植物生态学报 ›› 2015, Vol. 39 ›› Issue (10): 971-979.DOI: 10.17521/cjpe.2015.0094
出版日期:
2015-10-01
发布日期:
2015-10-24
通讯作者:
杨冬梅
基金资助:
Shao-An PAN1, Guo-Quan PENG2, Dong-Mei YANG1,*()
Online:
2015-10-01
Published:
2015-10-24
Contact:
Dong-Mei YANG
摘要:
叶大小的变化是许多因素综合作用的结果, 对叶大小优化机制的研究有助于我们更好地理解植物的适应进化和生活史策略。该研究通过对浙江省清凉峰常绿阔叶混交林中的19个常绿阔叶物种和30个落叶阔叶物种叶水平上的相关性状进行分析, 探讨叶内生物量分配策略对叶大小优化的限制性影响。研究结果显示: 无论叶大小用面积还是质量表示, 常绿物种和落叶物种均呈现出叶内生物量分配到支撑结构的比例随着叶大小的增加而增加的规律, 这主要是由叶柄大小与叶片大小之间显著的异速生长关系导致的。这种异速生长关系在常绿物种和落叶物种中普遍存在。然而, 由于常绿物种对叶柄具有较高的机械以及抵抗冰冻栓塞等不利环境的需求, 在某一给定的叶面积下, 常绿物种比落叶物种具有更高的叶柄生物量投资。这些结果表明: 作为整个植株支撑投资的一个重要组成部分, 叶内支撑投资所占的生物量比例对叶大小的优化具有一定的限制性影响。
潘少安, 彭国全, 杨冬梅. 从叶内生物量分配策略的角度理解叶大小的优化. 植物生态学报, 2015, 39(10): 971-979. DOI: 10.17521/cjpe.2015.0094
Shao-An PAN, Guo-Quan PENG, Dong-Mei YANG. Biomass allocation strategies within a leaf: Implication for leaf size optimization. Chinese Journal of Plant Ecology, 2015, 39(10): 971-979. DOI: 10.17521/cjpe.2015.0094
功能组 Functional group | 样本量 No. of samples | 叶面积 Leaf area (cm2) | 叶鲜质量 Leaf fresh mass (g) | 叶干质量 Leaf dry mass (g) | 叶柄/叶片干质量 Petiole/lamina dry mass ratio | 叶柄/叶干质量 Petiole/leaf dry mass ratio |
---|---|---|---|---|---|---|
落叶 Deciduous | 30 | 31.351 ± 3.634b | 0.430 ± 0.051 | 0.156 ± 0.019 | 0.059 ± 0.006 | 0.055 ± 0.005 |
常绿 Evergreen | 19 | 19.783 ± 3.526a | 0.443 ± 0.087 | 0.167 ± 0.024 | 0.061 ± 0.009 | 0.056 ± 0.007 |
表1 清凉峰不同功能组物种的叶功能特征(平均值±标准误差)
Table 1 Leaf functional traits of different functional groups in Qingliang Mountain (mean ± SE)
功能组 Functional group | 样本量 No. of samples | 叶面积 Leaf area (cm2) | 叶鲜质量 Leaf fresh mass (g) | 叶干质量 Leaf dry mass (g) | 叶柄/叶片干质量 Petiole/lamina dry mass ratio | 叶柄/叶干质量 Petiole/leaf dry mass ratio |
---|---|---|---|---|---|---|
落叶 Deciduous | 30 | 31.351 ± 3.634b | 0.430 ± 0.051 | 0.156 ± 0.019 | 0.059 ± 0.006 | 0.055 ± 0.005 |
常绿 Evergreen | 19 | 19.783 ± 3.526a | 0.443 ± 0.087 | 0.167 ± 0.024 | 0.061 ± 0.009 | 0.056 ± 0.007 |
图1 叶柄在叶中的生物量分配比例与叶片面积(A)、叶鲜质量(B)和叶干质量(C)的关系。
Fig. 1 Relationships between petiole/leaf dry mass ratio and lamina area (A), leaf fresh mass (B) and leaf dry mass (C).
指标(y轴-x轴) Index (y-axis-x-axis) | 功能组 Functional group | 样本量 No. of samples | 决定系数 Coefficient of determination | 斜率(95%置信区间) Slope (95% confidence interval) |
---|---|---|---|---|
叶面积-叶柄干质量 Leaf area - petiole dry mass | 落叶 Deciduous | 30 | 0.805 | 0.603 (0.509, 0.715) |
常绿 Evergreen | 19 | 0.883 | 0.617 (0.519, 0.735) | |
叶片干质量-叶柄干质量 Lamina dry mass - petiole dry mass | 落叶 Deciduous | 30 | 0.794 | 0.615 (0.516, 0.732) |
常绿 Evergreen | 19 | 0.876 | 0.659 (0.551, 0.788) |
表2 清凉峰阔叶木本植物叶大小与叶支撑结构的标准化主轴估计回归关系(回归关系均达到极显著水平, p < 0.001)
Table 2 Relationships between leaf size and leaf biomass of supporting organs of woody species in Qingliang Mountain using standardized major axis (SMA) regression. All scaling relationships were highly significant (p < 0.001)
指标(y轴-x轴) Index (y-axis-x-axis) | 功能组 Functional group | 样本量 No. of samples | 决定系数 Coefficient of determination | 斜率(95%置信区间) Slope (95% confidence interval) |
---|---|---|---|---|
叶面积-叶柄干质量 Leaf area - petiole dry mass | 落叶 Deciduous | 30 | 0.805 | 0.603 (0.509, 0.715) |
常绿 Evergreen | 19 | 0.883 | 0.617 (0.519, 0.735) | |
叶片干质量-叶柄干质量 Lamina dry mass - petiole dry mass | 落叶 Deciduous | 30 | 0.794 | 0.615 (0.516, 0.732) |
常绿 Evergreen | 19 | 0.876 | 0.659 (0.551, 0.788) |
[1] | Ackerly DD, Donoghue MJ (1998). Leaf size, sapling allometry, and Corner’s rules: Phylogeny and correlated evolution in maples (Acer).The American Naturalist, 152, 767-791. |
[2] | Bragg JG, Westoby M (2002). Leaf size and foraging for light in a sclerophyll woodland.Functional Ecology, 16, 633-639. |
[3] | Brites D, Valladares F (2005). Implications of opposite phyllotaxis for light interception efficiency of Mediterranean woody plants.Trees, 19, 671-679. |
[4] | Cao KF, Ohkubo T (1998). Allometry, root/shoot ratio and root architecture in understory saplings of deciduous dicotyledonous trees in central Japan.Ecological Research, 13, 217-227. |
[5] | Castro-Díez P, Puyravaud JP, Cornelissen JHC (2000). Leaf structure and anatomy as related to leaf mass per area variation in seedlings of a wide range of woody plant species and types.Oecologia, 124, 476-486. |
[6] | Cavender-Bares J, Cortes P, Rambal S, Joffre R, Miles B, Rocheteau A (2005). Summer and winter sensitivity of leaves and xylem to minimum freezing temperatures: A comparison of co-occurring Mediterranean oaks that differ in leaf lifespan.New Phytologist, 168, 597-612. |
[7] | Cavender-Bares J, Holbrook NM (2001). Hydraulic properties and freezing-induced cavitation in sympatric evergreen and deciduous oaks with contrasting habitats.Plant, Cell & Environment, 24, 1243-1256. |
[8] | Cornelissen JHC (1999). A triangular relationship between leaf size and seed size among woody species: Allometry, ontogeny, ecology and taxonomy.Oecologia, 118, 248-255. |
[9] | Corner EJH (1949). The durian theory or the origin of the modern tree.Annals of Botany, 13, 367-414. |
[10] | Falster DS, Warton DI, Wright IJ (2006). User’s guide to SMATR: Standardised major axis tests and routines version 2.0. . Cited: 11 March 2015 |
[11] | Givnish TJ (1984). Leaf and canopy adaptations in tropical forests. In: Medina E, Mooney HA, Vasquez-Yanes C eds. Physiological Ecology of Plants of the Wet Tropics. Springer, Berlin. 51-84. |
[12] | Givnish TJ (1987). Comparative studies of leaf form: Assessing the relative roles of selective pressures and phylogenetic constraints.The New Phytologist, 106, 131-160. |
[13] | Harvey PH, Pagel MD (1991). The Comparative Method in Evolutionary Biology. Oxford University Press, Oxford, UK. 239. |
[14] | Horn HS (1971). The Adaptive Geometry of Trees (Vol. 3). Princeton University Press, Princeton, USA. |
[15] | Huang CL (1992). Florogeographical analysis of Mount Qingliangfeng Natural Reserve in Tianmu Mountains.Journal of Zhejiang Forestry College, 9, 277-282. (in Chinese with English abstract) |
[黄成林 (1992). 天目山清凉峰自然保护区植物区系地理分析. 浙江林学院学报, 9, 277-282.] | |
[16] | Körner C (1991). Some often overlooked plant characteristics as determinants of plant growth: A reconsideration.Functional Ecology, 5, 162-173. |
[17] | Li GY, Yang DM, Sun SC (2008). Allometric relationships between lamina area, lamina mass and petiole mass of 93 temperate woody species vary with leaf habit, leaf form and altitude.Functional Ecology, 22, 557-564. |
[18] | McDonald PG, Fonseca CR, Overton JM, Westoby M (2003). Leaf-size divergence along rainfall and soil-nutrient gradients: Is the method of size reduction common among clades?Functional Ecology, 17, 50-57. |
[19] | Milla R, Reich PB (2007). The scaling of leaf area and mass: The cost of light interception increases with leaf size.Proceedings of the Royal Society B: Biological Sciences, 274, 2109-2115. |
[20] | Moles AT, Westoby M (2000). Do small leaves expand faster than large leaves, and do shorter expansion times reduce herbivore damage?Oikos, 90, 517-524. |
[21] | Niinemets Ü (1998). Are compound-leaved woody species inherently shade-intolerant? An analysis of species ecological requirements and foliar support costs.Plant Ecology, 134, 1-11. |
[22] | Niinemets Ü, Kull K (1994). Leaf weight per area and leaf size of 85 Estonian woody species in relation to shade tolerance and light availability.Forest Ecology and Management, 70, 1-10. |
[23] | Niinemets Ü, Kull O (1999). Biomass investment in leaf lamina versus lamina support in relation to growth irradiance and leaf size in temperate deciduous trees.Tree Physiology, 19, 349-358. |
[24] | Niinemets Ü, Portsmuth A, Tobias M (2006). Leaf size modifies support biomass distribution among stems, petioles and mid-ribs in temperate plants.New Phytologist, 171, 91-104. |
[25] | Niinemets Ü, Portsmuth A, Tobias M (2007). Leaf shape and venation pattern alter the support investments within leaf lamina in temperate species: A neglected source of leaf physiological differentiation?Functional Ecology, 21, 28-40. |
[26] | Niinemets Ü, Sack L (2006). Structural determinants of leaf light-harvesting capacity and photosynthetic potentials. In: Esser K, Lüttge U, Beyschlag W, Murata J eds. Progress in Botany. Springer, Berlin. 385-419. |
[27] | Niklas KJ (1993). Testing “economy in design” in plants: Are the petioles and rachises of leaves “designed” according to the principle of uniform strength?Annals of Botany, 71, 33-41. |
[28] | Niklas KJ (1999). A mechanical perspective on foliage leaf form and function.New Phytologist, 143, 19-31. |
[29] | Niklas KJ, Cobb ED, Niinemets Ü, Reich PB, Sellin A, Shipley B, Wright IJ (2007). “Diminishing returns” in the scaling of functional leaf traits across and within species groups.Proceedings of the National Academy of Sciences of the United States of America, 104, 8891-8896. |
[30] | Parkhurst DF, Loucks OL (1972). Optimal leaf size in relation to environment.The Journal of Ecology, 60, 505-537. |
[31] | Pearcy RW, Yang W (1998). The functional morphology of light capture and carbon gain in the Redwood forest understorey plant Adenocaulon bicolor Hook.Functional Ecology, 12, 543-552. |
[32] | Pearcy RW, Muraoka H, Valladares F (2005). Crown architecture in sun and shade environments: Assessing function and trade-offs with a three-dimensional simulation model.New Phytologist, 166, 791-800. |
[33] | Pickup M, Westoby M, Basden A (2005). Dry mass costs of deploying leaf area in relation to leaf size.Functional Ecology, 19, 88-97. |
[34] | Pitman E (1939). A note on normal correlation.Biometrika, 31, 9-12. |
[35] | Price CA, Weitz JS (2012). Allometric covariation: A hallmark behavior of plants and leaves.New Phytologist, 193, 882-889. |
[36] | Qian H, Wang SL (1988). Major forest vegetation types and their distributions in Qingliang Mountain Natural Reserve (JQNR) of Jixi County, Anhui Province.Journal of Ecology, 7(2), 32-36. (in Chinese with English abstract) |
[钱宏, 汪思龙 (1988). 安徽省绩溪县清凉峰自然保护区主要森林植被类型及其分布. 生态学杂志, 7(2), 32-36.] | |
[37] | Reich PB, Walters MB, Ellsworth DS (1992). Leaf life-span in relation to leaf, plant, and stand characteristics among diverse ecosystems.Ecological Monographs, 62, 365-392. |
[38] | Reich PB (1998). Variation among plant species in leaf turnover rates and associated traits: Implications for growth at all lefe stages. In: Lambers H, Poorter H, van Vuuren MMI eds. Inherent Variation in Plant Growth. Physiological Mechanisms and Ecological Consequences. Backuys Publishers, Leiden, The Netherlands. 467-487. |
[39] | Roth-Nebelsick A, Uhl D, Mosbrugger V, Kerp H (2001). Evolution and function of leaf venation architecture: A review.Annals of Botany, 87, 553-566. |
[40] | Sokal RR, Rolhf FJ (1995). Biometry: The Principles and Practice of Statistics in Biological Research. 3rd edn. W. H. Freeman Company, New York. |
[41] | Song CS (1997). Scientific Surver of Qingliangfeng Nature Reserve. China Forestry Publishing House, Beijing. (in Chinese) |
[宋朝枢 (1997). 浙江清凉峰自然保护区科学考察集. 中国林业出版社, 北京.] | |
[42] | Sun SC, Jin DM, Shi PL (2006). The leaf size-twig size spectrum of temperate woody species along an altitudinal gradient: An invariant allometric scaling relationship.Annals of Botany, 97, 97-107. |
[43] | Takenaka A (1994). Effects of leaf blade narrowness and petiole length on the light capture efficiency of a shoot.Ecological Research, 9, 109-114. |
[44] | Taylor SE (1975). Optimal leaf form. In: Perspectives of Biophysical Ecology. Vol. 12. Springer, Berlin. 73-86. |
[45] | Taylor SE, Sexton OJ (1972). Some implications of leaf tearing in Musaceae.Ecology, 53, 143-149. |
[46] | Tomlinson PB (1987). Architecture of tropical plants.Annual Review of Ecology and Systematics, 18, 1-21. |
[47] | Valladares F, Skillman JB, Pearcy RW (2002). Convergence in light capture efficiencies among tropical forest understory plants with contrasting crown architectures: A case of morphological compensation.American Journal of Botany, 89, 1275-1284. |
[48] | Warton DI, Weber NC (2002). Common slope tests for bivariate errors-in-variables models.Biometrical Journal, 44, 161-174. |
[49] | Warton DI, Wright IJ, Falster DS, Westoby M (2006). Bivariate line-fitting methods for allometry.Biological Reviews, 81, 259-291. |
[50] | Westoby M, Falster DS, Moles AT, Vesk PA, Wright IJ (2002). Plant ecological strategies: Some leading dimensions of variation between species.Annual Review of Ecology and Systematics, 33, 125-159. |
[51] | Westoby M, Wright IJ (2003). The leaf size-twig size spectrum and its relationship to other important spectra of variation among species.Oecologia, 135, 621-628. |
[52] | Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, Cavender-Bares J, Chapin T, Cornelissen JHC, Diemer M, Flexas J, Garnier E, Groom PK, Gulias J, Hikosaka K, Lamont BB, Lee T, Lee W, Lusk C, Midgley JJ, Navas ML, Niinemets U, Oleksyn J, Osada N, Poorter H, Poot P, Prior L, Pyankov VI, Roumet C, Thomas SC, Tjoelker MG, Veneklaas EJ, Villar R (2004). The worldwide leaf economics spectrum.Nature, 428, 821-827. |
[53] | Wright IJ, Westoby M (2001). Understanding seedling growth relationships through specific leaf area and leaf nitrogen concentration: Generalisations across growth forms and growth irradiance.Oecologia, 127, 21-29. |
[54] | Wright IJ, Westoby M, Reich PB (2002). Convergence towards higher leaf mass per area in dry and nutrient-poor habitats has different consequences for leaf life span.Journal of Ecology, 90, 534-543. |
[55] | Yang DM, Li GY, Sun SC (2009). The effects of leaf size, leaf habit, and leaf form on leaf/stem relationships in plant twigs of temperate woody species.Journal of Vegetation Science, 20, 359-366. |
[56] | Yang DM, Niklas KJ, Xiang S, Sun SC (2010). Size-dependent leaf area ratio in plant twigs: Implication for leaf size optimization.Annals of Botany, 105, 71-77. |
[57] | Yang DM, Zhang JJ, Zhou D, Qian MJ, Zheng Y, Jin LM (2012). Leaf and twig functional traits of woody plants and their relationships with environmental change: A review.Chinese Journal of Ecology, 31, 702-713. (in Chinese with English abstract) |
[杨冬梅, 章佳佳, 周丹, 钱敏杰, 郑瑶, 金灵妙 (2012). 木本植物茎叶功能性状及其关系随环境变化的研究进展. 生态学杂志, 31, 702-713.] | |
[58] | Zhu JD, Meng TT, Ni J, Su HX, Xie ZQ, Zhang SR, Zheng YR, Xiao CW (2011). Within-leaf allometric relationships of mature forests in different bioclimatic zones vary with plant functional types.Chinese Journal of Plant Ecology, 35, 687-698. (in Chinese with English abstract) |
[祝介东, 孟婷婷, 倪健, 苏宏新, 谢宗强, 张守仁, 郑元润, 肖春旺 (2011). 不同气候带间成熟林植物叶性状间异速生长关系随功能型的变异. 植物生态学报, 35, 687-698.] |
[1] | 梁逸娴, 王传宽, 臧妙涵, 上官虹玉, 刘逸潇, 全先奎. 落叶松径向生长和生物量分配对气候变暖的响应[J]. 植物生态学报, 2024, 48(4): 459-468. |
[2] | 耿雪琪, 唐亚坤, 王丽娜, 邓旭, 张泽凌, 周莹. 氮添加增加中国陆生植物生物量并降低其氮利用效率[J]. 植物生态学报, 2024, 48(2): 147-157. |
[3] | 刘艳杰, 刘玉龙, 王传宽, 王兴昌. 东北温带森林5个羽状复叶树种叶成本-效益关系比较[J]. 植物生态学报, 2023, 47(11): 1540-1550. |
[4] | 叶洁泓, 于成龙, 卓少菲, 陈新兰, 杨科明, 文印, 刘慧. 木兰科植物叶片光合系统耐热性与叶片形态及温度生态位的关系[J]. 植物生态学报, 2023, 47(10): 1432-1440. |
[5] | 王广亚, 陈柄华, 黄雨晨, 金光泽, 刘志理. 着生位置对水曲柳小叶性状变异及性状间相关性的影响[J]. 植物生态学报, 2022, 46(6): 712-721. |
[6] | 李露, 金光泽, 刘志理. 阔叶红松林3种阔叶树种柄叶性状变异与相关性[J]. 植物生态学报, 2022, 46(6): 687-699. |
[7] | 熊映杰, 于果, 魏凯璐, 彭娟, 耿鸿儒, 杨冬梅, 彭国全. 天童山阔叶木本植物叶片大小与叶脉密度及单位叶脉长度细胞壁干质量的关系[J]. 植物生态学报, 2022, 46(2): 136-147. |
[8] | 董楠, 唐明明, 崔文倩, 岳梦瑶, 刘洁, 黄玉杰. 不同根系分隔方式对栗和茶幼苗生长的影响[J]. 植物生态学报, 2022, 46(1): 62-73. |
[9] | 尹晓雷, 刘旭阳, 金强, 李先德, 林少颖, 阳祥, 王维奇, 张永勋. 不同管理模式对茶树碳氮磷含量及其生态化学计量比的影响[J]. 植物生态学报, 2021, 45(7): 749-759. |
[10] | 杨克彤, 常海龙, 陈国鹏, 俞筱押, 鲜骏仁. 兰州市主要绿化植物气孔性状特征[J]. 植物生态学报, 2021, 45(2): 187-196. |
[11] | 王娇, 关欣, 张伟东, 黄苛, 朱睦楠, 杨庆朋. 杉木幼苗生物量分配格局对氮添加的响应[J]. 植物生态学报, 2021, 45(11): 1231-1240. |
[12] | 李耀琪, 王志恒. 植物叶片形态的生态功能、地理分布与成因[J]. 植物生态学报, 2021, 45(10): 1154-1172. |
[13] | 邢磊, 段娜, 李清河, 刘成功, 李慧卿, 孙高洁. 白刺不同物候期的生物量分配规律[J]. 植物生态学报, 2020, 44(7): 763-771. |
[14] | 熊星烁, 蔡宏宇, 李耀琪, 马文红, 牛克昌, 陈迪马, 刘娜娜, 苏香燕, 景鹤影, 冯晓娟, 曾辉, 王志恒. 内蒙古典型草原植物叶片碳氮磷化学计量特征的季节动态[J]. 植物生态学报, 2020, 44(11): 1138-1153. |
[15] | 陈国鹏, 杨克彤, 王立, 王飞, 曹秀文, 陈林生. 甘肃南部7种高寒杜鹃生物量分配的异速生长关系[J]. 植物生态学报, 2020, 44(10): 1040-1049. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19