光合系统的耐热性, 同时测定了叶片形态性状, 并基于这些物种在全球的分布地气候数据, 分析了叶片光合系统耐热性与叶片形态及温度生态位的关系。发现木兰科植物光系统II最大光化学效率降低50%时的温度(T50)范围在46.1-56.7 ℃之间, 且常绿物种的T50显著高于落叶物种。叶片形态方面, T50与叶面积显著正相关, 与叶片厚度无显著相关关系。温度生态位方面, T50与年平均气温、最冷月最低气温呈显著正相关关系, 但与最暖月最高气温无显著相关关系。T50具有较弱的系统发育信号, 暗示T50受系统发育影响较小, 受叶片形态与环境气候的影响较大。研究结果说明木兰科植物的叶片光合系统耐热性较强, 但耐热性的气候适应可能并不受高温环境驱动, 未来的高温事件对生活于更炎热地区的木兰科落叶植物威胁较大。
叶洁泓, 于成龙, 卓少菲, 陈新兰, 杨科明, 文印, 刘慧. 木兰科植物叶片光合系统耐热性与叶片形态及温度生态位的关系. 植物生态学报, 2023, 47(10): 1432-1440. DOI: 10.17521/cjpe.2022.0298
YE Jie-Hong, YU Cheng-Long, ZHUO Shao-Fei, CHEN Xin-Lan, YANG Ke-Ming, WEN Yin, LIU Hui. Correlations of photosynthetic heat tolerance with leaf morphology and temperature niche in Magnoliaceae. Chinese Journal of Plant Ecology, 2023, 47(10): 1432-1440. DOI: 10.17521/cjpe.2022.0298
物种 Species | 叶片习性 Leaf habit | 生活型 Life form | T50 (oC) |
---|---|---|---|
鹅掌楸 Liriodendron chinense | 落叶 Deciduous | 乔木 Tree | 51.5 |
香港木兰 Magnolia championii | 常绿 Evergreen | 灌木 Shrub | 55.3 |
夜香木兰 Magnolia coco | 常绿 Evergreen | 灌木 Shrub | 56.0 |
大叶木兰 Magnolia henryi | 常绿 Evergreen | 乔木 Tree | 56.7 |
荷花玉兰 Magnolia grandiflora | 常绿 Evergreen | 乔木 Tree | 48.5 |
桂南木莲 Magnolia conifera | 常绿 Evergreen | 乔木 Tree | 49.3 |
滇桂木莲 Magnolia forrestii | 常绿 Evergreen | 乔木 Tree | 49.0 |
大果木莲 Magnolia grandis | 常绿 Evergreen | 乔木 Tree | 52.2 |
亮叶木莲 Magnolia lucida | 常绿 Evergreen | 乔木 Tree | 54.2 |
马关木莲 Magnolia insignis | 常绿 Evergreen | 乔木 Tree | 52.1 |
大叶木莲 Magnolia megaphylla | 常绿 Evergreen | 乔木 Tree | 53.7 |
广东木莲 Mangnolia kwangtungensis | 常绿 Evergreen | 乔木 Tree | 50.6 |
合果木 Magnolia baillonii | 常绿 Evergreen | 乔木 Tree | 52.6 |
乐昌含笑 Magnolia chapensis | 常绿 Evergreen | 乔木 Tree | 51.6 |
金叶含笑 Magnolia foveolata | 常绿 Evergreen | 乔木 Tree | 51.1 |
观光木 Magnolia odorum | 常绿 Evergreen | 乔木 Tree | 52.6 |
石碌含笑 Magnolia shiluensis | 常绿 Evergreen | 乔木 Tree | 54.7 |
云南拟单性木兰 Magnolia yunnanensis | 常绿 Evergreen | 乔木 Tree | 51.2 |
盖裂木 Magnolia hodgsonii | 常绿 Evergreen | 乔木 Tree | 54.9 |
凹叶厚朴 Magnolia officinalis subsp. biloba | 落叶 Deciduous | 乔木 Tree | 48.8 |
落叶木莲 Magnolia decidua | 落叶 Deciduous | 乔木 Tree | 46.1 |
望春玉兰 Magnolia biondii | 落叶 Deciduous | 乔木 Tree | 48.6 |
紫玉兰 Magnolia liliflora | 落叶 Deciduous | 灌木 Shrub | 48.2 |
表1 23种木兰科植物概况与叶片光合系统耐热性
Table 1 Overview of 23 Magnoliaceae species and their photosynthetic heat tolerance
物种 Species | 叶片习性 Leaf habit | 生活型 Life form | T50 (oC) |
---|---|---|---|
鹅掌楸 Liriodendron chinense | 落叶 Deciduous | 乔木 Tree | 51.5 |
香港木兰 Magnolia championii | 常绿 Evergreen | 灌木 Shrub | 55.3 |
夜香木兰 Magnolia coco | 常绿 Evergreen | 灌木 Shrub | 56.0 |
大叶木兰 Magnolia henryi | 常绿 Evergreen | 乔木 Tree | 56.7 |
荷花玉兰 Magnolia grandiflora | 常绿 Evergreen | 乔木 Tree | 48.5 |
桂南木莲 Magnolia conifera | 常绿 Evergreen | 乔木 Tree | 49.3 |
滇桂木莲 Magnolia forrestii | 常绿 Evergreen | 乔木 Tree | 49.0 |
大果木莲 Magnolia grandis | 常绿 Evergreen | 乔木 Tree | 52.2 |
亮叶木莲 Magnolia lucida | 常绿 Evergreen | 乔木 Tree | 54.2 |
马关木莲 Magnolia insignis | 常绿 Evergreen | 乔木 Tree | 52.1 |
大叶木莲 Magnolia megaphylla | 常绿 Evergreen | 乔木 Tree | 53.7 |
广东木莲 Mangnolia kwangtungensis | 常绿 Evergreen | 乔木 Tree | 50.6 |
合果木 Magnolia baillonii | 常绿 Evergreen | 乔木 Tree | 52.6 |
乐昌含笑 Magnolia chapensis | 常绿 Evergreen | 乔木 Tree | 51.6 |
金叶含笑 Magnolia foveolata | 常绿 Evergreen | 乔木 Tree | 51.1 |
观光木 Magnolia odorum | 常绿 Evergreen | 乔木 Tree | 52.6 |
石碌含笑 Magnolia shiluensis | 常绿 Evergreen | 乔木 Tree | 54.7 |
云南拟单性木兰 Magnolia yunnanensis | 常绿 Evergreen | 乔木 Tree | 51.2 |
盖裂木 Magnolia hodgsonii | 常绿 Evergreen | 乔木 Tree | 54.9 |
凹叶厚朴 Magnolia officinalis subsp. biloba | 落叶 Deciduous | 乔木 Tree | 48.8 |
落叶木莲 Magnolia decidua | 落叶 Deciduous | 乔木 Tree | 46.1 |
望春玉兰 Magnolia biondii | 落叶 Deciduous | 乔木 Tree | 48.6 |
紫玉兰 Magnolia liliflora | 落叶 Deciduous | 灌木 Shrub | 48.2 |
图1 23种木兰科植物的叶面积(LA)、叶片厚度(LT)与最大光化学量子效率损失50%时的温度(T50)的关系。模型结果相关性显著的以实线表示, 不显著的以虚线表示。*, p < 0.05; ns, p > 0.05。
Fig. 1 Correlations of the temperature that causes 50% decrease of the maximum photochemical quantum efficiency of photosystem II (T50) with leaf area (LA) and leaf thickness (LT) in 23 Magnoliaceae species. Significant correlations are shown as solid lines, and non-significant ones are shown as dashed lines. *, p < 0.05; ns, p > 0.05.
图2 23种木兰科植物分布地年平均气温(MAT)、最暖月最高气温(MTWM)及最冷月最低气温(MTCM)与最大光化学量子效率损失50%时的温度(T50)的关系。模型结果相关性显著的以实线表示, 不显著的以虚线表示。***, p < 0.001; **, p < 0.01; ns, p > 0.05。
Fig. 2 Correlations of the temperature that causes 50% decrease of the maximum photochemical quantum efficiency of photosystem II (T50) with mean annual air temperature (MAT), maximum air temperature of the warmest month (MTWM) and minimum air temperature of the coldest month (MTCM) in 23 Magnoliaceae species. Significant correlations are shown as solid lines, and non-significant ones are shown as dashed lines. ***, p < 0.001; **, p < 0.01; ns, p > 0.05.
指标 Trait | 缩写 Abbreviation | 单位 Unit | 平均值 Average value | Blomberg’s K | p |
---|---|---|---|---|---|
最大光化学量子效率损失50%时的温度 The temperature that causes 50% decrease of the maximum photochemical quantum efficiency of photosystem II | T50 | °C | 51.7 | 0.31 | 0.022 |
叶面积 Leaf area | LA | cm2 | 110.5 | 0.17 | 0.376 |
叶片厚度 Leaf thickness | LT | mm | 0.22 | 0.15 | 0.489 |
年平均气温 Mean annual air temperature | MAT | °C | 19.2 | 0.19 | 0.229 |
最冷月最低气温 Minimum air temperature in the coldest month | MTCM | °C | 6.3 | 0.18 | 0.247 |
最暖月最高气温 Maximum air temperature in the warmest month | MTWM | °C | 30.1 | 0.09 | 0.894 |
表2 23种木兰科植物6个指标平均值及系统发育信号
Table 2 Average values and phylogenetic signals of six traits of 23 Magnoliaceae species
指标 Trait | 缩写 Abbreviation | 单位 Unit | 平均值 Average value | Blomberg’s K | p |
---|---|---|---|---|---|
最大光化学量子效率损失50%时的温度 The temperature that causes 50% decrease of the maximum photochemical quantum efficiency of photosystem II | T50 | °C | 51.7 | 0.31 | 0.022 |
叶面积 Leaf area | LA | cm2 | 110.5 | 0.17 | 0.376 |
叶片厚度 Leaf thickness | LT | mm | 0.22 | 0.15 | 0.489 |
年平均气温 Mean annual air temperature | MAT | °C | 19.2 | 0.19 | 0.229 |
最冷月最低气温 Minimum air temperature in the coldest month | MTCM | °C | 6.3 | 0.18 | 0.247 |
最暖月最高气温 Maximum air temperature in the warmest month | MTWM | °C | 30.1 | 0.09 | 0.894 |
图3 20种木兰科植物系统发育树及其对应的最大光化学量子效率损失50%时的温度(T50)、叶面积(LA)及分布地年平均气温(MAT)。指标数值大小与圆点大小呈比例, 圆点越大表明数值越高。
Fig. 3 Phylogeny, the temperature that causes 50% decrease of the maximum photochemical quantum efficiency of photosystem II (T50), leaf area (LA) and mean annual air temperature (MAT) of original distribution ranges for the 20 Magnoliaceae species. Trait values in each column are in proportion to the size of circles for each species, where larger circles indicate higher values.
[1] |
Allen CD, Macalady AK, Chenchouni H, Bachelet D, McDowell N, Vennetier M, Kitzberger T, Rigling A, Breshears DD, Hogg EH, Gonzalez P, Fensham R, Zhang Z, Castro J, Demidova N, et al. (2010). A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. Forest Ecology and Management, 259, 660-684.
DOI URL |
[2] | Bai KD, Jiang DB, Cao KF, Wan XC, Liao DB (2010). Photosynthetic response to seasonal temperature changes in evergreen and deciduous broad-leaved trees in montane forests of Ailao Mountain and Mao’er Mountain. Acta Ecologica Sinica, 30, 905-913. |
[白坤栋, 蒋得斌, 曹坤芳, 万贤崇, 廖德宝 (2010). 哀牢山和猫儿山中山常绿和落叶阔叶树光合特性对季节温度变化的响应. 生态学报, 30, 905-913.] | |
[3] |
Baker NR (2008). Chlorophyll fluorescence: a probe of photosynthesis in vivo. Annual Review of Plant Biology, 59, 89-113.
DOI PMID |
[4] | Bennett JM, Calosi P, Clusella-Trullas S, Martínez B, Sunday J, Algar AC, Araújo MB, Hawkins BA, Keith S, Kühn I, Rahbek C, Rodríguez L, Singer A, Villalobos F, Ángel Olalla-Tárraga M, Morales-Castilla I (2018). GlobTherm, a global database on thermal tolerances for aquatic and terrestrial organisms. Scientific Data, 5, 180022. DOI: 10.1038/sdata.2018.22. |
[5] |
Blomberg SP, Garland T, Ives AR (2003). Testing for phylogenetic signal in comparative data: behavioral traits are more labile. Evolution, 57, 717-745.
DOI PMID |
[6] |
Breshears DD, Myers OB, Meyer CW, Barnes FJ, Zou CB, Allen CD, McDowell NG, Pockman WT (2009). Tree die-off in response to global change-type drought: mortality insights from a decade of plant water potential measurements. Frontiers in Ecology and the Environment, 7, 185-189.
DOI URL |
[7] |
Dong SS, Wang YL, Xia NH, Liu Y, Liu M, Lian L, Li N, Li LF, Lang XA, Gong YQ, Chen L, Wu E, Zhang SZ (2022). Plastid and nuclear phylogenomic incongruences and biogeographic implications of Magnolia s.l. (Magnoliaceae). Journal of Systematics and Evolution, 60, 1-15.
DOI URL |
[8] | Duan QQ, Xia HY, Ding M, Jiang W, Huang DF (2009). Effects of short-term darkness on leaf photosynthetic structure and functions of Petunia hybrida seedlings. Acta Agriculturae Shanghai, 25(4), 64-69. |
[段青青, 夏含嫣, 丁明, 姜武, 黄丹枫 (2009). 短期黑暗对矮牵牛幼苗叶片光合结构及功能的影响. 上海农业学报, 25(4), 64-69.] | |
[9] |
Fan DY, Fu ZJ, Xie ZQ, Li RG, Zhang SM (2016). A new technology of modulated Chl a fluorescence image: in vivo measurement of the PSII maximum photochemical efficiency and its heterogeneity within leaves. Chinese Journal of Plant Ecology, 40, 942-951.
DOI URL |
[樊大勇, 付增娟, 谢宗强, 李荣贵, 张淑敏 (2016). 调制式荧光影像新技术: 叶片内部最大光化学量子效率及其异质性的活体测定. 植物生态学报, 40, 942-951.]
DOI |
|
[10] | Fang JY, Wang ZH, Tang ZY (2011). Atlas of Woody Plants in China. Springer, Berlin. 193-194. |
[11] |
Feeley KJ, Silman MR (2010). Biotic attrition from tropical forests correcting for truncated temperature niches. Global Change Biology, 16, 1830-1836.
DOI URL |
[12] | Figlar RB (2006). A new classification for Magnolia//Evans P. Rhododendrons with Camellias and Magnolias Yearbook 2006. London. 69-82. |
[13] |
Freckleton RP, Harvey PH, Pagel M (2002). Phylogenetic analysis and comparative data: a test and review of evidence. The American Naturalist, 160, 712-726.
DOI PMID |
[14] | Guangzhou Meteorological Station(2021). Guangzhou Climate Bulletin 2021. [2022-03-10]. http://www.tqyb.com.cn/gz/climaticprediction/bulletin/2022-03-10/9924.html. |
[广州市气象台(2021). 2021年广州市气候公报. [2022-03-10]. http://www.tqyb.com.cn/gz/climaticprediction/bulletin/2022-03-10/9924.html] | |
[15] |
Guo Y, Tan JL (2015). Recent advances in the application of chlorophyll a fluorescence from photosystem II. Photochemistry and Photobiology, 91, 1-14.
DOI PMID |
[16] | He J, Chee CW, Goh CJ (1996). ‘Photoinhibition’ of Heliconia under natural tropical conditions: the importance of leaf orientation for light interception and leaf temperature. Plant, Cell & Environment, 19, 1238-1248. |
[17] | Hou H, Liu H, He PC, Hua L, Xu QY, Ye Q (2019). Different leaf construction strategies in evergreen and deciduous species of Magnoliaceae. Journal of Tropical and Subtropical Botany, 27, 272-278. |
[侯皓, 刘慧, 贺鹏程, 华雷, 许秋园, 叶清 (2019). 木兰科常绿与落叶物种叶片构建策略的差异. 热带亚热带植物学报, 27, 272-278.] | |
[18] |
Kalaji HM, Schansker G, Ladle RJ, Goltsev V, Bosa K, Allakhverdiev SI, Brestic M, Bussotti F, Calatayud A, Dąbrowski P, Elsheery NI, Ferroni L, Guidi L, Hogewoning SW, Jajoo A, et al. (2014). Frequently asked questions about in vivo chlorophyll fluorescence: practical issues. Photosynthesis Research, 122, 121-158.
DOI PMID |
[19] |
Kerkhoff AJ, Moriarty PE, Weiser MD (2014). The latitudinal species richness gradient in New World woody angiosperms is consistent with the tropical conservatism hypothesis. Proceedings of the National Academy of Sciences of the United States of America, 111, 8125-8130.
DOI PMID |
[20] |
Krause GH, Winter K, Krause B, Jahns P, García M, Aranda J, Virgo A (2010). High-temperature tolerance of a tropical tree, Ficus insipida: methodological reassessment and climate change considerations. Functional Plant Biology, 37, 890-900.
DOI URL |
[21] |
Kröber W, Heklau H, Bruelheide H (2015). Leaf morphology of 40 evergreen and deciduous broadleaved subtropical tree species and relationships to functional ecophysiological traits. Plant Biology, 17, 373-383.
DOI PMID |
[22] |
Lancaster LT, Humphreys AM (2020). Global variation in the thermal tolerances of plants. Proceedings of the National Academy of Sciences of the United States of America, 117, 13580-13587.
DOI PMID |
[23] |
Leigh A, Sevanto S, Ball MC, Close JD, Ellsworth DS, Knight CA, Nicotra AB, Vogel S (2012). Do thick leaves avoid thermal damage in critically low wind speeds? New Phytologist, 194, 477-487.
DOI PMID |
[24] |
Lin H, Chen YJ, Zhang HL, Fu PL, Fan ZX (2017). Stronger cooling effects of transpiration and leaf physical traits of plants from a hot dry habitat than from a hot wet habitat. Functional Ecology, 31, 2202-2211.
DOI URL |
[25] |
Liu H, Lundgren MR, Freckleton RP, Xu QY, Ye Q (2016). Uncovering the spatio-temporal drivers of species trait variances: a case study of Magnoliaceae in China. Journal of Biogeography, 43, 1179-1191.
DOI URL |
[26] | Liu H, Ye Q, Wiens JJ (2020). Climatic-niche evolution follows similar rules in plants and animals. Nature Ecology & Evolution, 4, 753-763. |
[27] |
Losos JB (2008). Phylogenetic niche conservatism, phylogenetic signal and the relationship between phylogenetic relatedness and ecological similarity among species. Ecology Letters, 11, 995-1003.
DOI PMID |
[28] |
Marchin RM, Backes D, Ossola A, Leishman MR, Tjoelker MG, Ellsworth DS (2022). Extreme heat increases stomatal conductance and drought-induced mortality risk in vulnerable plant species. Global Change Biology, 28, 1133-1146.
DOI URL |
[29] |
Nie ZL, Wen J, Azuma H, Qiu YL, Sun H, Meng Y, Sun WB, Zimmer EA (2008). Phylogenetic and biogeographic complexity of Magnoliaceae in the Northern Hemisphere inferred from three nuclear data sets. Molecular Phylogenetics and Evolution, 48, 1027-1040.
DOI URL |
[30] |
Ortega-García S, Guevara L, Arroyo-Cabrales J, Lingdig- Cisneros R, Martinez-Meyer E, Vega E, Schondube JE (2017). The thermal niche of Neotropical nectar-feeding bats: its evolution and application to predict responses to global warming. Ecology and Evolution, 7, 6691-6701.
DOI PMID |
[31] |
Perez TM, Feeley KJ (2021). Weak phylogenetic and climatic signals in plant heat tolerance. Journal of Biogeography, 48, 91-100.
DOI URL |
[32] |
Reich PB (2014). The world-wide ‘fast-slow’ plant economics spectrum: a traits manifesto. Journal of Ecology, 102, 275-301.
DOI URL |
[33] |
Revell LJ (2012). phytools: an R package for phylogenetic comparative biology (and other things). Methods in Ecology and Evolution, 3, 217-223.
DOI URL |
[34] |
Romdal TS, Araujo MB, Rahbek C (2013). Life on a tropical planet: niche conservatism and the global diversity gradient. Global Ecology and Biogeography, 22, 344-350.
DOI URL |
[35] | Slot M, Aranda J, Virgo A, Winter K (2021). Leaf heat tolerance of 147 tropical forest species varies with elevation and leaf functional traits, but not with phylogeny. Plant, Cell & Environment, 44, 2414-2427. |
[36] | Sun XF, He JQ, Huang XD, Ping J, Ge JL (2008). Growth characters and chlorophyll fluorescence of goldenrod (Solidago canadensis) in different light intensities. Acta Botanica Boreali-Occidentalia Sinica, 28, 4752-4758. |
[孙晓方, 何家庆, 黄训端, 平江, 葛结林 (2008). 不同光强对加拿大一枝黄花生长和叶绿素荧光的影响. 西北植物学报, 28, 4752-4758.] | |
[37] |
Wang YB, Liu BB, Nie ZL, Chen HF, Chen FJ, Figlar RB, Wen J (2020). Major clades and a revised classification of Magnolia and Magnoliaceae based on whole plastid genome sequences via genome skimming. Journal of Systematics and Evolution, 58, 673-695.
DOI URL |
[38] | Wang YX, Wen Y, Liu H, Cao KF (2021). Relationship between climatic-niche evolution and species diversification in Annonaceae, a pantropical family. Plant Science Journal, 39, 457-466. |
[王一汐, 文印, 刘慧, 曹坤芳 (2021). 气候生态位进化与物种多样化的关系——以泛热带植物番荔枝科为例. 植物科学学报, 39, 457-466.] | |
[39] | Wen Y, Qin DW, Leng B, Zhu YF, Cao KF (2018). The physiological cold tolerance of warm-climate plants is correlated with their latitudinal range limit. Biology Letters, 14, 20180277. DOI: 10.1098/rsbl.2018.0277. |
[40] |
Williams AP, Allen CD, Millar CI, Swetnam TW, Michaelsen J, Still CJ, Leavitt SW (2010). Forest responses to increasing aridity and warmth in the southwestern United States. Proceedings of the National Academy of Sciences of the United States of America, 107, 21289-21294.
DOI PMID |
[41] |
Wright IJ, Dong N, Maire V, Prentice IC, Westoby M, Díaz S (2017). Global climatic drivers of leaf size. Science, 357, 917-921.
DOI PMID |
[42] | Xie HH, Tang YG, Fu J, Chi XL, Du WH, Dimitarov D, Liu JQ, Xi ZX, Wu JY, Xu XT (2022). Diversity patterns and conservation gaps of Magnoliaceae species in China. Science of the Total Environment, 813, 152665. DOI: 10.1016/j.scitotenv.2021.152665. |
[1] | 杨继鸿, 李亚楠, 卜海燕, 张世挺, 齐威. 青藏高原东缘常见阔叶木本植物叶片性状对环境因子的响应[J]. 植物生态学报, 2019, 43(10): 863-876. |
[2] | 汪俊宇, 王小东, 马元丹, 傅卢成, 周欢欢, 王彬, 张汝民, 高岩. ‘波叶金桂’对干旱和高温胁迫的生理生态响应[J]. 植物生态学报, 2018, 42(6): 681-691. |
[3] | 李永华, 李臻, 辛智鸣, 刘明虎, 李艳丽, 郝玉光. 形态变化对叶片表面温度的影响[J]. 植物生态学报, 2018, 42(2): 202-208. |
[4] | 任青吉, 李宏林, 卜海燕. 玛曲高寒沼泽化草甸51种植物光合生理和叶片形态特征的比较[J]. 植物生态学报, 2015, 39(6): 593-603. |
[5] | 潘少安, 彭国全, 杨冬梅. 从叶内生物量分配策略的角度理解叶大小的优化[J]. 植物生态学报, 2015, 39(10): 971-979. |
[6] | 李东胜, 史作民, 冯秋红, 刘峰. 中国东部南北样带暖温带区栎属树种叶片形态性状对气候条件的响应[J]. 植物生态学报, 2013, 37(9): 793-802. |
[7] | 王林, 冯锦霞, 万贤崇. 土层厚度对刺槐旱季水分状况和生长的影响[J]. 植物生态学报, 2013, 37(3): 248-255. |
[8] | 李永华, 卢琦, 吴波, 朱雅娟, 刘殿君, 张金鑫, 靳占虎. 干旱区叶片形态特征与植物响应和适应的关系[J]. 植物生态学报, 2012, 36(1): 88-98. |
[9] | 郝海平, 姜闯道, 石雷, 唐宇丹, 姚涓, 李志强. 根系温度对光核桃幼苗光合机构热稳定性的影响[J]. 植物生态学报, 2009, 33(5): 984-992. |
[10] | 焦健, 李朝周, 黄高宝. 乙烯产生抑制剂对高温胁迫下蚕豆幼苗叶片的保护作用[J]. 植物生态学报, 2006, 30(3): 465-471. |
[11] | 王俊峰, 冯玉龙. 光强对两种入侵植物生物量分配、叶片形态和相对生长速率的影响[J]. 植物生态学报, 2004, 28(6): 781-786. |
[12] | 孙谷畴, 赵平, 曾小平, 彭少麟. 不同光强下焕镛木和观光木的光合参数变化[J]. 植物生态学报, 2002, 26(3): 355-362. |
[13] | 李淑琴, 张纪林, 肖开生. 木兰科树种幼树生长特性的研究[J]. 植物生态学报, 1991, 15(4): 344-354. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19