植物生态学报 ›› 2022, Vol. 46 ›› Issue (1): 62-73.DOI: 10.17521/cjpe.2021.0255
所属专题: 根系生态学
董楠1, 唐明明1, 崔文倩1,2, 岳梦瑶1,3, 刘洁1,2, 黄玉杰1,*()
收稿日期:
2021-07-07
接受日期:
2021-08-31
出版日期:
2022-01-20
发布日期:
2022-04-13
通讯作者:
黄玉杰
作者简介:
*(xnyjhuang@163.com)基金资助:
Nan DONG1, Ming-Ming TANG1, Wen-Qian CUI1,2, Meng-Yao YUE1,3, Jie LIU1,2, Yu-Jie HUANG1,*()
Received:
2021-07-07
Accepted:
2021-08-31
Online:
2022-01-20
Published:
2022-04-13
Contact:
Yu-Jie HUANG
摘要:
研究不同根系分隔方式对栗(Castanea mollissima)/茶(Camellia sinensis)间作地下部分相互作用和植物种间互作动态的影响, 探究根系互作对植株株高、基径和根系生长的影响, 可为栗/茶复合经营模式的可持续发展提供科学指导。该研究以栗/茶间作和相应单作为研究对象, 运用盆栽实验的根系分隔技术(塑料膜分隔、尼龙网分隔和不分隔), 分别利用logistic生长模型模拟栗和茶株高与基径生长动态过程, 利用幂函数研究株高-基径的异速生长关系, 并从细根发育角度分析地下部分相互作用对植物生长发育的影响。结果显示: 与单作茶相比, 间作茶塑料膜分隔方式地上部分、地下部分和总的干生物量以及根长、根表面积、根体积、分形丰度和直径为0.2-1.0 mm根的根长分别显著增加了357.1%、281.8%和345.2%以及74.3%、273.9%、244.8%、42.0%和382.4%。间作茶塑料膜分隔方式的株高渐进值比单作茶显著增加了30.9%, 尼龙网分隔方式的间作栗株高渐进值和基径渐进值比单作栗分别显著增加了21.9%和28.2%; 塑料膜分隔方式下间作茶株高达到最大增长速率的时间和间作栗的基径达到最大增长速率的时间比相应单作模式分别显著延迟了14和15天。不同处理中栗和茶的株高-基径异速生长均呈显著线性正相关关系, 且不分隔方式下间作栗和间作茶的株高-基径异速生长模型的斜率均表现为最小, 且均<1。结果表明, 栗和茶间作时, 栗地上部分通过遮阴促进茶幼苗侧根分枝数、细根根长和株高的生长来增加其干生物量累积, 但地下部分则表现为竞争作用, 且随着地下部分竞争作用的强度增加会逐渐抵消地上部分的促进作用, 最终植物种间相互作用表现为中性作用。
董楠, 唐明明, 崔文倩, 岳梦瑶, 刘洁, 黄玉杰. 不同根系分隔方式对栗和茶幼苗生长的影响. 植物生态学报, 2022, 46(1): 62-73. DOI: 10.17521/cjpe.2021.0255
Nan DONG, Ming-Ming TANG, Wen-Qian CUI, Meng-Yao YUE, Jie LIU, Yu-Jie HUANG. Growth of chestnut and tea seedlings under different root partitioning patterns. Chinese Journal of Plant Ecology, 2022, 46(1): 62-73. DOI: 10.17521/cjpe.2021.0255
图2 不同处理下栗/茶的生物量和根冠比的分析(平均值±标准误)。 MB, 尼龙网分隔; MC, 单作; NB, 不分隔; PB, 塑料膜分隔。不同小写字母表示不同处理间地上部分或地下部分干生物量差异显著(p < 0.05); 不同大写字母: A-C表示不同处理间根冠比差异显著(p < 0.05), X-Z表示不同处理间整体干生物量差异显著(p < 0.05)。
Fig. 2 Biomass and root shoot ratio analysis of chestnut/tea under different treatments (mean ± SE). MB, nylon mesh barrier; MC, monoculture; NB, no barrier; PB, plastic film barrier. Different lowercase letters showed significant differences in aboveground, underground or overall dry mass among different treatments (p < 0.05); different uppercase letters: A-C indicated significant differences in the root shoot ratio among different treatments (p < 0.05), X-Z indicate significant differences in overall dry mass among different treatments (p < 0.05).
图3 不同处理对栗/茶根系形态的影响(平均值±标准误)。 不同小写字母表示同一树种处理间差异显著(p < 0.05); 不同大写字母表示不同树种间差异显著(p < 0.05)。
Fig. 3 Effects of different treatments on root morphology of chestnut/tea (mean ± SE). Different lowercase letters indicated significant differences between different treatments of the same tree species (p < 0.05); different uppercase letters indicated significant differences among different tree species (p < 0.05).
图4 不同处理下栗/茶不同直径(D)根的根长(平均值±标准误)。 不同小写字母表示同一树种处理间差异显著(p < 0.05); 不同大写字母表示不同树种间差异显著(p < 0.05)。
Fig. 4 Root length of different diameters (D) of chestnut/tea under different treatments (mean ± SE). Different lowercase letters indicated significant differences between different treatments of the same tree species (p < 0.05); different uppercase letters indicated significant differences among different tree species (p < 0.05).
图5 不同分隔方式下栗(灰线)/茶(黑线)株高随时间动态变化。 每一个点代表取样时的平均值±标准误(n = 5)。各累积曲线均是运用各测定参数的平均值通过logistic生长模型进行拟合的。
Fig. 5 Plant height of chestnut (gray line)/tea (black line) changed with time under different separation methods. Each point represents mean ± SE (n = 5) at sampling. The cumulative curves were fitted by using the average value of each measurement parameter through logistic models.
图6 栗/茶株高生长的logistic方程参数(平均值±标准误)。 不同小写字母表示同一树种处理间差异显著(p < 0.05); 不同大写字母表示不同树种间差异显著(p < 0.05)。
Fig. 6 Logistic equation parameters (mean ± SE) of chestnut/tea plant height growth. Different lowercase letters indicated significant differences between different treatments of the same tree species (p < 0.05); different uppercase letters indicated significant differences among different tree species (p < 0.05).
图7 不同分隔方式下栗(灰线)/茶(黑线)基径随时间动态变化。 每一个点代表取样时的平均值±标准误(n = 5)。各累积曲线均是运用各测定参数的平均值通过logistic生长模型进行拟合的。
Fig. 7 Basal stem diameter of chestnut (gray line)/tea (black line) varied with time under different separation methods. Each point represents mean ± SE (n = 5) at sampling. The cumulative curves were fitted by using the average value of each measurement parameter through logistic models.
图8 栗/茶基径的logistic方程参数(平均值±标准误)。 不同小写字母表示同一树种处理间差异显著(p < 0.05); 不同大写字母表示不同树种间差异显著(p < 0.05)。
Fig. 8 Logistic equation parameters (mean ± SE) of chestnut/tea basal stem diameter. Different lowercase letters indicated significant differences between different treatments of the same tree species (p < 0.05); different uppercase letters indicated significant differences among different tree species (p < 0.05).
[1] |
Bargaz A, Noyce GL, Fulthorpe R, Carlsson G, Furze JR, Jensen ES, Dhiba D, Isaac ME (2017). Species interactions enhance root allocation, microbial diversity and P acquisition in intercropped wheat and soybean under P deficiency. Applied Soil Ecology, 120, 179-188.
DOI URL |
[2] |
Cahill JF, McNickle GG, Haag JJ, Lamb EG, Nyanumba SM,St Clair CC(2010). Plants integrate information about nutrients and neighbors. Science, 328, 1657.
DOI PMID |
[3] | Cheng LX, Jin CZ, Zhu ZL (2014). Annual growth dynamics of two-year-old seedlings of Carpinus betulus. Journal of Central South University of Forestry & Technology, 34(9), 26-30. |
[ 程龙霞, 金纯子, 祝遵凌 (2014). 欧洲鹅耳枥2年生播种苗年生长动态. 中南林业科技大学学报, 34(9), 26-30.] | |
[4] |
Cui R, Hirano T, Sun LF, Teramoto M, Liang NS (2021). Variations in biomass, production and respiration of fine roots in a young larch forest. Journal of Agricultural Meteorology, 77, 167-178.
DOI URL |
[5] |
Dannowski M, Block A (2005). Fractal geometry and root system structures of heterogeneous plant communities. Plant and Soil, 272, 61-76.
DOI URL |
[6] |
de Costa WAJM, Mohotti AJ, Wijeratne MA (2007). Ecophysiology of tea. Brazilian Journal of Plant Physiology, 19, 299-332.
DOI URL |
[7] | de Costa WAJM, Surenthran P (2005). Resource competition in contour hedgerow intercropping systems involving different shrub species with mature and young tea on sloping highlands in Sri Lanka. Journal of Agricultural Science, 143, 395-405. |
[8] |
de Kroon H (2007). How do roots interact? Science, 318, 1562-1563.
PMID |
[9] |
Dong N, Tang MM, Zhang WP, Bao XG, Wang Y, Christie P, Li L (2018). Temporal differentiation of crop growth as one of the drivers of intercropping yield advantage. Scientific Reports, 8, 3110. DOI: 10.1038/s41598-018-21414-w.
DOI PMID |
[10] |
Engbersen N, Brooker RW, Stefan L, Studer B, Schöb C (2021). Temporal differentiation of resource capture and biomass accumulation as a driver of yield increase in intercropping. Frontiers in Plant Science, 12, 668803. DOI: 10.3389/fpls.2021.668803.
DOI URL |
[11] |
Fernández PL, Pablos F, Martı́n MJ, González AG (2002). Multi-element analysis of tea beverages by inductively coupled plasma atomic emission spectrometry. Food Chemistry, 76, 483-489.
DOI URL |
[12] |
Gallego JLR, Ordóñez A, Loredo J (2002). Investigation of trace element sources from an industrialized area (Avilés, northern Spain) using multivariate statistical methods. Environment International, 27, 589-596.
DOI URL |
[13] |
Greco SA, Cavagnaro JB (2003). Effects of drought in biomass production and allocation in three varieties of Trichloris crinita P. (Poaceae) a forage grass from the arid Monte region of Argentina. Plant Ecology, 164, 125-135.
DOI URL |
[14] | Gu HQ, Li JQ (2019). Study on forest tea composite ecosystem management and rural development in middle and lower reaches of Lancangjiang River. Resource Development & Market, 35, 1467-1471. |
[ 谷红芹, 李建钦 (2019). 澜沧江中下游地区林茶复合生态系统经营与乡村发展研究. 资源开发与市场, 35, 1467-1471.] | |
[15] |
Gu JC, Wang DN, Xia XX, Wang SZ (2016). Applications of functional classification methods for tree fine root biomass estimation: advancements and synthesis. Chinese Journal of Plant Ecology, 40, 1344-1351.
DOI URL |
[ 谷加存, 王东男, 夏秀雪, 王韶仲 (2016). 功能划分方法在树木细根生物量研究中的应用: 进展与评述. 植物生态学报, 40, 1344-1351.]
DOI |
|
[16] | Han WX, Fang JY (2008). Review on the mechanism models of allometric scaling laws: 3/4 vs. 2/3 power. Chinese Journal of Plant Ecology, 32, 951-960. |
[ 韩文轩, 方精云 (2008). 幂指数异速生长机制模型综述. 植物生态学报, 32, 951-960.]
DOI |
|
[17] |
Helluy M, Gavinet J, Prévosto B, Fernandez C (2021). Influence of light, water stress and shrub cover on sapling survival and height growth: the case of A. unedo, F. ornus and S. domestica under Mediterranean climate. European Journal of Forest Research, 140, 635-647.
DOI URL |
[18] |
Hulshof CM, Swenson NG, Weiser MD (2015). Tree height-diameter allometry across the United States. Ecology and Evolution, 5, 1193-1204.
DOI URL |
[19] |
Iqbal SMM, Ireland CR, Rodrigo VHL (2006). A logistic analysis of the factors determining the decision of smallholder farmers to intercrop: a case study involving rubber-tea intercropping in Sri Lanka. Agricultural Systems, 87, 296-312.
DOI URL |
[20] |
Li L, Sun JH, Zhang FS, Guo TW, Bao XG, Smith FA, Smith SE (2006). Root distribution and interactions between intercropped species. Oecologia, 147, 280-290.
DOI URL |
[21] |
Li Q, Zhao CZ, Kang MP, Li XY (2021). The relationship of the main root-shoot morphological characteristics and biomass allocation of Saussurea salsa under different habitat conditions in Sugan lake wetland on the northern margin of the Qinghai-Tibet Plateau. Ecological Indicators, 128, 107836. DOI: 10.1016/j.ecolind.2021.107836.
DOI URL |
[22] |
Li XJ, Wang Q, Ni S, Ruan X, Wang YH, Zhang H, Wang GF (2013). Allelopathy comparison between Castanea mollissima and C. dentata. Chinese Journal of Plant Ecology, 37, 173-182.
DOI URL |
[ 李晓娟, 王强, 倪穗, 阮晓, 王永红, 张焕, 王高峰 (2013). 栗与美国板栗化感作用的比较. 植物生态学报, 37, 173-182.]
DOI |
|
[23] |
Liu LL, Li YY, She GB, Zhang XC, Jordan B, Chen Q, Zhao J, Wan XC (2018). Metabolite profiling and transcriptomic analyses reveal an essential role of UVR8-mediated signal transduction pathway in regulating flavonoid biosynthesis in tea plants (Camellia sinensis) in response to shading. BMC Plant Biology, 18, 233. DOI: 10.1186/s12870-018-1440-0.
DOI |
[24] |
Liu YX, Zhang WP, Sun JH, Li XF, Christie P, Li L (2015). High morphological and physiological plasticity of wheat roots is conducive to higher competitive ability of wheat than maize in intercropping systems. Plant and Soil, 397, 387-399.
DOI URL |
[25] | Liu ZM, Guo SJ, Qin TT, Sun XB (2015). Growth response of 1 a Castanea mollissima seedlings to compost of forestry and agricultural residues. Journal of Central South University of Forestry & Technology, 35(10), 62-68. |
[ 刘正民, 郭素娟, 秦天天, 孙小兵 (2015). 板栗1 a实生苗对农林废弃物堆肥的生长响应. 中南林业科技大学学报, 35(10), 62-68.] | |
[26] | Luo YP (2008). Tea Cultivation. China Agriculture Press, Beijing. 140-142. |
[ 骆耀平 (2008). 茶树栽培学. 中国农业出版社, 北京. 140-142.] | |
[27] |
Ma YH, Fu SL, Zhang XP, Zhao K, Chen HYH (2017). Intercropping improves soil nutrient availability, soil enzyme activity and tea quantity and quality. Applied Soil Ecology, 119, 171-178.
DOI URL |
[28] |
Norby RJ, Jackson RB (2000). Root dynamics and global change: seeking an ecosystem perspective. New Phytologist, 147, 3-12.
DOI URL |
[29] |
Padilla FM, Aarts BHJ, Roijendijk YOA, Caluwe H, Mommer L, Visser EJW, Kroon H (2013). Root plasticity maintains growth of temperate grassland species under pulsed water supply. Plant and Soil, 369, 377-386.
DOI URL |
[30] |
Pretzsch H, Dieler J (2012). Evidence of variant intra- and interspecific scaling of tree crown structure and relevance for allometric theory. Oecologia, 169, 637-649.
DOI PMID |
[31] |
Semchenko M, John EA, Hutchings MJ (2007). Effects of physical connection and genetic identity of neighbouring ramets on root-placement patterns in two clonal species. New Phytologist, 176, 644-654.
DOI PMID |
[32] | Shan LS (2013). Studies on Morphology and Function of Root of Typical Desert Plant and Its Drought-resistant Physiology Characteristics on Northwest China. PhD dissertation, Gansu Agricultural University, Lanzhou. 31. |
[ 单立山 (2013). 西北典型荒漠植物根系形态结构和功能及抗旱生理研究. 博士学位论文, 中甘肃农业大学, 兰州. 31.] | |
[33] | Shen JB, Bai Y, Wei Z, Chu CC, Yuan LX, Zhang L, Cui ZL, Cong WF, Zhang FS (2021). Rhizobiont: an interdisciplinary innovation and perspective for harmonizing resources, environment, and food security. Acta Pedologica Sinica, 58, 805-813. |
[ 申建波, 白洋, 韦中, 储成才, 袁力行, 张林, 崔振岭, 丛汶峰, 张福锁 (2021). 根际生命共同体: 协调资源、环境和粮食安全的学术思路与交叉创新. 土壤学报, 58, 805-813.] | |
[34] |
Song QH, Zhao CZ, Shi YC, Du J, Wang JW, Chen J (2015). Fractal root system of Melica przewalskyi along different aspect in degraded grassland. Chinese Journal of Plant Ecology, 39, 816-824.
DOI URL |
[ 宋清华, 赵成章, 史元春, 杜晶, 王继伟, 陈静 (2015). 高寒草地甘肃臭草根系分形结构的坡向差异性. 植物生态学报, 39, 816-824.]
DOI |
|
[35] |
Walk TC, Van Erp E, Lynch JP (2004). Modelling applicability of fractal analysis to efficiency of soil exploration by roots. Annals of Botany, 94, 119-128.
DOI URL |
[36] |
Wang GG, Bauerle WL, Mudder BT (2006). Effects of light acclimation on the photosynthesis, growth, and biomass allocation in American chestnut (Castanea dentata) seedlings. Forest Ecology and Management, 226, 173-180.
DOI URL |
[37] |
Ward D (2021). Shade affects fine-root morphology in range- encroaching eastern redcedars (Juniperus virginiana) more than competition, soil fertility and pH. Pedobiologia, 84, 150708. DOI: 10.1016/j.pedobi.2021.150708.
DOI URL |
[38] |
Whiting SN, Leake JR, McGrath SP, Baker AJ (2001). Hyperaccumulation of Zn by Thlaspi caerulescens can ameliorate Zn toxicity in the rhizosphere of cocropped Thlaspi arvense. Environmental Science & Technology, 35, 3237-3241.
DOI URL |
[39] |
Wu KX, Fullen MA, An TX, Fan ZW, Zhou F, Xue GF, Wu BZ (2012). Above- and below-ground interspecific interaction in intercropped maize and potato: a field study using the “target” technique. Field Crops Research, 139, 63-70.
DOI URL |
[40] | Xu JM, Pan T, Long JF, Tang WY, Tian SY, Ye SM (2018). Effect of nitrogen application on the growth and leaf physiological traits of Eucalyptus urophylla and Dalbergia odorifera seedlings under different root partitioning patterns. Acta Botanica Boreali-Occidentalia Sinica, 38, 1128-1137. |
[ 许峻模, 潘婷, 龙佳峰, 汤文艳, 田诗韵, 叶绍明 (2018). 施氮及不同根系分隔模式对尾叶桉和降香黄檀幼苗生长及叶片生理特性的影响. 西北植物学报, 38, 1128-1137.] | |
[41] |
Xue JH, Tang RN (1998). Practices and investigations of tree-tea intercropping systems in China. International Tree Crops Journal, 9, 179-185.
DOI URL |
[42] | Yang H, Zhang WP, Li L (2021). Intercropping: feed more people and build more sustainable agroecosystems. Frontiers of Agricultural Science and Engineering, 8, 373-386. |
[43] | Yin DS, Shen HL (2016). Shade tolerance and the adaptability of forest plants in morphology and physiology: a review. Chinese Journal of Applied Ecology, 27, 2687-2698. |
[ 殷东生, 沈海龙 (2016). 森林植物耐荫性及其形态和生理适应性研究进展. 应用生态学报, 27, 2687-2698.] | |
[44] |
Yu RP, Lambers H, Callaway RM, Wright AJ, Li L (2021). Belowground facilitation and trait matching: Two or three to tango? Trends in Plant Science, 26, 1227-1235.
DOI URL |
[45] |
Zhang W, Ahanbieke P, Wang BJ, Gan YW, Li LH, Christie P, Li L (2015). Temporal and spatial distribution of roots as affected by interspecific interactions in a young walnut/ wheat alley cropping system in northwest China. Agroforestry Systems, 89, 327-343.
DOI URL |
[46] |
Zhang WP, Liu GC, Sun JH, Fornara D, Zhang LZ, Zhang FF, Li L (2017). Temporal dynamics of nutrient uptake by neighbouring plant species: evidence from intercropping. Functional Ecology, 31, 469-479.
DOI URL |
[47] |
Zhang WP, Zhao L, Larjavaara M, Morris EC, Sterck FJ, Wang GX (2020). Height-diameter allometric relationships for seedlings and trees across China. Acta Oecologica, 108, 103621. DOI: 10.1016/j.actao.2020.103621.
DOI URL |
[48] | Zhao K (2013). Research on Ecological Mechanism of Chestnut and Tea Compound System in Dabie Mountain. Master degree dissertation, Anhui Agricultural University, Hefei. 4. |
[ 赵康 (2013). 大别山区栗茶复合系统的生态机理研究. 硕士学位论文, 安徽农业大学, 合肥. 4.] | |
[49] | Zheng LJ (2020). Biological characteristics of chestnut root and its application in production. Journal of Hebei Forestry Science and Technology, (4), 40-41. |
[ 郑丽锦 (2020). 板栗根的生物学特性及生产上的应用. 河北林业科技, (4), 40-41.] |
[1] | 刘瑶 钟全林 徐朝斌 程栋梁 郑跃芳 邹宇星 张雪 郑新杰 周云若. 不同大小刨花楠细根功能性状与根际微环境关系[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[2] | 徐子怡 金光泽. 阔叶红松林不同菌根类型幼苗细根功能性状的变异与权衡[J]. 植物生态学报, 2024, 48(5): 612-622. |
[3] | 曲泽坤, 朱丽琴, 姜琦, 王小红, 姚晓东, 蔡世锋, 罗素珍, 陈光水. 亚热带常绿阔叶林丛枝菌根树种养分觅食策略及其与细根形态间的关系[J]. 植物生态学报, 2024, 48(4): 416-427. |
[4] | 杜旭龙, 黄锦学, 杨智杰, 熊德成. 增温对植物叶片和细根氧化损伤与防御特征及其相互关联影响的研究进展[J]. 植物生态学报, 2024, 48(2): 135-146. |
[5] | 舒韦维, 杨坤, 马俊旭, 闵惠琳, 陈琳, 刘士玲, 黄日逸, 明安刚, 明财道, 田祖为. 氮添加对红锥不同序级细根形态和化学性状的影响[J]. 植物生态学报, 2024, 48(1): 103-112. |
[6] | 孙佳慧, 史海兰, 陈科宇, 纪宝明, 张静. 植物细根功能性状的权衡关系研究进展[J]. 植物生态学报, 2023, 47(8): 1055-1070. |
[7] | 吴晨, 陈心怡, 刘源豪, 黄锦学, 熊德成. 增温对森林细根生长、死亡及周转特征影响的研究进展[J]. 植物生态学报, 2023, 47(8): 1043-1054. |
[8] | 吴帆, 吴晨, 张宇辉, 余恒, 魏智华, 郑蔚, 刘小飞, 陈仕东, 杨智杰, 熊德成. 增温对成熟杉木人工林不同季节细根生长、形态及生理代谢特征的影响[J]. 植物生态学报, 2023, 47(6): 856-866. |
[9] | 陈雪纯, 刘虹, 朱少琦, 孙铭遥, 宇振荣, 王庆刚. 漓江流域不同弃耕年限下4种常见草本植物功能性状种内变化及其影响因素[J]. 植物生态学报, 2023, 47(4): 559-570. |
[10] | 祝维, 周欧, 孙一鸣, 古丽米热·依力哈木, 王亚飞, 杨红青, 贾黎明, 席本野. 混交林内毛白杨和刺槐根系吸水的动态生态位划分[J]. 植物生态学报, 2023, 47(3): 389-403. |
[11] | 陈心怡, 吴晨, 黄锦学, 熊德成. 增温对林木细根物候影响的研究进展[J]. 植物生态学报, 2023, 47(11): 1471-1482. |
[12] | 孙文泰, 马明. 黄土高原长期覆膜苹果园土壤物理退化与细根生长响应[J]. 植物生态学报, 2021, 45(9): 972-986. |
[13] | 尹晓雷, 刘旭阳, 金强, 李先德, 林少颖, 阳祥, 王维奇, 张永勋. 不同管理模式对茶树碳氮磷含量及其生态化学计量比的影响[J]. 植物生态学报, 2021, 45(7): 749-759. |
[14] | 王奕丹, 李亮, 刘琪璟, 马泽清. 亚热带6个典型树种吸收细根寿命与形态属性格局[J]. 植物生态学报, 2021, 45(4): 383-393. |
[15] | 魏春雪, 杨璐, 汪金松, 杨家明, 史嘉炜, 田大栓, 周青平, 牛书丽. 实验增温对陆地生态系统根系生物量的影响[J]. 植物生态学报, 2021, 45(11): 1203-1212. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19