植物生态学报 ›› 2023, Vol. 47 ›› Issue (8): 1043-1054.DOI: 10.17521/cjpe.2022.0202
• 综述 • 下一篇
吴晨1,2,3, 陈心怡1,2,3, 刘源豪1,2,3, 黄锦学1, 熊德成1,2,3,*()
收稿日期:
2022-05-18
接受日期:
2022-10-10
出版日期:
2023-08-20
发布日期:
2022-10-10
通讯作者:
*熊德成(基金资助:
WU Chen1,2,3, CHEN Xin-Yi1,2,3, LIU Yuan-Hao1,2,3, HUANG Jin-Xue1, XIONG De-Cheng1,2,3,*()
Received:
2022-05-18
Accepted:
2022-10-10
Online:
2023-08-20
Published:
2022-10-10
Contact:
*XIONG De-Cheng(Supported by:
摘要:
细根是根系中最活跃和最敏感的部分, 在森林生态系统生物地球化学循环中发挥着十分重要的作用。细根生长和周转会对植物根系碳进入土壤的通量产生强烈的影响。全球变暖对地下生态过程的影响已成为全球变化背景下关注的热点问题, 细根生长动态对全球变暖作何响应将直接影响到生态系统的碳平衡。该文就增温对森林细根生长、死亡、生物量及周转的影响的研究进展进行综述, 以期揭示增温对森林细根生长动态的影响。目前大部分研究认为增温会通过改变土壤含水率、养分有效性以及新近光合产物的分配等指标来影响细根的生长和死亡, 加快细根周转过程, 进而导致细根生物量降低。但细根生长受诸多因素的影响, 使得增温对细根影响的研究结果因树种、区域、增温方式等因素的影响存在不一致的结论。因此综合分析增温条件下森林细根的响应对研究地下生态学过程至关重要。今后还应加强以下方面的研究: (1)根据各增温方法的优缺点比较不同增温方式以及短期、长期增温实验对细根生长动态和地上部分影响的研究; (2)结合多种细根观测手段及实验方法综合分析增温对细根生长动态的影响, 同时加强增温对细根序级结构影响的研究; (3)加强增温与养分、水分、CO2等的交互作用对细根生长动态影响的研究; (4)重点关注增温对不同土层尤其是深层土壤中细根生长动态影响的研究; (5)深入研究细根-土壤-微生物三者间相互关系对增温的潜在响应。
吴晨, 陈心怡, 刘源豪, 黄锦学, 熊德成. 增温对森林细根生长、死亡及周转特征影响的研究进展. 植物生态学报, 2023, 47(8): 1043-1054. DOI: 10.17521/cjpe.2022.0202
WU Chen, CHEN Xin-Yi, LIU Yuan-Hao, HUANG Jin-Xue, XIONG De-Cheng. Effects of warming on fine root growth, mortality and turnover: a review. Chinese Journal of Plant Ecology, 2023, 47(8): 1043-1054. DOI: 10.17521/cjpe.2022.0202
研究区域 Study area | 增温方式 Heating mode | 研究对象 Research object | 周转速率 Turnover rate | 可能影响机理 Possible influence mechanism | 参考文献 Reference |
---|---|---|---|---|---|
温带 Temperate zone | 电缆增温 Cable heating | 欧洲云杉 Picea abies | 增加 Increase | 增温使得土壤矿化速率加快, 细根死亡率增加 Warming accelerated soil carbon mineralization rate, and increased fine root mortality | Majdi & ?hrvik, |
温带 Temperate zone | 开顶式增温 Open top chamber (OTC) heating | Acer saccharum | 增加 Increase | 土壤水分降低, 细根呼吸速率加快, 食草动物及病原体数量增加 Warming decreased soil moisture, increased fine root respiration rate, and stimulated herbivores and pathogens | Wan et al., |
温带 Temperate zone | 电缆增温 Cable heating | 欧洲云杉 P. abies | 增加 Increase | 土壤矿质氮浓度增加, 细根死亡率增加 Warming increased soil mineral nitrogen concentration and fine root mortality | Lepp?lammi-Kujansuu et al., |
亚热带 Subtropical zone | 电缆增温 Cable heating | 杉木 Cunninghamia lanceolata | 增加 Increase | 增温导致细根碳消耗加快, 非结构性碳水化合物减少, 细根死亡量增加 Warming accelerated carbon consumption, decreased non structural carbohydrates content, and increased fine root mortality | Xiong et al., |
热带 Tropical zone | 辐射增温 Radiation warming | 热带森林 Tropical forests | 增加 Increase | 增温对细根生物量、细根生产量均有负面影响, 增温使叶片光合速率降低, 叶片呼吸未产生热适应 Warming had negative effects on fine root biomass and fine root production; warming reduced foliar photosynthetic rates and did not cause thermal acclimation of foliar respiration | Yaffar et al., |
全球尺度 Global scale | 开顶式增温、电缆增温、辐射增温 OTC heating, cable heating, radiation warming | 草地、灌丛、森林 Grassland, shrub and forest | 增加 Increase | 土壤养分增加, 细根呼吸速率加快, 病原菌和草食动物增加 Warming increased soil nutrients, fine root respiration rate, pathogens and herbivores | Gill & Jackson, |
全球尺度 Global scale | 开顶式增温、电缆增温、辐射增温 OTC heating, cable heating, radiation warming | 农田、草地、森林、湿地、苔原 Farmland, grassland, forest, wetland and tundra | 无变化 Unchanged | 增温后细根死亡量无显著变化, 细根生物量增加 Warming increased fine root biomass, and there was no significant change in fine root mortality | Wang et al., |
温带 Temperate zone | 开顶式增温 OTC heating | 花旗松 Pseudotsuga menziesii | 无变化 Unchanged | 该植物-土壤系统属于贫营养环境, 受到氮的限制, 使得增温对细根生长量、死亡量均没有显著影响 The plant-soil system belongs to an oligotrophic environment, which is limited by nitrogen; warming had no significant effect on fine root growth and mortality | Johnson et al., |
表1 增温对森林细根周转速率的影响
Table 1 Effect of warming on fine root turnover rate of forest trees
研究区域 Study area | 增温方式 Heating mode | 研究对象 Research object | 周转速率 Turnover rate | 可能影响机理 Possible influence mechanism | 参考文献 Reference |
---|---|---|---|---|---|
温带 Temperate zone | 电缆增温 Cable heating | 欧洲云杉 Picea abies | 增加 Increase | 增温使得土壤矿化速率加快, 细根死亡率增加 Warming accelerated soil carbon mineralization rate, and increased fine root mortality | Majdi & ?hrvik, |
温带 Temperate zone | 开顶式增温 Open top chamber (OTC) heating | Acer saccharum | 增加 Increase | 土壤水分降低, 细根呼吸速率加快, 食草动物及病原体数量增加 Warming decreased soil moisture, increased fine root respiration rate, and stimulated herbivores and pathogens | Wan et al., |
温带 Temperate zone | 电缆增温 Cable heating | 欧洲云杉 P. abies | 增加 Increase | 土壤矿质氮浓度增加, 细根死亡率增加 Warming increased soil mineral nitrogen concentration and fine root mortality | Lepp?lammi-Kujansuu et al., |
亚热带 Subtropical zone | 电缆增温 Cable heating | 杉木 Cunninghamia lanceolata | 增加 Increase | 增温导致细根碳消耗加快, 非结构性碳水化合物减少, 细根死亡量增加 Warming accelerated carbon consumption, decreased non structural carbohydrates content, and increased fine root mortality | Xiong et al., |
热带 Tropical zone | 辐射增温 Radiation warming | 热带森林 Tropical forests | 增加 Increase | 增温对细根生物量、细根生产量均有负面影响, 增温使叶片光合速率降低, 叶片呼吸未产生热适应 Warming had negative effects on fine root biomass and fine root production; warming reduced foliar photosynthetic rates and did not cause thermal acclimation of foliar respiration | Yaffar et al., |
全球尺度 Global scale | 开顶式增温、电缆增温、辐射增温 OTC heating, cable heating, radiation warming | 草地、灌丛、森林 Grassland, shrub and forest | 增加 Increase | 土壤养分增加, 细根呼吸速率加快, 病原菌和草食动物增加 Warming increased soil nutrients, fine root respiration rate, pathogens and herbivores | Gill & Jackson, |
全球尺度 Global scale | 开顶式增温、电缆增温、辐射增温 OTC heating, cable heating, radiation warming | 农田、草地、森林、湿地、苔原 Farmland, grassland, forest, wetland and tundra | 无变化 Unchanged | 增温后细根死亡量无显著变化, 细根生物量增加 Warming increased fine root biomass, and there was no significant change in fine root mortality | Wang et al., |
温带 Temperate zone | 开顶式增温 OTC heating | 花旗松 Pseudotsuga menziesii | 无变化 Unchanged | 该植物-土壤系统属于贫营养环境, 受到氮的限制, 使得增温对细根生长量、死亡量均没有显著影响 The plant-soil system belongs to an oligotrophic environment, which is limited by nitrogen; warming had no significant effect on fine root growth and mortality | Johnson et al., |
图1 土壤增温对细根周转速率影响的概念图。+, 促进; -, 抑制。C, 碳; N, 氮; NH+4-N, 氨态氮含量; NO-3-N, 硝态氮含量; NSC, 非结构性碳水化合物; P, 磷。
Fig. 1 Conceptual figure of the effect of soil warming on fine root turnover rate. +, promotion; -, inhibition. C, carbon; N, nitrogen; NH+4-N, ammonium nitrogen content; NO-3-N, nitrate nitrogen content; NSC, non structural carbohydrates; P, phosphorus.
[1] |
Alvarez-Uria P, Körner C (2007). Low temperature limits of root growth in deciduous and evergreen temperate tree species. Functional Ecology, 21, 211-218.
DOI URL |
[2] | Arft AM, Walker MD, Gurevitch J, Alatalo JM, Bret-harte MS, Dale M, Diemer M, Gugerli F, Henry GHR, Jones MH, Hollister RD, Jonsdottir IS, Laine K, Lévesque E, Marion GM, et al. (1999). Responses of tundra plants to experimental warming: meta-analysis of the international tundra experiment. Ecological Monographs, 69, 491-511. |
[3] |
Atkin OK, Edwards EJ, Loveys BR (2000). Response of root respiration to changes in temperature and its relevance to global warming. New Phytologist, 147, 141-154.
DOI URL |
[4] |
Bai WM, Wan SQ, Niu SL, Liu WX, Chen QS, Wang QB, Zhang WH, Han XG, Li LH (2010). Increased temperature and precipitation interact to affect root production, mortality, and turnover in a temperate steppe: implications for ecosystem C cycling. Global Change Biology, 16, 1306-1316.
DOI URL |
[5] |
Barthel M, Hammerle A, Sturm P, Baur T, Gentsch L, Knohl A (2011). The diel imprint of leaf metabolism on the δ13C signal of soil respiration under control and drought conditions. New Phytologist, 192, 925-938.
DOI URL |
[6] |
Björk RG, Majdi H, Klemedtsson L, Lewis-Jonsson L, Molau U (2007). Long-term warming effects on root morphology, root mass distribution, and microbial activity in two dry tundra plant communities in northern Sweden. New Phytologist, 176, 862-873.
DOI PMID |
[7] | Bloomfield J, Vogt KA, Wargo PM (1996). Tree root turnover and senescence//Waisel Y, Eshel A, Kafkafi U. Plant Roots: The Hidden Half. 2nd ed. Marcel Dekker, New York. 363-381. |
[8] |
Bronson DR, Gower ST, Tanner M, Linder S, van Herk I (2008). Response of soil surface CO2 flux in a boreal forest to ecosystem warming. Global Change Biology, 14, 856-867.
DOI URL |
[9] |
Bronson DR, Gower ST, Tanner M, van Herk I (2009). Effect of ecosystem warming on boreal black spruce bud burst and shoot growth. Global Change Biology, 15, 1534-1543.
DOI URL |
[10] |
Burton AJ, Pregitzer KS, Hendrick RL (2000). Relationships between fine root dynamics and nitrogen availability in Michigan northern hardwood forests. Oecologia, 125, 389-399.
DOI PMID |
[11] |
Burton AJ, Jarvey JC, Jarvi MP, Zak DR, Pregitzer KS (2012). Chronic N deposition alters root respiration-tissue N relationship in northern hardwood forests. Global Change Biology, 18, 258-266.
DOI URL |
[12] |
Cavaleri MA, Reed SC, Smith WK, Wood TE (2015). Urgent need for warming experiments in tropical forests. Global Change Biology, 21, 2111-2121.
DOI PMID |
[13] |
Chen HYH, Brassard BW (2013). Intrinsic and extrinsic controls of fine root life span. Critical Reviews in Plant Sciences, 32, 151-161.
DOI URL |
[14] |
Choat B (2013). Predicting thresholds of drought-induced mortality in woody plant species. Tree Physiology, 33, 669-671.
DOI PMID |
[15] |
Choat B, Jansen S, Brodribb TJ, Cochard H, Delzon S, Bhaskar R, Bucci SJ, Feild TS, Gleason SM, Hacke UG, Jacobsen AL, Lens F, Maherali H, Martínez-Vilalta J, Mayr S, et al. (2012). Global convergence in the vulnerability of forests to drought. Nature, 491, 752-755.
DOI |
[16] |
Dawes MA, Schleppi P, Hättenschwiler S, Rixen C, Hagedorn F (2017). Soil warming opens the nitrogen cycle at the alpine treeline. Global Change Biology, 23, 421-434.
DOI PMID |
[17] |
Dusenge ME, Duarte AG, Way DA (2019). Plant carbon metabolism and climate change: elevated CO2 and temperature impacts on photosynthesis, photorespiration and respiration. New Phytologist, 221, 32-49.
DOI URL |
[18] | Eissenstat DM, McCormack ML, Du Q (2013). Global change and root lifespan//Eshel A, Beeckman T. Plant Roots: The Hidden Half. 4th ed. CRC Press, Boca Raton, USA. |
[19] |
Eissenstat DM, Wells CE, Yanai RD, Whitbeck JL (2000). Building roots in changing environment: implications for root longevity. New Phytologist, 147, 33-42.
DOI URL |
[20] | Eissenstat DM, Yanai RD (1997). The ecology of root lifespan//Begon M, Fitter AH. Advances in Ecological Research: Vol. 27. Academic Press, Amsterdam. 1-60. |
[21] |
Finér L, Ohashi M, Noguchi K, Hirano Y (2011). Factors causing variation in fine root biomass in forest ecosystems. Forest Ecology and Management, 261, 265-277.
DOI URL |
[22] |
Fitter AH, Graves JD, Self GK, Brown TK, Bogie DS, Taylor K (1998). Root production, turnover and respiration under two grassland types along an altitudinal gradient: influence of temperature and solar radiation. Oecologia, 114, 20-30.
DOI PMID |
[23] |
Gao W, Schlüter S, Blaser SRGA, Shen JB, Vetterlein D (2019). A shape-based method for automatic and rapid segmentation of roots in soil from X-ray computed tomography images: rootine. Plant and Soil, 441, 643-655.
DOI |
[24] | Germon A, Cardinael R, Dupraz C, Laclau JP, Jourdan C (2015). Fine root lifespan depending on their diameter and soil depth//International Society of Root Research. Roots Down Under, Belowground Solutions to Global Challenges, International Symposium. Canberra, Australia. DOI: 10.13140/RG.2.1.3101.0967. |
[25] | Germon A, Laclau JP, Robin A, Jourdan C (2020). Deep fine roots in forest ecosystems: Why dig deeper? Forest Ecology and Management, 466, 118135. DOI: 10.1016/j. foreco.2020.118135. |
[26] |
Gill RA, Jackson RB (2000). Global patterns of root turnover for terrestrial ecosystems. New Phytologist, 147, 13-31.
DOI URL |
[27] |
Guo D, Li H, Mitchell RJ, Han W, Hendricks JJ, Fahey TJ, Hendrick RL (2008). Fine root heterogeneity by branch order: exploring the discrepancy in root turnover estimates between minirhizotron and carbon isotopic methods. New Phytologist, 177, 443-456.
DOI PMID |
[28] |
Guo DL, Mitchell RJ, Hendricks JJ (2004). Fine root branch orders respond differentially to carbon source-sink manipulations in a longleaf pine forest. Oecologia, 140, 450-457.
PMID |
[29] |
Haichar FEZ, Santaella C, Heulin T, Achouak W (2014). Root exudates mediated interactions belowground. Soil Biology & Biochemistry, 77, 69-80.
DOI URL |
[30] | Han S, Kim S, Li GL, Chang HN, Yun S, An JE, Son Y (2017). Effects of warming and precipitation manipulation on fine root dynamics of Pinus densiflora Sieb. et Zucc. seedlings. Forests, 9, 14. DOI: 10.3390/f9010014. |
[31] |
Hartley AE, Neill C, Melillo JM, Crabtree R, Bowles FP (1999). Plant performance and soil nitrogen mineralization in response to simulated climate change in subarctic dwarf shrub heath. Oikos, 86, 331-343.
DOI URL |
[32] |
Hendrick RL, Pregitzer KS (1993). The dynamics of fine root length, biomass, and nitrogen content in two northern hardwood ecosystems. Forest Research of Canadian Journal, 23, 2507-2520.
DOI URL |
[33] |
Hertel D, Strecker T, Müller-Haubold H, Leuschner C (2013). Fine root biomass and dynamics in beech forests across a precipitation gradient—Is optimal resource partitioning theory applicable to water-limited mature trees? Journal of Ecology, 101, 1183-1200.
DOI URL |
[34] |
Hinsinger P, Bengough AG, Vetterlein D, Young IM (2009). Rhizosphere: biophysics, biogeochemistry and ecological relevance. Plant and Soil, 321, 117-152.
DOI URL |
[35] | Hutchings MJ, John EA (2003). Distribution of roots in soil, and root foraging activity//Kroon H, Visser EJW. Root Ecology. Springer, Berlin. 33-60. |
[36] |
Iversen CM, Ledford J, Norby RJ (2008). CO2 enrichment increases carbon and nitrogen input from fine roots in a deciduous forest. New Phytologist, 179, 837-847.
DOI URL |
[37] |
Jarvi MP, Burton AJ (2013). Acclimation and soil moisture constrain sugar maple root respiration in experimentally warmed soil. Tree Physiology, 33, 949-959.
DOI PMID |
[38] |
Johnson MG, Rygiewicz PT, Tingey DT, Phillips DL (2006). Elevated CO2and elevated temperature have no effect on Douglas-fir fine-root dynamics in nitrogen-poor soil. New Phytologist, 170, 345-356.
PMID |
[39] |
Jones DL, Hodge A, Kuzyakov Y (2004). Plant and mycorrhizal regulation of rhizodeposition. New Phytologist, 163, 459-480.
DOI PMID |
[40] |
King JS, Albaugh TJ, Allen HL, Buford M, Strain BR, Dougherty P (2002). Below-ground carbon input to soil is controlled by nutrient availability and fine root dynamics in loblolly pine. New Phytologist, 154, 389-398.
DOI PMID |
[41] | Kitajima K, Anderson KE, Allen MF (2010). Effect of soil temperature and soil water content on fine root turnover rate in a California mixed conifer ecosystem. Journal of Geophysical Research: Biogeosciences, 115, G04032. DOI: 1029/2009JG001210. |
[42] |
Klein JA, Harte J, Zhao XQ (2005). Dynamic and complex microclimate responses to warming and grazing manipulations. Global Change Biology, 11, 1440-1451.
DOI URL |
[43] | Kozlowski TT, Kramer PJ, Pallardy SG (1990). The Physiological Ecology of Woody Plants. Academic Press, San Diego, USA. |
[44] |
Krause GH, Cheesman AW, Winter K, Krause B, Virgo A (2013). Thermal tolerance net CO2 exchange and growth of a tropical tree species Ficus insipida cultivated at elevated daytime and nighttime temperatures. Journal of Plant Physiology, 170, 822-827.
DOI URL |
[45] |
Kwatcho Kengdo S, Peršoh D, Schindlbacher A, Heinzle J, Tian Y, Wanek W, Borken W (2022). Long-term soil warming alters fine root dynamics and morphology, and their ectomycorrhizal fungal community in a temperate forest soil. Global Change Biology, 28, 3441-3458.
DOI PMID |
[46] |
Lahti M, Aphalo PJ, Finér L, Ryyppö A, Lehto T, Mannerkoski H (2005). Effects of soil temperature on shoot and root growth and nutrient uptake of 5-year-old Norway spruce seedlings. Tree Physiology, 25, 115-122.
PMID |
[47] |
Lee EH, Tingey DT, Beedlow PA, Johnson MG, Burdick CA (2007). Relating fine root biomass to soil and climate conditions in the Pacific Northwest. Forest Ecology and Management, 242, 195-208.
DOI URL |
[48] |
Lei PF, Scherer-Lorenzen M, Bauhus J (2012). The effect of tree species diversity on fine-root production in a young temperate forest. Oecologia, 169, 1105-1115.
DOI PMID |
[49] | Leppälammi-Kujansuu J, Ostonen I, Strömgren M, Nilsson LO, Kleja DB, Sah SP, Helmisaari HS (2013). Effects of long term temperature and nutrient manipulation on Norway spruce fine roots and mycelia production. Plant and Soil, 366, 287-303. |
[50] | Leppälammi-Kujansuu J, Salemaa M, Kleja DB, Linder S, Helmisaari HS (2014). Fine root turnover and litter production of Norway spruce in a long-term temperature and nutrient manipulation experiment. Plant and Soil, 374, 73-88. |
[51] |
Liu HY, Wang H, Li N, Shao JJ, Zhou XH, van Groenigen KJ, Thakur MP (2022). Phenological mismatches between above- and belowground plant responses to climate warming. Nature Climate Change, 12, 97-102.
DOI |
[52] | Liu L, Zhang J, Yang WQ, Wang M, Xue Q, Dong SG (2008). Biomass and carbon stock of fine roots in the representative subalpine and alpine forests in western Sichuan. Journal of Sichuan Forestry Science and Technology, 29(1), 7-10. |
[刘利, 张健, 杨万勤, 汪明, 薛樵, 董生刚 (2008). 川西亚高山高山典型森林细根生物量及其碳储量特征. 四川林业科技, 29(1), 7-10.] | |
[53] |
Liu YC, Liu SR, Wan SQ, Wang JX, Wang H, Liu K (2017). Effects of experimental throughfall reduction and soil warming on fine root biomass and its decomposition in a warm temperate oak forest. Science of the Total Environment, 574, 1448-1455.
DOI URL |
[54] |
Luo YQ, Sherry R, Zhou XH, Wan SQ (2009). Terrestrial carbon-cycle feedback to climate warming: experimental evidence on plant regulation and impacts of biofuel feedstock harvest. GCB Bioenergy, 1, 62-74.
DOI URL |
[55] | Lyr H, Garbe V (1995). Influence of root temperature on growth of Pinus sylvestris, Fagus sylvatica, Tilia cordata and Quercus robur. Trees, 9, 220-223. |
[56] |
Majdi H, Öhrvik J (2004). Interactive effects of soil warming and fertilization on root production, mortality, and longevity in a Norway spruce stand in Northern Sweden. Global Change Biology, 10, 182-188.
DOI URL |
[57] |
Makita N, Hirano Y, Dannoura M, Kominami Y, Mizoguchi T, Ishii H, Kanazawa Y (2009). Fine root morphological traits determine variation in root respiration of Quercus strrata. Tree Physiology, 29, 579-585.
DOI PMID |
[58] |
McMichael BL, Burke JJ (1998). Soil temperature and root growth. Hortscience, 33, 947-951.
DOI URL |
[59] |
Melillo JM, Steudler PA, Aber JD, Newkirk K, Lux H, Bowles FP, Catricala C, Magill A, Ahrens T, Morrisseau S (2002). Soil warming and carbon-cycle feedbacks to the climate system. Science, 298, 2173-2176.
PMID |
[60] | Niu SL, Han XG, Ma KP, Wan SQ (2007). Field facilities in global warming and terrestrial ecosystem research. Journal of Plant Ecology (Chinese Version), 31, 262-271. |
[牛书丽, 韩兴国, 马克平, 万师强 (2007). 全球变暖与陆地生态系统研究中的野外增温装置. 植物生态学报, 31, 262-271.]
DOI |
|
[61] |
Noguchi K, Nagakura J, Konôpka B, Sakata T, Kaneko S, Takahashi M (2013). Fine-root dynamics in sugi (Cryptomeria japonica) under manipulated soil nitrogen conditions. Plant and Soil, 364, 159-169.
DOI URL |
[62] | Noormets A, Chen JQ, Bridgham SD, Weltzin JF, Pastor J, Dewey B, LeMoine J (2004). The effects of infrared loading and water table on soil energy fluxes in northern peatlands. Ecosystems, 7, 573-582. |
[63] |
Norby RJ, Jackson RB (2000). Root dynamics and global change: seeking an ecosystem perspective. New Phytologist, 147, 3-12.
DOI URL |
[64] |
Pilon R, Picon-Cochard C, Bloor JMG, Revaillot S, Kuhn E, Falcimagne R, Balandier P, Soussana JF (2013). Grassland root demography responses to multiple climate change drivers depend on root morphology. Plant and Soil, 364, 395-408.
DOI URL |
[65] |
Pinno BD, Wilson SD (2013). Fine root response to soil resource heterogeneity differs between grassland and forest. Plant Ecology, 214, 821-829.
DOI URL |
[66] | Pregitzer KS, King JS (2005). Effects of soil temperature on nutrient uptake//BassiriRad H. Nutrient Acquisition by Plants: An Ecological Perspective. Springer, Berlin. 277-310. |
[67] |
Pregitzer KS, King JS, Burton AJ (2000). Responses of tree fine roots to temperature. New Phytologist, 147, 105-115.
DOI URL |
[68] |
Pregitzer KS, Kubiske ME, Yu CK, Hendrick RL (1997). Relationships among root branch order, carbon, and nitrogen in four temperate species. Oecologia, 111, 302-308.
DOI PMID |
[69] | Radville L, Post E, Eissenstat DM (2016). Root phenology in an arctic shrub-graminoid community: the effects of long- term warming and herbivore exclusion. Climate Change Responses, 3, 4. DOI: 10.1186/s40665-016-0017-0. |
[70] |
Rustad L, Campbell J, Marion G, Norby R, Mitchell M, Hartley A, Cornelissen J, Gurevitch J, GCTE-NEWS (2001). A meta-analysis of the response of soil respiration, net nitrogen mineralization, and aboveground plant growth to experimental ecosystem warming. Oecologia, 126, 543-562.
DOI PMID |
[71] | Salazar A, Rousk K, Jónsdóttir IS, Bellenger JP, Andrésson ÓS (2020). Faster nitrogen cycling and more fungal and root biomass in cold ecosystems under experimental warming: a meta-analysis. Ecology, 101, e02938. DOI: 10.1002/ecy.2938. |
[72] | Song ML, Wen XZ, Li YL (2010). Effects of high rhizosphere temperature on plant growth and metabolism: a review. Chinese Journal of Ecology, 29, 2258-2264. |
[宋敏丽, 温祥珍, 李亚灵 (2010). 根际高温对植物生长和代谢的影响综述. 生态学杂志, 29, 2258-2264.] | |
[73] |
Steele SJ, Gower ST, Vogel JG, Norman JM (1997). Root mass, net primary production and turnover in aspen, Jack pine and black spruce forests in Saskatchewan and Manitoba, Canada. Tree Physiology, 17, 577-587.
PMID |
[74] |
Steinaker DF, Wilson SD, Peltzer DA (2009). Asynchronicity in root and shoot phenology in grasses and woody plants. Global Change Biology, 16, 2241-2251.
DOI URL |
[75] |
Steinmann K, Siegwolf RTW, Saurer M, Körner C (2004). Carbon fluxes to the soil in a mature temperate forest assessed by 13C isotope tracing. Oecologia, 141, 489-501.
DOI URL |
[76] |
Sullivan PF, Welker JM (2005). Warming chambers stimulate early season growth of an arctic sedge: results of a minirhizotron field study. Oecologia, 142, 616-626.
PMID |
[77] | Talkner U, Riek W, Dammann I, Kohler M, Göttlein A, Mellert KH, Meiwes KJ (2019). Nutritional status of major forest tree species in Germany//Wellbrock N, Bolte A. Status and Dynamics of Forests in Germany. Springer, Cham, Switzerland. 261-293. |
[78] |
Tierney GL, Fahey TJ, Groffman PM, Hardy JP, Fitzhugh RD, Driscoll CT, Yavitt JB (2003). Environmental control of fine root dynamics in a northern hardwood forest. Global Change Biology, 9, 670-679.
DOI URL |
[79] |
Tingey DT, Phillips DL, Johnson MG, Rygiewicz PT, Beedlow PA, Hogsett WE (2005). Estimates of Douglas-fir fine root production and mortality from minirhizotrons. Forest Ecology and Management, 204, 359-370.
DOI URL |
[80] |
Tryon PR, Chapin III FS (1983). Temperature control over root growth and root biomass in taiga forest trees. Canadian Journal of Forest Research, 13, 827-833.
DOI URL |
[81] |
Wan SQ, Norby RJ, Pregitzer KS, Ledford J, O’Neill EG (2004). CO2 enrichment and warming of the atmosphere enhance both productivity and mortality of maple tree fine roots. New Phytologist, 162, 437-446.
DOI URL |
[82] |
Wang J, Defrenne C, McCormack ML, Yang L, Tian D, Luo Y, Hou E, Yan T, Li Z, Bu W, Chen Y, Niu S (2021). Fine- root functional trait responses to experimental warming: a global meta-analysis. New Phytologist, 230, 1856-1867.
DOI URL |
[83] |
Wang SZ, Wang ZQ, Gu JC (2017). Variation patterns of fine root biomass, production and turnover in Chinese forests. Journal of Forestry Research, 28, 1185-1194.
DOI URL |
[84] |
Wang XH, Xu CS, Xiong DC, Yao XD, Chen TT, Jiang Q, Jia LQ, Fan AL, Chen GS (2022). Root age-related response of fine root respiration of Chinese fir seedlings to soil warming. Tree Physiology, 42, 1177-1187.
DOI URL |
[85] |
Wei CX, Yang L, Wang JS, Yang JM, Shi JW, Tian DS, Zhou QP, Niu SL (2021). Effects of experimental warming on root biomass in terrestrial ecosystems. Chinese Journal of Plant Ecology, 45, 1203-1212.
DOI URL |
[魏春雪, 杨璐, 汪金松, 杨家明, 史嘉炜, 田大栓, 周青平, 牛书丽 (2021). 实验增温对陆地生态系统根系生物量的影响. 植物生态学报, 45, 1203-1212.]
DOI |
|
[86] | Wei L (2017). Effects of Nitrogen Addition and Mowing on Key Processes of Belowground Carbon Cycling in Natural Grassland Ecosystem on the Loess Plateau. PhD dissertation, University of Chinese Academy of Sciences, Beijing. |
[魏琳 (2017). 氮添加和刈割对黄土高原天然草地生态系统地下碳循环关键过程的影响. 博士学位论文, 中国科学院大学, 北京.] | |
[87] |
Wu YB, Zhang J, Deng YC, Wu J, Wang SP, Tang YH, Cui XY (2014). Effects of warming on root diameter, distribution, and longevity in an alpine meadow. Plant Ecology, 215, 1057-1066.
DOI URL |
[88] |
Wu ZT, Dijkstra P, Koch GW, Peñuelas J, Hungate BA (2011). Responses of terrestrial ecosystems to temperature and precipitation change: a meta-analysis of experimental manipulation. Global Change Biology, 17, 927-942.
DOI URL |
[89] |
Xia M, Guo D, Pregitzer KS (2010). Ephemeral root modules in Fraxinus mandshurica. New Phytologist, 188, 1065-1074.
DOI URL |
[90] |
Xiong DC, Yang ZJ, Chen GS, Liu XF, Lin WS, Huang JX, Bowles FP, Lin CF, Xie JS, Li YQ, Yang YS (2018). Interactive effects of warming and nitrogen addition on fine root dynamics of a young subtropical plantation. Soil Biology & Biochemistry, 123, 180-189.
DOI URL |
[91] |
Yaffar D, Wood TE, Reed SC, Branoff BL, Cavaleri MA, Norby RJ (2021). Experimental warming and its legacy effects on root dynamics following two hurricane disturbances in a wet tropical forest. Global Change Biology, 27, 6423-6435.
DOI PMID |
[92] |
Yang Y, Wang GX, Yang LD, Guo JY (2013). Effects of drought and warming on biomass, nutrient allocation, and oxidative stress in Abies fabri in eastern Tibetan Plateau. Journal of Plant Growth Regulation, 32, 298-306.
DOI URL |
[93] | Yuan ZY, Chen HY (2012). Indirect methods produce higher estimates of fine root production and turnover rates than direct methods. PLoS ONE, 7, e48989. DOI: 10.1371/journal.pone.0048989. |
[94] |
Zadworny M, Eissenstat DM (2011). Contrasting the morphology, anatomy and fungal colonization of new pioneer and fibrous roots. New Phytologist, 190, 213-221.
DOI PMID |
[95] | Zhang XQ, Wu KH, Murach D (2000). A review of methods for fine-root production and turnover of trees. Acta Ecologica Sinica, 20, 875-883. |
[张小全, 吴可红, Murach D (2000). 树木细根生产与周转研究方法评述. 生态学报, 20, 875-883.] | |
[96] | Zhang YY, Sun XF, Zhang LF, Li YC, Wang CK, Wang XC (2021). Fine root biomass, production, and turnover rate in a temperate deciduous broadleaved forest in the Maoer Mountain, China. Chinese Journal of Applied Ecology, 32, 3053-3060. |
[张云宇, 孙晓凤, 张临峰, 李颖池, 王传宽, 王兴昌 (2021). 帽儿山温带落叶阔叶林细根生物量、生产力和周转率. 应用生态学报, 32, 3053-3060.]
DOI |
|
[97] | Zhao HY (2019). Adaptation Strategies of Fine Roots of Chinese Fir Seedlings to Soil Warming and Precipitation Exclusion. PhD dissertation, Fujian Normal University, Fuzhou. |
[赵海英 (2019). 杉木幼苗细根对土壤增温和隔离降雨的适应策略. 博士学位论文, 福建师范大学, 福州.] | |
[98] |
Zhao JX, Li RC, Li X, Tian LH (2017). Environmental controls on soil respiration in alpine meadow along a large altitudinal gradient on the central Tibetan Plateau. Catena, 159, 84-92.
DOI URL |
[1] | 杜旭龙, 黄锦学, 杨智杰, 熊德成. 增温对植物叶片和细根氧化损伤与防御特征及其相互关联影响的研究进展[J]. 植物生态学报, 2024, 48(2): 135-146. |
[2] | 吴帆, 吴晨, 张宇辉, 余恒, 魏智华, 郑蔚, 刘小飞, 陈仕东, 杨智杰, 熊德成. 增温对成熟杉木人工林不同季节细根生长、形态及生理代谢特征的影响[J]. 植物生态学报, 2023, 47(6): 856-866. |
[3] | 陈心怡, 吴晨, 黄锦学, 熊德成. 增温对林木细根物候影响的研究进展[J]. 植物生态学报, 2023, 47(11): 1471-1482. |
[4] | 单立山, 苏铭, 张正中, 王洋, 王珊, 李毅. 不同生境下荒漠植物红砂-珍珠猪毛菜混生根系的垂直分布规律[J]. 植物生态学报, 2018, 42(4): 475-486. |
[5] | 闫宝龙, 王忠武, 屈志强, 王静, 韩国栋. 围封对内蒙古典型草原与荒漠草原植被-土壤系统碳密度的影响[J]. 植物生态学报, 2018, 42(3): 327-336. |
[6] | 闫小莉, 戴腾飞, 贾黎明, 戴丽莉, 辛福梅. 欧美108杨细根形态及垂直分布对水氮耦合措施的响应[J]. 植物生态学报, 2015, 39(8): 825-837. |
[7] | 韩风森, 胡聃, 王晓琳, 周宏轩. 北京2种阔叶树不同高度枝干的呼吸速率及其对温度的敏感性[J]. 植物生态学报, 2015, 39(2): 197-205. |
[8] | 王薪琪, 王传宽, 韩轶. 树种对土壤有机碳密度的影响: 5种温带树种同质园试验[J]. 植物生态学报, 2015, 39(11): 1033-1043. |
[9] | 王敏, 苏永中, 杨荣, 杨晓. 黑河中游荒漠草地地上和地下生物量的分配格局[J]. 植物生态学报, 2013, 37(3): 209-219. |
[10] | 李贺, 张维康, 王国宏. 中国云杉林的地理分布与气候因子间的关系[J]. 植物生态学报, 2012, 36(5): 372-381. |
[11] | 安然, 龚吉蕊, 尤鑫, 葛之葳, 段庆伟, 晏欣. 不同龄级速生杨人工林土壤微生物数量与养分动态变化[J]. 植物生态学报, 2011, 35(4): 389-401. |
[12] | 刘晓梅, 方建, 张婧, 林吴颖, 樊廷录, 冯虎元. 长期施肥对麦田土壤微生物垂直分布的影响[J]. 植物生态学报, 2009, 33(2): 397-404. |
[13] | 陈光水, 杨玉盛, 高人, 谢锦升, 杨智杰, 毛艳玲. 杉木林年龄序列地下碳分配变化[J]. 植物生态学报, 2008, 32(6): 1285-1293. |
[14] | 张丙昌, 赵建成, 张元明, 李敏, 张静. 新疆古尔班通古特沙漠南部沙垄不同部位藻类的垂直分布特征[J]. 植物生态学报, 2008, 32(2): 456-464. |
[15] | 牛书丽, 韩兴国, 马克平, 万师强. 全球变暖与陆地生态系统研究中的野外增温装置[J]. 植物生态学报, 2007, 31(2): 262-271. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19