植物生态学报 ›› 2015, Vol. 39 ›› Issue (2): 197-205.DOI: 10.17521/cjpe.2015.0019
所属专题: 生态系统碳水能量通量
收稿日期:
2014-08-27
接受日期:
2014-12-09
出版日期:
2015-02-01
发布日期:
2015-03-10
通讯作者:
胡聃
作者简介:
# 共同第一作者
HAN Feng-Sen, HU Dan*(), WANG Xiao-Lin, ZHOU Hong-Xuan
Received:
2014-08-27
Accepted:
2014-12-09
Online:
2015-02-01
Published:
2015-03-10
Contact:
Dan HU
About author:
# Co-first authors
摘要:
该研究采用红外气体分析法(IRGA)于2013年3-12月原位测定了北京市东升八家郊野公园中2个主要阔叶树种(槐(Sophora japonica)、旱柳(Salix matsudana)) 3个高度上的枝干呼吸(Rw)日进程, 旨在量化Rw的种间差异, 探索种内Rw及其温度敏感系数(Q10)的时间动态和垂直分布格局。研究结果显示: (1) Rw在不同树种之间差异明显, 相同月份(4月份除外)槐Rw是旱柳的1.12 (7月)-1.79倍(5月)。两树种枝干表面CO2通量速率均表现出明显的单峰型季节变化, 峰值分别出现在7月((5.13 ± 0.24) μmol·m-2·s-1)和8月((3.85 ± 0.17) μmol·m-2·s-1)。同一树种在生长月份内的平均呼吸水平显著高于非生长季, 但其Q10值季节变化趋势与之相反。(2) RW随测量高度的增加而升高, 并在3个高度上表现出不同的日变化规律: 其中, 树干基部及胸高位置为单峰格局, 而一级分枝处的呼吸速率在一天内存在两个峰值, 中间出现短暂的“午休”现象。温度是造成一天内呼吸变化的主要原因。此外, 顶部Rw及其对温度的敏感程度明显高于基部。温度本身和Q10值差异可在一定程度上解释RW的垂直梯度变化。(3)在生长月份, 单位体积木质组织的日累积呼吸速率(mmol·m-3·d-1)与受测部位直径倒数(D-1)呈极显著正相关关系。单位面积(μmol·m-2·s-1)可准确表达两树种在生长期间的RW水平, 能合理有效地比较不同个体的呼吸差异及同一个体的时空变异。这些结果表明, 采用局部通量法上推至树木整体呼吸时, 应全面考虑Rw的时、空变异规律, 并选择恰当的表达单位, 以减小估测误差。
韩风森, 胡聃, 王晓琳, 周宏轩. 北京2种阔叶树不同高度枝干的呼吸速率及其对温度的敏感性. 植物生态学报, 2015, 39(2): 197-205. DOI: 10.17521/cjpe.2015.0019
HAN Feng-Sen,HU Dan,WANG Xiao-Lin,ZHOU Hong-Xuan. Respiration rates of stems at different heights and their sensitivity to temperature in two broad-leaved trees in Beijing. Chinese Journal of Plant Ecology, 2015, 39(2): 197-205. DOI: 10.17521/cjpe.2015.0019
树种 Species | 代码 Code | 树高 Height (m) | 测点直径 Diameter at measurement point (cm) | ||
---|---|---|---|---|---|
10a | 140a | 270a | |||
槐 Sophora japonica | So1 | 12.6 | 22.4 | 17.2 | 10.8 |
So2 | 14.7 | 26.3 | 18.6 | 14.5 | |
So3 | 16.4 | 31.6 | 21.5 | 17.6 | |
旱柳 Salix matsudana | Sa1 | 13.8 | 21.6. | 16.8 | 12.9 |
Sa2 | 15.7 | 29.1 | 22.6 | 18.5 | |
Sa3 | 18.4 | 34.2 | 28.7 | 22.8 |
表1 测定样树的基本特征
Table 1 Basic characteristics of the sampling trees
树种 Species | 代码 Code | 树高 Height (m) | 测点直径 Diameter at measurement point (cm) | ||
---|---|---|---|---|---|
10a | 140a | 270a | |||
槐 Sophora japonica | So1 | 12.6 | 22.4 | 17.2 | 10.8 |
So2 | 14.7 | 26.3 | 18.6 | 14.5 | |
So3 | 16.4 | 31.6 | 21.5 | 17.6 | |
旱柳 Salix matsudana | Sa1 | 13.8 | 21.6. | 16.8 | 12.9 |
Sa2 | 15.7 | 29.1 | 22.6 | 18.5 | |
Sa3 | 18.4 | 34.2 | 28.7 | 22.8 |
图1 槐、旱柳枝干呼吸速率和大气温度季节变化(平均值±标准偏差)。
Fig. 1 The seasonal variations of stem respiration and air temperature in Sophora japonica and Salix matsudana (mean ± SD).
树种 Species | 月份 Month | 回归方程 Regression equation | Q10 | R10 (μmol·m-2·s-1) | R2 |
---|---|---|---|---|---|
槐 Sophora japonica | 6-8 | Y = 0.8945e0.0779x | 2.18 | 1.95 | 0.77** |
10-12 | Y = 0.5943e0.0892x | 2.44 | 1.45 | 0.87** | |
旱柳 Salix matsudana | 6-8 | Y = 0.8771e0.0582x | 1.79 | 1.57 | 0.82** |
10-12 | Y = 0.4674e0.0599x | 1.86 | 0.87 | 0.88** |
表2 10 ℃下枝干呼吸(R10)与温度敏感系数(Q10)种间差异比较
Table 2 Comparisons of respiration at a reference temperature of 10 °C (R10) and temperature-sensitivity coefficient (Q10) between two species
树种 Species | 月份 Month | 回归方程 Regression equation | Q10 | R10 (μmol·m-2·s-1) | R2 |
---|---|---|---|---|---|
槐 Sophora japonica | 6-8 | Y = 0.8945e0.0779x | 2.18 | 1.95 | 0.77** |
10-12 | Y = 0.5943e0.0892x | 2.44 | 1.45 | 0.87** | |
旱柳 Salix matsudana | 6-8 | Y = 0.8771e0.0582x | 1.79 | 1.57 | 0.82** |
10-12 | Y = 0.4674e0.0599x | 1.86 | 0.87 | 0.88** |
图2 槐、旱柳枝干呼吸温度敏感系数(Q10, A)和10 ℃下单位表面积枝干呼吸(R10, B)的季节变化(平均值±标准偏差)。
Fig. 2 Seasonal variations of temperature-sensitivity coefficient (Q10, A) and stem respiration at a reference temperature of 10 °C (R10, B) on stem surface area base for the non-growing season (Oct.-Dec.) and growing season (Jun.-Aug.) in Sophora japonica and Salix matsudana (mean ± SD).
图3 不同高度(10、140和270 cm)枝干温度(T10、T140、T270)与呼吸速率(R10、R140、R270)日动态。
Fig. 3 Dynamics of stem temperature (T10, T140, T270) and stem respiration rate (R10, R140, R270) at different heights (10, 140 and 270 cm).
树种 Species | 枝干高度 Stem height (cm) | 回归方程 Regression equation | 时间滞后 Time lag (min ) | Q10 | R2 |
---|---|---|---|---|---|
槐 Sophora japonica | 10 | Y = 0.8761e0.0736x | 154 | 2.09 | 0.722** |
140 | Y = 0.9024e0.0821x | 136 | 2.27 | 0.754* | |
270 | Y = 1.0132e0.0918x | 122 | 2.50 | 0.846** | |
旱柳 Salix matsudana | 10 | Y = 0.8115e0.0429x | 176 | 1.54 | 0.707** |
140 | Y = 0.9232e0.0547x | 152 | 1.73 | 0.854** | |
270 | Y = 0.9273e0.0749x | 126 | 2.11 | 0.955** |
表3 枝干呼吸与枝干温度的指数拟合方程和温度敏感系数(Q10)
Table 3 Fitted equations for stem respiration and temperature and temperature-sensitivity coefficient (Q10)
树种 Species | 枝干高度 Stem height (cm) | 回归方程 Regression equation | 时间滞后 Time lag (min ) | Q10 | R2 |
---|---|---|---|---|---|
槐 Sophora japonica | 10 | Y = 0.8761e0.0736x | 154 | 2.09 | 0.722** |
140 | Y = 0.9024e0.0821x | 136 | 2.27 | 0.754* | |
270 | Y = 1.0132e0.0918x | 122 | 2.50 | 0.846** | |
旱柳 Salix matsudana | 10 | Y = 0.8115e0.0429x | 176 | 1.54 | 0.707** |
140 | Y = 0.9232e0.0547x | 152 | 1.73 | 0.854** | |
270 | Y = 0.9273e0.0749x | 126 | 2.11 | 0.955** |
源 Source | 类型Ⅲ平方和 Type III sum of squares | 自由度 Degrees of freedom | 均方 Mean squares | F值 F values | 显著性 Significance |
---|---|---|---|---|---|
校正模型 Corrected model | 4 809.961a | 2 | 2 404.981 | 64.400 | 0.000 |
截距 Intercept | 836.282 | 1 | 836.282 | 22.394 | 0.000 |
直径倒数 Inverse of diameter | 3 700.128 | 1 | 3 700.128 | 99.081 | 0.000 |
树种 Species | 335.130 | 1 | 335.130 | 8.974 | 0.009 |
误差 Error | 560.168 | 15 | 37.345 | ||
总计 Summation | 1 5220.594 | 18 | |||
校正总计 Summation correction | 5 370.129 | 17 |
表4 协方差分析结果(因变量: 枝干呼吸日累计速率)
Table 4 Result of covariance analysis (Dependent variable: Daily stem respiration accumulation rate)
源 Source | 类型Ⅲ平方和 Type III sum of squares | 自由度 Degrees of freedom | 均方 Mean squares | F值 F values | 显著性 Significance |
---|---|---|---|---|---|
校正模型 Corrected model | 4 809.961a | 2 | 2 404.981 | 64.400 | 0.000 |
截距 Intercept | 836.282 | 1 | 836.282 | 22.394 | 0.000 |
直径倒数 Inverse of diameter | 3 700.128 | 1 | 3 700.128 | 99.081 | 0.000 |
树种 Species | 335.130 | 1 | 335.130 | 8.974 | 0.009 |
误差 Error | 560.168 | 15 | 37.345 | ||
总计 Summation | 1 5220.594 | 18 | |||
校正总计 Summation correction | 5 370.129 | 17 |
图5 槐和旱柳枝干呼吸日积累速率与受测直径倒数(D-1)的相关分析。
Fig. 5 Analysis of the relationship between the daily stem respiration accumulation per tree expressed on a volume basis and the inverse of stem diameter measured at the breast height (D-1) in Sophora japonica and Salix matsudana.
1 | Amthor JS (2000). The McCree-de Wit-Penning de Vries- Thornley respiration paradigms: 30 years later.Annals of Botany, 86, 1-20. |
2 | Araki MG, Utsugi H, Kajimoto T, Han Q, Kawasaki T, Chiba Y (2010). Estimation of whole-stem respiration, incorporating vertical and seasonal variations in stem CO2 efflux rate, of Chamaecyparis obtusa trees.Journal of Forest Research, 15, 115-122. |
3 | Atkin OK, Tjeolker MG (2003). Thermal acclimation and the dynamic response of plant respiration to temperature.TRENDS in Plant Science, 8, 343-351. |
4 | Brito P, Morales D, Wieser G, Jiménez MS (2010). Spatial and seasonal variations in stem CO2 efflux of Pinus canariensis at their upper distribution limit.Trees, 24, 523-531. |
5 | Ceschia É, Damesin C, Lebaube S, Pontailler JY, Dufrêne É (2002). Spatial and seasonal variations in stem respiration of beech trees (Fagus sylvatica).Annals Forest Science, 59, 801-812. |
6 | Damesin C, Ceschia E, Goff NL, Ottorini JM, Dufrêne E (2002). Stem and branch respiration of beech: From tree measurements to estimations at the stand level.New Phytologist, 153, 159-172. |
7 | Edwards NT, Hanson PJ (1995). Stem respiration in a closed-canopy upland oak forest.Tree Physiology, 16, 433-439. |
8 | Kim MH, Nakane K, Lee JT, Bang HS, Na YE (2007). Stem/branch maintenance respiration of Japanese red pine stand.Forest Ecology and Management, 243, 283-290. |
9 | Lavigne MB (1996). Comparing stem respiration and growth of jack pine provenances from northern and southern locations.Tree Physiology, 16, 847-852. |
10 | Levy PE, Jarvis PG (1998). Stem CO2 fluxes in two Sahelian shrub species (Guiera senegalensis and Combretum micranthum).Functional Ecology, 12, 107-116. |
11 | Liberloo M, de Angelis P, Ceulemans R (2008). Stem CO2 efflux of a Populus nigra stand: Effects of elevated CO2, fertilization, and shoot size.Biologia Plantarum, 52, 299-306. |
12 | Ryan MG (1990). Growth and maintenance respiration in stems of Pinus contorta and Picea engelmannii.Canadian Journal of Forest Research, 20, 48-57. |
13 | Ryan MG (1991). Effects of climate change on plant respiration.Ecological Applications, 1, 157-167. |
14 | Ryan MG, Hubbard RM, Clark DA, Sanford RL Jr (1994). Woody-tissue respiration for Simarouba amara and Minquartia guianensis, two tropical wet forest trees with different growth habits.Oecologia, 100, 213-220. |
15 | Ryan MG, Hubbard RM, Pongracic S, Raison RJ, McMurtrie RE (1996). Foliage, fine-root, woody-tissue and stand respiration in Pinus radiata in relation to nitrogen status.Tree Physiology, 16, 333-343. |
16 | Saxe H, Cannell MGR, Johnsen Ø, Ryan MG, Vourlitis G (2001). Tree and forest functioning in response to global warming.New Phytologist, 149, 369-399. |
17 | Sprugel DG (1990). Components of woody-tissue respiration in young Abies amabilis (Dougl.) Forbes trees.Trees, 4, 88-98. |
18 | Steppe K, Saveyn A, McGuire MA, Lemeur R, Teskey RO (2007). Resistance to radial CO2 diffusion contributes to between-tree variation in CO2 efflux of Populus deltoides stems.Functional Plant Biology, 34, 785-792. |
19 | Stockfors J (2000). Temperature variations and distribution of living cells within tree stems: implications for stem respiration modeling and scale-up.Tree Physiology, 20, 1057-1062. |
20 | Sun JW, Yuan FH, Guan DX, Wu JB (2013). Dark respiration of terrestrial vegetations: A review.Journal of Applied Ecology, 24, 1739-1746.(in Chinese with English abstract) |
[孙金伟, 袁凤辉, 关德新, 吴家兵 (2013). 陆地植被暗呼吸的研究进展. 应用生态学报, 24, 1739-1746.] | |
21 | Tarvainen L, Räntfors M, Wallin G (2014). Vertical gradients and seasonal variation in stem CO2 efflux within a Norway spruce stand.Tree Physiology, 34, 488-502. |
22 | Teskey RO, Saveyn A, Steppe K, McGuire MA (2008). Origin, fate and significance of CO2 in tree stems.New Phytologist, 177, 17-32. |
23 | Tjoelker MG, Oleksyn J, Reich PB (2001). Modelling respiration of vegetation: Evidence for a general temperature- dependent Q10.Global Change Biology, 7, 223-230. |
24 | Vose JM, Ryan MG (2002). Seasonal respiration of foliage, fine roots, and woody tissues in relation to growth, tissue N, and photosynthesis.Global Change Biology, 8, 182-193. |
25 | Wang M, Wu YX, Wu JL (2008). Stem respiration of dominant tree species in broad-leaved Korean pine mixed forest in Changbai Mountains.Chinese Journal of Applied Ecology, 19, 956-960.(in Chinese with English abstract) |
[王淼, 武耀祥, 武静莲 (2008). 长白山红松针阔叶混交林主要树种树干呼吸速率. 应用生态学报, 19 , 956-960.] | |
26 | Wang WJ, Wang HM, Zu YG, Li XY, Koike T (2005). Characteristics of root, stem, and soil respiration Q10 temperature coefficients in forest ecosystems.Acta Phytoecologica Sinica, 29, 680-691.(in Chinese with English abstract) |
[王文杰, 王慧梅, 祖元刚, 李雪莹, 小池孝良 (2005). 林木非同化器官与土壤呼吸的温度系数Q10值的特征分析. 植物生态学报, 29, 680-691.] | |
27 | Wang WJ, Yang FJ, Zu YG, Wang HM, Takagi K, Sasa K, Koike T (2003). Stem respiration of a larch (Larix gmelini) plantation in northeast China.Acta Botanica Sinica, 45, 1387-1397. |
28 | Wang XW, Mao ZJ, Sun T, Wu HJ (2011). Effects of temperature and sap flow velocity on CO2 efflux from stems of three tree species in spring and autumn in Northeast China.Acta Ecologica Sinica, 31, 3358-3367.(in Chinese with English abstract) |
[王秀伟, 毛子军, 孙涛, 吴海军 (2011). 春、秋季节树干温度和液流速度对东北3树种树干表面CO2释放通量的影响. 生态学报, 31, 3358-3367.] | |
29 | Xu F, Wang CK, Wang XC (2011). Intra- and inter-specific variations in stem respiration for 14 temperate tree species in northeastern China.Acta Ecologica Sinica, 31, 3581-3589.(in Chinese with English abstract) |
[许飞, 王传宽, 王兴昌 (2011). 东北东部14个温带树种树干呼吸的种内种间变异. 生态学报, 31, 3581-3589.] | |
30 | Yang QP, Xu M, Chi YG, Zheng YP, Shen RC, Li PX, Dai HT (2011). Temporal and spatial variations of stem CO2 efflux of three species in subtropical China.Journal of Plant Ecology, 5, 229-237. |
31 | Yang Y, Zhao M, Xu XT, Sun ZZ, Yin GD, Piao SL (2014). Diurnal and seasonal change in stem respiration of Larix principis-rupprechtii trees, northern China.PLoS ONE, 9, e89294. |
32 | Zha T, Kellomäki S, Wang KY, Ryyppö A, Niinistö S (2004). Seasonal and annual stem respiration of Scots pine trees under boreal conditions.Annals of Botany, 94, 889-896. |
[1] | 吴晨, 陈心怡, 刘源豪, 黄锦学, 熊德成. 增温对森林细根生长、死亡及周转特征影响的研究进展[J]. 植物生态学报, 2023, 47(8): 1043-1054. |
[2] | 陈心怡, 吴晨, 黄锦学, 熊德成. 增温对林木细根物候影响的研究进展[J]. 植物生态学报, 2023, 47(11): 1471-1482. |
[3] | 张效境, 梁潇洒, 马望, 王正文. 呼伦贝尔草地植物茎秆和叶片中养分的时间动态与回收[J]. 植物生态学报, 2021, 45(7): 738-748. |
[4] | 单立山, 苏铭, 张正中, 王洋, 王珊, 李毅. 不同生境下荒漠植物红砂-珍珠猪毛菜混生根系的垂直分布规律[J]. 植物生态学报, 2018, 42(4): 475-486. |
[5] | 闫宝龙, 王忠武, 屈志强, 王静, 韩国栋. 围封对内蒙古典型草原与荒漠草原植被-土壤系统碳密度的影响[J]. 植物生态学报, 2018, 42(3): 327-336. |
[6] | 闫小莉, 戴腾飞, 贾黎明, 戴丽莉, 辛福梅. 欧美108杨细根形态及垂直分布对水氮耦合措施的响应[J]. 植物生态学报, 2015, 39(8): 825-837. |
[7] | 王薪琪, 王传宽, 韩轶. 树种对土壤有机碳密度的影响: 5种温带树种同质园试验[J]. 植物生态学报, 2015, 39(11): 1033-1043. |
[8] | 王敏, 苏永中, 杨荣, 杨晓. 黑河中游荒漠草地地上和地下生物量的分配格局[J]. 植物生态学报, 2013, 37(3): 209-219. |
[9] | 李贺, 张维康, 王国宏. 中国云杉林的地理分布与气候因子间的关系[J]. 植物生态学报, 2012, 36(5): 372-381. |
[10] | 安然, 龚吉蕊, 尤鑫, 葛之葳, 段庆伟, 晏欣. 不同龄级速生杨人工林土壤微生物数量与养分动态变化[J]. 植物生态学报, 2011, 35(4): 389-401. |
[11] | 翟树强, 李传荣, 许景伟, 刘立川, 张丹, 周振. 灵山湾国家森林公园刺槐林下垂序商陆种子雨时空动态[J]. 植物生态学报, 2010, 34(10): 1236-1242. |
[12] | 刘晓梅, 方建, 张婧, 林吴颖, 樊廷录, 冯虎元. 长期施肥对麦田土壤微生物垂直分布的影响[J]. 植物生态学报, 2009, 33(2): 397-404. |
[13] | 张丙昌, 赵建成, 张元明, 李敏, 张静. 新疆古尔班通古特沙漠南部沙垄不同部位藻类的垂直分布特征[J]. 植物生态学报, 2008, 32(2): 456-464. |
[14] | 沈有信, 刘文耀. 长久性紫茎泽兰土壤种子库[J]. 植物生态学报, 2004, 28(6): 768-772. |
[15] | 于明坚, 陈启常, 李铭红, 常杰, 潘晓东, 陈增鸿, 邵剑波. 浙江建德青冈常绿阔叶林凋落量研究[J]. 植物生态学报, 1996, 20(2): 144-150. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19