植物生态学报 ›› 2021, Vol. 45 ›› Issue (7): 738-748.DOI: 10.17521/cjpe.2021.0125
所属专题: 生态化学计量
收稿日期:
2021-04-06
接受日期:
2021-06-16
出版日期:
2021-07-20
发布日期:
2021-10-22
通讯作者:
王正文 ORCID:0000-0002-4507-2142
作者简介:
* 王正文: ORCID: 0000-0002-4507-2142, wangzw@iae.ac.cn基金资助:
ZHANG Xiao-Jing1,2, LIANG Xiao-Sa1,2, MA Wang1, WANG Zheng-Wen1,*()
Received:
2021-04-06
Accepted:
2021-06-16
Online:
2021-07-20
Published:
2021-10-22
Contact:
WANG Zheng-Wen ORCID:0000-0002-4507-2142
Supported by:
摘要:
明确植物不同器官中的养分回收状况对探究植物养分利用策略与养分循环有重要意义。以往关于养分回收的研究多聚焦于叶片, 而对于茎秆研究较少。此外, 以往研究对植物生长盛期的叶片取样均在同一时间完成, 忽略了不同物种养分峰值可能存在时间差异, 进而导致养分回收效率被低估。该研究以呼伦贝尔草地22种多年生草本植物为研究对象, 在生长季不同时期进行茎秆和叶片取样, 测定其氮(N)、磷(P)含量, 分析茎秆和叶片两类器官中的养分在生长季内的变化情况与养分回收效率。结果表明: 1)植物N、P含量在生长季内有明显的时间变化规律, 呈现出先增加后减少的趋势; 不同物种峰值对应时间存在显著差异, 大部分物种养分峰值出现于8月下旬。2)茎秆和叶片两类器官养分回收模式存在差异, 植物叶片的N回收效率高于茎秆, 但P回收效率两者差异不明显; 叶片中N、P回收效率显著正相关, 而两者关系在茎秆中不显著。3)枯叶中养分含量是回收效率重要的影响因子, 植物养分回收效率与枯叶期养分含量呈显著负相关关系, 与生长盛期养分含量无关。4)以往研究中不同植物种在生长盛期同一时间取样, 造成茎秆和叶片N、P回收效率被不同程度地低估。该研究重新审视了养分回收研究中的取样策略, 表明依据不同物种在生长季内养分含量峰值出现时间决定生长盛期成熟组织的取样时间, 能够增加养分回收效率计测的准确性和科学性。
张效境, 梁潇洒, 马望, 王正文. 呼伦贝尔草地植物茎秆和叶片中养分的时间动态与回收. 植物生态学报, 2021, 45(7): 738-748. DOI: 10.17521/cjpe.2021.0125
ZHANG Xiao-Jing, LIANG Xiao-Sa, MA Wang, WANG Zheng-Wen. Temporal variation and resorption of nutrients in plant culms and leaves in Hulun Buir grassland. Chinese Journal of Plant Ecology, 2021, 45(7): 738-748. DOI: 10.17521/cjpe.2021.0125
物种 Species | 生活型 Life form | 区分茎秆和叶片 Distinguishing culm and leaf |
---|---|---|
羊草 Leymus chinensis | 多年生禾草 Perennial grasses | √ |
狼针草 Stipa baicalensis | 多年生禾草 Perennial grasses | × |
糙隐子草 Cleistogenes squarrosa | 多年生禾草 Perennial grasses | √ |
![]() | 多年生禾草 Perennial grasses | × |
柄状薹草 Carex pediformis | 多年生莎草 Perennial sedges | × |
寸草 Carex duriuscula | 多年生莎草 Perennial sedges | × |
广布野豌豆 Vicia cracca | 多年生豆科 Perennial legumes | √ |
披针叶野决明 Thermopsis lanceolata | 多年生豆科 Perennial legumes | √ |
狭叶沙参 Adenophora gmelinii | 多年生杂草 Perennial forbs | √ |
龙蒿 Artemisia dracunculus | 多年生杂草 Perennial forbs | √ |
阿尔泰狗娃花 Aster altaicus | 多年生杂草 Perennial forbs | √ |
麻花头 Klasea centauroides | 多年生杂草 Perennial forbs | √ |
裂叶蒿 Artemisia tanacetifolia | 多年生杂草 Perennial forbs | × |
冷蒿 Artemisia frigida | 多年生杂草 Perennial forbs | √ |
达乌里芯芭 Cymbaria daurica | 多年生杂草 Perennial forbs | √ |
瓣蕊唐松草 Thalictrum petaloideum | 多年生杂草 Perennial forbs | √ |
白头翁 Pulsatilla chinensis | 多年生杂草 Perennial forbs | × |
二裂委陵菜 Potentilla bifurca | 多年生杂草 Perennial forbs | × |
星毛委陵菜 Potentilla acaulis | 多年生杂草 Perennial forbs | × |
菊叶委陵菜 Potentilla tanacetifolia | 多年生杂草 Perennial forbs | × |
野鸢尾 Iris dichotoma | 多年生杂草 Perennial forbs | × |
囊花鸢尾 Iris ventricosa | 多年生杂草 Perennial forbs | × |
表1 呼伦贝尔地区取样物种名、功能类群与茎秆和叶片的区分
Table 1 Sampling species name, functional groups of plants in Hulun Buir area and whether culm and leaf were distinguished or not
物种 Species | 生活型 Life form | 区分茎秆和叶片 Distinguishing culm and leaf |
---|---|---|
羊草 Leymus chinensis | 多年生禾草 Perennial grasses | √ |
狼针草 Stipa baicalensis | 多年生禾草 Perennial grasses | × |
糙隐子草 Cleistogenes squarrosa | 多年生禾草 Perennial grasses | √ |
![]() | 多年生禾草 Perennial grasses | × |
柄状薹草 Carex pediformis | 多年生莎草 Perennial sedges | × |
寸草 Carex duriuscula | 多年生莎草 Perennial sedges | × |
广布野豌豆 Vicia cracca | 多年生豆科 Perennial legumes | √ |
披针叶野决明 Thermopsis lanceolata | 多年生豆科 Perennial legumes | √ |
狭叶沙参 Adenophora gmelinii | 多年生杂草 Perennial forbs | √ |
龙蒿 Artemisia dracunculus | 多年生杂草 Perennial forbs | √ |
阿尔泰狗娃花 Aster altaicus | 多年生杂草 Perennial forbs | √ |
麻花头 Klasea centauroides | 多年生杂草 Perennial forbs | √ |
裂叶蒿 Artemisia tanacetifolia | 多年生杂草 Perennial forbs | × |
冷蒿 Artemisia frigida | 多年生杂草 Perennial forbs | √ |
达乌里芯芭 Cymbaria daurica | 多年生杂草 Perennial forbs | √ |
瓣蕊唐松草 Thalictrum petaloideum | 多年生杂草 Perennial forbs | √ |
白头翁 Pulsatilla chinensis | 多年生杂草 Perennial forbs | × |
二裂委陵菜 Potentilla bifurca | 多年生杂草 Perennial forbs | × |
星毛委陵菜 Potentilla acaulis | 多年生杂草 Perennial forbs | × |
菊叶委陵菜 Potentilla tanacetifolia | 多年生杂草 Perennial forbs | × |
野鸢尾 Iris dichotoma | 多年生杂草 Perennial forbs | × |
囊花鸢尾 Iris ventricosa | 多年生杂草 Perennial forbs | × |
器官 Organ | 样本量 n | 氮含量 Nitrogen content (mg·g-1) | 磷含量 Phosphorus content (mg·g-1) | |
---|---|---|---|---|
生长盛期 Growth stage | 叶片 Leaf | 22 | 24.14 ± 6.69a | 2.07 ± 0.71a |
茎秆 Culm | 11 | 12.46 ± 3.94b | 1.18 ± 0.31b | |
枯叶期 Senescence stage | 叶片 Leaf | 22 | 12.34 ± 4.96b | 0.73 ± 0.39c |
茎秆 Culm | 11 | 7.32 ± 2.55c | 0.40 ± 0.25c |
表2 生长盛期与枯叶期茎秆和叶片养分含量(平均值±标准差)
Table 2 Nitrogen and phosphorus contents of culm and leaf at the growth and senescence stages (mean ± SD)
器官 Organ | 样本量 n | 氮含量 Nitrogen content (mg·g-1) | 磷含量 Phosphorus content (mg·g-1) | |
---|---|---|---|---|
生长盛期 Growth stage | 叶片 Leaf | 22 | 24.14 ± 6.69a | 2.07 ± 0.71a |
茎秆 Culm | 11 | 12.46 ± 3.94b | 1.18 ± 0.31b | |
枯叶期 Senescence stage | 叶片 Leaf | 22 | 12.34 ± 4.96b | 0.73 ± 0.39c |
茎秆 Culm | 11 | 7.32 ± 2.55c | 0.40 ± 0.25c |
图1 植物茎秆和叶片氮(N)含量的时间动态。A, 龙蒿。B, 糙隐子草。C, 狭叶沙参。D, 广布野豌豆。E, 达乌里芯芭。F, 阿尔泰狗娃花。G, 麻花头。H, 羊草。I, 披针叶野决明。J, 冷蒿。K, 瓣蕊唐松草。圆形代表植物叶片; 三角形代表植物茎秆。实线表示叶片N含量与采样时间相关(p < 0.05); 虚线表示茎秆中N含量与采样时间相关(p < 0.05)。
Fig. 1 Temporal variation of nitrogen (N) content in leaves and culms. A, Artemisia dracunculus. B, Cleistogenes squarrosa. C, Adenophora gmelinii. D, Vicia cracca. E, Cymbaria daurica. F, Aster altaicus. G, Klasea centauroides. H, Leymus chinensis. I, Thermopsis lanceolata. J, Artemisia frigida. K, Thalictrum petaloideum. Circle, leaves; triangle, culms. The solid line indicates that leaf N content is related to sampling time (p < 0.05); the dotted line indicates that culm N content is related to sampling time (p < 0.05).
图2 植物茎秆和叶片磷(P)含量的时间动态。A, 龙蒿。B, 糙隐子草。C, 狭叶沙参。D, 广布野豌豆。E, 达乌里芯芭。F, 阿尔泰狗娃花。G, 麻花头。H, 羊草。I, 披针叶野决明。J, 冷蒿。K, 瓣蕊唐松草。圆形代表植物叶片; 三角形代表植物茎秆。实线表示叶片P含量与采样时间相关性显著(p < 0.05); 虚线表示茎秆中P含量与采样时间相关性显著(p < 0.05)。
Fig. 2 Temporal variation of phosphorus (P) content in leaves and culms. A, Artemisia dracunculus. B, Cleistogenes squarrosa. C, Adenophora gmelinii. D, Vicia cracca. E, Cymbaria daurica. F, Aster altaicus. G, Klasea centauroides. H, Leymus chinensis. I, Thermopsis lanceolata. J, Artemisia frigida. K, Thalictrum petaloideum. Circle, leaves; triangle, culms. The solid line indicates that leaf P content is related to sampling time (p < 0.05); The dotted line indicates that culm P content is related to sampling time (p < 0.05).
图3 植物养分含量达到峰值的时间。A, 叶片氮(N)含量。B, 茎秆氮(N)含量。C, 叶片磷(P)含量。D, 茎秆磷(P)含量。A.A., 阿尔泰狗娃花; A.D., 龙蒿; A.F., 冷蒿; A.G., 狭叶沙参; A.T., 裂叶蒿; C.D., 寸草; C.P., 柄状薹草; C.S., 糙隐子草; Cy.D., 达乌里芯芭; I.D., 野鸢尾; I.V., 囊花鸢尾; K.C., 麻花头; K.M., 草; L.C., 羊草; P.A., 星毛委陵菜; P.B., 二裂委陵菜; P.C., 白头翁; P.T., 菊叶委陵菜; S.B., 狼针草; T.L., 披针叶野决明; T.P., 瓣蕊唐松草; V.C., 广布野豌豆。
Fig. 3 Time of the highest nutrient content in different plant species. A, Nitrogen (N) content of leaves. B, N content of culms. C, Phosphorus (P) content of leaves. D, P content of culms. A.A., Aster altaicus; A.D., Artemisia dracunculus; A.F., Artemisia frigida; A.G., Adenophora gmelinii; A.T., Artemisia tanacetifolia; C.D., Carex duriuscula; C.P., Carex pediformis; C.S., Cleistogenes squarrosa; Cy.D., Cymbaria daurica; I.D., Iris dichotoma; I.V., Iris ventricosa; K.C., Klasea centauroides; K.M., Koeleria macrantha; L.C., Leymus chinensis; P.A., Potentilla acaulis; P.B., Potentilla bifurca; P.C., Pulsatilla chinensis; P.T., Potentilla tanacetifolia; S.B., Stipa baicalensis; T.L., Thermopsis lanceolata; T.P., Thalictrum petaloideum; V.C., Vicia cracca.
器官 Organ | 样本量 n | N回收效率 N resorption efficiency (%) | P回收效率 P resorption efficiency (%) | 元素间差异 Differences between elements (p) |
---|---|---|---|---|
叶片 Leaf | 11 | 65.19 ± 8.21 | 75.58 ± 7.22 | p < 0.05 |
茎秆 Culm | 11 | 61.65 ± 4.24 | 78.33 ± 9.90 | p < 0.05 |
器官间差异 Differences between organs (p) | - | p < 0.05 | p = 0.189 | - |
表3 茎秆和叶片氮(N)、磷(P)回收效率的差异(平均值±标准差)
Table 3 Differences of nitrogen (N) and phosphorus (P) resorption efficiency in plant culm and leaf (mean ± SD)
器官 Organ | 样本量 n | N回收效率 N resorption efficiency (%) | P回收效率 P resorption efficiency (%) | 元素间差异 Differences between elements (p) |
---|---|---|---|---|
叶片 Leaf | 11 | 65.19 ± 8.21 | 75.58 ± 7.22 | p < 0.05 |
茎秆 Culm | 11 | 61.65 ± 4.24 | 78.33 ± 9.90 | p < 0.05 |
器官间差异 Differences between organs (p) | - | p < 0.05 | p = 0.189 | - |
图4 氮(N)、磷(P)回收效率的相关关系。圆形代表植物叶片; 三角形代表植物茎秆。实线表示叶片N回收效率与P回收效率相关(p < 0.05)。
Fig. 4 Correlations between nitrogen (N) and phosphorus (P) resorption efficiency. Circle, leaves; triangle, culms. The solid line indicates that leaf N resorption efficiency is related to P resorption efficiency (p < 0.05).
图5 植物生长盛期与枯叶期氮(N)、磷(P)含量与回收效率之间的关系。A, 生长盛期N含量与N回收效率。B, 生长盛期P含量与P回收效率。C, 枯叶期N含量与N回收效率。D, 枯叶期P含量与P回收效率。圆形代表植物叶片; 三角形代表植物茎秆。实线表示叶片养分回收效率与养分含量相关(p < 0.05); 虚线表示茎秆养分回收效率与养分含量相关(p < 0.05)。
Fig. 5 Correlations between nitrogen (N) and phosphorus (P) contents at the growth and senescence stages and nutrient resorption efficiency. A, N content and N resorption efficiency at the growth stage. B, P content and P resorption efficiency at the growth stage. C, N content and N resorption efficiency at the senescence stage. D, P content and P resorption efficiency at the senescence stage. Circle, leaves; triangle, culms. The solid line indicates that leaf resorption efficiency is related to nutrient content (p < 0.05); the dotted line indicates that culm resorption efficiency is related to nutrient content (p < 0.05).
器官 Organ | 养分 Nutrient | 样本量 n | 回收效率 Resorption efficiency (%) | 低估值 Underestimation value (%) | |
---|---|---|---|---|---|
基于养分最大含量 Based on maximum nutrient content | 基于8月20日养分含量 Based on nutrient content of August 20 | ||||
叶片 Leaf | N | 22 | 66.75 ± 7.70 | 64.69 ± 8.80 | 2.06 ± 3.31 |
P | 22 | 77.26 ± 7.97 | 71.32 ± 14.32 | 5.94 ± 9.35 | |
茎秆 Culm | N | 11 | 61.65 ± 4.24 | 58.72 ± 6.55 | 2.93 ± 4.85 |
P | 11 | 78.33 ± 9.90 | 70.93 ± 15.33 | 7.39 ± 11.81 |
表4 不同计算方法获得的呼伦贝尔草地植物茎秆和叶片氮(N)、磷(P)回收效率的差异状况(平均值±标准差)
Table 4 Difference in nitrogen (N) and phosphorus (P) resorption efficiency of Hulun Buirr grassland plant culms and leaves obtained by different calculation methods (mean ± SD)
器官 Organ | 养分 Nutrient | 样本量 n | 回收效率 Resorption efficiency (%) | 低估值 Underestimation value (%) | |
---|---|---|---|---|---|
基于养分最大含量 Based on maximum nutrient content | 基于8月20日养分含量 Based on nutrient content of August 20 | ||||
叶片 Leaf | N | 22 | 66.75 ± 7.70 | 64.69 ± 8.80 | 2.06 ± 3.31 |
P | 22 | 77.26 ± 7.97 | 71.32 ± 14.32 | 5.94 ± 9.35 | |
茎秆 Culm | N | 11 | 61.65 ± 4.24 | 58.72 ± 6.55 | 2.93 ± 4.85 |
P | 11 | 78.33 ± 9.90 | 70.93 ± 15.33 | 7.39 ± 11.81 |
[1] |
Aerts R (1996). Nutrient resorption from senescing leaves of perennials: Are there general patterns? Journal of Ecology, 84, 597-608.
DOI URL |
[2] | Aerts R, Chapin III FS (1999). The mineral nutrition of wild plants revisited: are-evaluation of processes and patterns. Advances in Ecological Research, 30, 1-67. |
[3] |
Brant AN, Chen HYH (2015). Patterns and mechanisms of nutrient resorption in plants. Critical Reviews in Plant Sciences, 34, 471-486.
DOI URL |
[4] |
Chapin III FS, Kedrowski RA (1983). Seasonal-changes in nitrogen and phosphorus fractions and autumn retranslocation in evergreen and deciduous taiga trees. Ecology, 64, 376-391.
DOI URL |
[5] |
Chapin III FS, Moilanen L (1991). Nutritional controls over nitrogen and phosphorus resorption from Alaskan birch leaves. Ecology, 72, 709-715.
DOI URL |
[6] |
Charlesedwards DA, Stutzel H, Ferraris R, Beech DF (1987). An analysis of spatial variation in the nitrogen-content of leaves from different horizons within a canopy. Annals of Botany, 60, 421-426.
DOI URL |
[7] |
Du EZ, Terrer C, Pellegrini AFA, Ahlström A, van Lissa CJ, Zhao X, Xia N, Wu XH, Jackson RB (2020). Global patterns of terrestrial nitrogen and phosphorus limitation. Nature Geoscience, 13, 221-226.
DOI URL |
[8] |
Eckstein RL, Karlsson PS, Weih M (1999). Leaf life span and nutrient resorption as determinants of plant nutrient conservation in temperate-arctic regions. New Phytologist, 143, 177-189.
DOI URL |
[9] |
Estiarte M, Peñuelas J (2015). Alteration of the phenology of leaf senescence and fall in winter deciduous species by climate change: effects on nutrient proficiency. Global Change Biology, 21, 1005-1017.
DOI PMID |
[10] | Fang JY, Yang YH, Ma WH, Mohammat A, Shen HH (2010). Ecosystem carbon stocks and their changes in China’s grasslands. Science China Life Sciences, 40, 566-576. |
[ 方精云, 杨元合, 马文红, 安尼瓦尔•买买提, 沈海花 (2010). 中国草地生态系统碳库及其变化. 中国科学: 生命科学, 40, 566-576.] | |
[11] |
Freschet GT, Cornelissen JHC, van Logtestijn RSP, Aerts R (2010). Substantial nutrient resorption from leaves, stems and roots in a subarctic flora: What is the link with other resource economics traits? New Phytologist, 186, 879-889.
DOI URL |
[12] |
Han WX, Fang JY, Guo DL, Zhang Y (2005). Leaf nitrogen and phosphorus stoichiometry across 753 terrestrial plant species in China. New Phytologist, 168, 377-385.
DOI URL |
[13] |
Hättenschwiler S, Aeschlimann B, Coûteaux MM, Roy J, Bonal D (2008). High variation in foliage and leaf litter chemistry among 45 tree species of a neotropical rainforest community. New Phytologist, 179, 165-175.
DOI PMID |
[14] |
He JS, Wang L, Flynn DFB, Wang XP, Ma WH, Fang JY (2008). Leaf nitrogen:phosphorus stoichiometry across Chinese grassland biomes. Oecologia, 155, 301-310.
DOI URL |
[15] |
Huang JY, Yu HL, Wang B, Li LH, Xiao GJ, Yuan ZY (2012). Nutrient resorption based on different estimations of five perennial herbaceous species from the grassland in Inner Mongolia, China. Journal of Arid Environments, 76, 1-8.
DOI URL |
[16] |
Kazakou E, Garnier E, Navas ML, Roumet C, Collin C, Laurent G (2007). Components of nutrient residence time and the leaf economics spectrum in species from Mediterranean old-fields differing in successional status. Functional Ecology, 21, 235-245.
DOI URL |
[17] |
Killingbeck KT (1984). Nitrogen and phosphorus resorption dynamics of five tree species in a Kansas gallery forest. American Midland Naturalist, 111, 155-164.
DOI URL |
[18] |
Killingbeck KT (1986). Litterfall dynamics and element use efficiency in a Kansas gallery forest. American Midland Naturalist, 116, 180-189.
DOI URL |
[19] |
Killingbeck KT (1996). Nutrients in senesced leaves: keys to the search for potential resorption and resorption proficiency. Ecology, 77, 1716-1727.
DOI URL |
[20] |
Kobe RK, Lepczyk CA, Iyer M (2005). Resorption efficiency decreases with increasing green leaf nutrients in a global data set. Ecology, 86, 2780-2792.
DOI URL |
[21] |
Koerselman W, Meuleman AFM (1996). The vegetation N:P ratio: a new tool to detect the nature of nutrient limitation. Journal of Applied Ecology, 33, 1441-1450.
DOI URL |
[22] | Lambers H, Chapin III FS, Pons TL (2008). Plant Physiological Ecology. Springer, New York. 163-223. |
[23] | Liu JQ, Wang XY, Guo Y, Wang SL, Zhou L, Dai LM, Yu DP (2015). Seasonal dynamics and resorption efficiencies of foliar nutrients in three dominant woody plants that grow at the treeline on Changbai Mountain. Acta Ecologica Sinica, 35, 165-171. |
[ 刘佳庆, 王晓雨, 郭焱, 王守乐, 周莉, 代力民, 于大炮 (2015). 长白山林线主要木本植物叶片养分的季节动态及回收效率. 生态学报, 35, 165-171.] | |
[24] |
Lü XT, Freschet GT, Flynn DFB, Han XG (2012). Plasticity in leaf and stem nutrient resorption proficiency potentially reinforces plant-soil feedbacks and microscale heterogeneity in a semi-arid grassland. Journal of Ecology, 100, 144-150.
DOI URL |
[25] |
Mariotte P, Robroek BJM, Jassey VEJ, Buttler A (2015). Subordinate plants mitigate drought effects on soil ecosystem processes by stimulating fungi. Functional Ecology, 29, 1578-1586.
DOI URL |
[26] |
McGroddy ME, Daufresne T, Hedin LO (2004). Scaling of C:N stoichiometry in forests worldwide: implications of terrestrial redfield-type ratios. Ecology, 85, 2390-2401.
DOI URL |
[27] | Pan QM, Xue JG, Tao J, Xu MY, Zhang WH (2018). Current status of grassland degradation and measures for grassland restoration in Northern China. Chinese Science Bulletin, 63, 1642-1650. |
[ 潘庆民, 薛建国, 陶金, 徐明月, 张文浩 (2018). 中国北方草原退化现状与恢复技术. 科学通报, 63, 1642-1650.] | |
[28] |
Reed SC, Townsend AR, Davidson EA, Cleveland CC (2012). Stoichiometric patterns in foliar nutrient resorption across multiple scales. New Phytologist, 196, 173-180.
DOI URL |
[29] | Ren HY, Zheng SX, Bai YF (2009). Effects of grazing on foliage biomass allocation of grassland communities in Xilin River basin, Inner Mongolia. Chinese Journal of Plant Ecology, 33, 1065-1074. |
[ 任海彦, 郑淑霞, 白永飞 (2009). 放牧对内蒙古锡林河流域草地群落植物茎叶生物量资源分配的影响. 植物生态学报, 33, 1065-1074.]
DOI |
|
[30] | Shen HH, Zhu YK, Zhao X, Geng XQ, Gao SQ, Fang JY (2016). Analysis of current grassland resources in China. Chinese Science Bulletin, 61, 139-154. |
[ 沈海花, 朱言坤, 赵霞, 耿晓庆, 高树琴, 方精云 (2016). 中国草地资源的现状分析. 科学通报, 61, 139-154.] | |
[31] | Shi Y, Ma YL, Ma WH, Liang CZ, Zhao XQ, Fang JY, He JS (2013). Large scale patterns of forage yield and quality across Chinese grasslands. Chinese Science Bulletin, 58, 226-239. |
[ 石岳, 马殷雷, 马文红, 梁存柱, 赵新全, 方精云, 贺金生 (2013). 中国草地的产草量和牧草品质:格局及其与环境因子之间的关系. 科学通报, 58, 226-239.] | |
[32] | Sun SC, Chen LZ (2001). Leaf nutrient dynamics and resorption efficiency of Quercus liaotungensis in the Dongling Mountain region. Acta Phytoecologica Sinica, 25, 76-82. |
[ 孙书存, 陈灵芝 (2001). 东灵山地区辽东栎叶养分的季节动态与回收效率. 植物生态学报, 25, 76-82.] | |
[33] |
Tsujii Y, Onoda Y, Kitayama K (2017). Phosphorus and nitrogen resorption from different chemical fractions in senescing leaves of tropical tree species on Mount Kinabalu, Borneo. Oecologia, 185, 171-180.
DOI PMID |
[34] |
van Heerwaarden LM, Toet S, Aerts R (2003). Current measures of nutrient resorption efficiency lead to a substantial underestimation of real resorption efficiency: facts and solutions. Oikos, 101, 664-669.
DOI URL |
[35] |
Vergutz L, Manzoni S, Porporato A, Novais RF, Jackson RB (2012). Global resorption efficiencies and concentrations of carbon and nutrients in leaves of terrestrial plants. Ecological Monographs, 82, 205-220.
DOI URL |
[36] |
Wang HY, Wang ZW, Ding R, Hou SL, Yang GJ, Lü XT, Han XG (2018). The impacts of nitrogen deposition on community N:P stoichiometry do not depend on phosphorus availability in a temperate meadow steppe. Environmental Pollution, 242, 82-89.
DOI URL |
[37] |
Xing XR, Han XG, Chen LZ (2000). A review on research of plant nutrient use efficiency. Chinese Journal of Applied Ecology, 11, 785-790.
PMID |
[ 邢雪荣, 韩兴国, 陈灵芝 (2000). 植物养分利用效率研究综述. 应用生态学报, 11, 785-790.]
PMID |
|
[38] |
Yasumura Y, Hikosaka K, Hirose T (2006). Seasonal changes in photosynthesis, nitrogen content and nitrogen partitioning in Lindera umbellata leaves grown in high or low irradiance. Tree Physiology, 26, 1315-1323.
PMID |
[39] |
Yuan ZY, Chen HYH (2009). Global-scale patterns of nutrient resorption associated with latitude, temperature and precipitation. Global Ecology and Biogeography, 18, 11-18.
DOI URL |
[40] |
Yuan ZY, Chen HYH (2015). Negative effects of fertilization on plant nutrient resorption. Ecology, 96, 373-380.
PMID |
[41] | Zong N, Shi PL, Geng SB, Ma WL (2017). Nitrogen and phosphorus resorption efficiency of forests in North China. Chinese Journal of Eco-Agriculture, 25, 520-529. |
[ 宗宁, 石培礼, 耿守保, 马维玲 (2017). 北方山区主要森林类型树木叶片氮、磷回收效率研究. 中国生态农业学报, 25, 520-529.] |
[1] | 李军军, 李萌茹, 齐兴娥, 王立龙, 徐世健. 芨芨草叶片养分特征对氮磷不同添加水平的响应[J]. 植物生态学报, 2020, 44(10): 1050-1058. |
[2] | 赵鸣飞, 薛峰, 王宇航, 王国义, 邢开雄, 康慕谊, 王菁兰. 山西芦芽山针叶林草本层群落谱系结构与多样性的海拔格局[J]. 植物生态学报, 2017, 41(7): 707-715. |
[3] | 周红艳, 吴琴, 陈明月, 匡伟, 常玲玲, 胡启武. 鄱阳湖沙山单叶蔓荆不同器官碳、氮、磷化学计量特征[J]. 植物生态学报, 2017, 41(4): 461-470. |
[4] | 贺合亮, 阳小成, 李丹丹, 尹春英, 黎云祥, 周国英, 张林, 刘庆. 青藏高原东部窄叶鲜卑花碳、氮、磷化学计量特征[J]. 植物生态学报, 2017, 41(1): 126-135. |
[5] | 韩风森, 胡聃, 王晓琳, 周宏轩. 北京2种阔叶树不同高度枝干的呼吸速率及其对温度的敏感性[J]. 植物生态学报, 2015, 39(2): 197-205. |
[6] | 李义勇, 黄文娟, 赵亮, 方熊, 刘菊秀. 大气CO2浓度升高和N沉降对南亚热带主要乡土树种叶片元素含量的影响[J]. 植物生态学报, 2012, 36(5): 447-455. |
[7] | 李善家, 张有福, 陈拓. 西北油松叶片δ13C特征与环境因子和叶片矿质元素的关系[J]. 植物生态学报, 2011, 35(6): 596-604. |
[8] | 翟树强, 李传荣, 许景伟, 刘立川, 张丹, 周振. 灵山湾国家森林公园刺槐林下垂序商陆种子雨时空动态[J]. 植物生态学报, 2010, 34(10): 1236-1242. |
[9] | 朱万泽, 王三根, 郝云庆. 川滇高山栎灌丛萌生过程中的营养元素供应动态[J]. 植物生态学报, 2010, 34(10): 1185-1195. |
[10] | 周鹏, 耿燕, 马文红, 贺金生. 温带草地主要优势植物不同器官间功能性状的关联[J]. 植物生态学报, 2010, 34(1): 7-16. |
[11] | 黄刚, 赵学勇, 苏延桂. 科尔沁沙地3种草本植物根系生长动态[J]. 植物生态学报, 2007, 31(6): 1161-1167. |
[12] | 刘鹏, 徐根娣, 郭水良, 汪敏. 南方4种草本植物对铝胁迫生理响应的研究[J]. 植物生态学报, 2005, 29(4): 644-651. |
[13] | 牛书丽, 蒋高明, 高雷明, 李永庚, 刘美珍. 内蒙古浑善达克沙地97种植物的光合生理特征(英文)[J]. 植物生态学报, 2003, 27(3): 318-324. |
[14] | 李志安, 王伯荪, 孔国辉, 张祝平, 翁轰. 鼎湖山季风常绿阔叶林黄果厚壳桂群落元素含量特征[J]. 植物生态学报, 1999, 23(5): 411-417. |
[15] | 于明坚, 陈启常, 李铭红, 常杰, 潘晓东, 陈增鸿, 邵剑波. 浙江建德青冈常绿阔叶林凋落量研究[J]. 植物生态学报, 1996, 20(2): 144-150. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19