植物生态学报 ›› 2021, Vol. 45 ›› Issue (7): 749-759.DOI: 10.17521/cjpe.2021.0071
所属专题: 生态化学计量
尹晓雷1, 刘旭阳1, 金强1, 李先德2, 林少颖1, 阳祥1, 王维奇1,*(), 张永勋2
收稿日期:
2021-03-04
接受日期:
2021-05-19
出版日期:
2021-07-20
发布日期:
2021-10-22
通讯作者:
王维奇
作者简介:
* wangweiqi15@163.com基金资助:
YIN Xiao-Lei1, LIU Xu-Yang1, JIN Qiang1, LI Xian-De2, LIN Shao-Ying1, YANG Xiang1, WANG Wei-Qi1,*(), ZHANG Yong-Xun2
Received:
2021-03-04
Accepted:
2021-05-19
Online:
2021-07-20
Published:
2021-10-22
Contact:
WANG Wei-Qi
Supported by:
摘要:
植物不同器官的碳(C)、氮(N)、磷(P)含量及其生态化学计量特征能够反映植物内部的养分分配与平衡关系。该研究以福建安溪3种不同管理模式的铁观音茶园为研究对象, 设置了常规管理模式下的茶园(M1)、间作套种模式下的茶园(M2)和现代技术管理模式下的茶园(M3) 3种样地, 分析茶树根、茎、叶器官的C、N、P含量及其化学计量学特征, 养分的变异特征与异速生长关系。结果表明: M2和M3管理模式下茶树根、茎、叶N、P含量均显著高于M1管理模式, C含量差异不明显; 茶树根、茎、叶C:N、C:P、N:P均表现为M1 > M2 > M3。茶树不同器官C、N、P含量差异较大, 根据变异来源分析, 管理模式因素对C、N、P含量变异的影响均达到显著水平。根茎叶N-P的异速生长关系表明茶树不同器官的养分需求存在相似性; 土壤pH和容重是影响C:N、C:P、N:P的重要因素, 而土壤含水量和盐度对茶树根和叶C含量的影响较大。总体来讲, 间作套种以及现代化滴灌、水肥等管理模式可以改善茶树对养分的吸收效率, 对解决土壤养分不均衡问题具有正面效应。
尹晓雷, 刘旭阳, 金强, 李先德, 林少颖, 阳祥, 王维奇, 张永勋. 不同管理模式对茶树碳氮磷含量及其生态化学计量比的影响. 植物生态学报, 2021, 45(7): 749-759. DOI: 10.17521/cjpe.2021.0071
YIN Xiao-Lei, LIU Xu-Yang, JIN Qiang, LI Xian-De, LIN Shao-Ying, YANG Xiang, WANG Wei-Qi, ZHANG Yong-Xun. Effects of different management methods on carbon, nitrogen, and phosphorus contents and their stoichiometric ratios in tea plants. Chinese Journal of Plant Ecology, 2021, 45(7): 749-759. DOI: 10.17521/cjpe.2021.0071
图1 不同管理模式下茶树根茎叶碳(C)、氮(N)、磷(P)的含量特征(平均值±标准误)。M1, 常规模式; M2, 间作套种模式; M3, 配套现代技术模式。不同字母表示处理间差异显著( p < 0.05)。
Fig. 1 Characteristics of carbon (C), nitrogen (N) and phosphorus (P) contents in tea plants under different management modes (mean ± SE). M1, routine management mode; M2, intercropping mode; M3, modern technology mode. Different lowercase letters indicate significant difference between treatments (p < 0.05).
管理模式 Management mode | C | N | P | C:N | C:P | N:P | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
根 Root | 茎 Stem | 叶 Leaf | 根 Root | 茎 Stem | 叶 Leaf | 根 Root | 茎 Stem | 叶 Leaf | 根 Root | 茎 Stem | 叶 Leaf | 根 Root | 茎 Stem | 叶 Leaf | 根 Root | 茎 Stem | 叶 Leaf | |
M1 | 17.61 | 0.20 | 1.17 | 5.17 | 5.42 | 13.98 | 2.17 | 9.78 | 2.15 | 15.63 | 5.32 | 14.90 | 19.22 | 9.52 | 1.14 | 6.56 | 15.01 | 12.27 |
M2 | 1.26 | 1.22 | 1.53 | 4.06 | 5.47 | 4.02 | 3.35 | 16.10 | 7.93 | 4.65 | 6.18 | 2.56 | 3.72 | 14.10 | 9.20 | 0.96 | 11.16 | 11.03 |
M3 | 18.03 | 3.17 | 0.76 | 14.63 | 6.07 | 2.35 | 15.81 | 2.41 | 4.80 | 11.47 | 3.11 | 2.59 | 27.56 | 5.44 | 2.85 | 20.63 | 8.24 | 5.26 |
表1 不同管理模式茶树碳(C)、氮(N)、磷(P)含量和比值间的变异系数(CV, %)
Table 1 Coefficient of variation (CV, %) of carbon (C), nitrogen (N) and phosphorus (P) contents and the stoichiometry of tea plants under different management modes
管理模式 Management mode | C | N | P | C:N | C:P | N:P | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
根 Root | 茎 Stem | 叶 Leaf | 根 Root | 茎 Stem | 叶 Leaf | 根 Root | 茎 Stem | 叶 Leaf | 根 Root | 茎 Stem | 叶 Leaf | 根 Root | 茎 Stem | 叶 Leaf | 根 Root | 茎 Stem | 叶 Leaf | |
M1 | 17.61 | 0.20 | 1.17 | 5.17 | 5.42 | 13.98 | 2.17 | 9.78 | 2.15 | 15.63 | 5.32 | 14.90 | 19.22 | 9.52 | 1.14 | 6.56 | 15.01 | 12.27 |
M2 | 1.26 | 1.22 | 1.53 | 4.06 | 5.47 | 4.02 | 3.35 | 16.10 | 7.93 | 4.65 | 6.18 | 2.56 | 3.72 | 14.10 | 9.20 | 0.96 | 11.16 | 11.03 |
M3 | 18.03 | 3.17 | 0.76 | 14.63 | 6.07 | 2.35 | 15.81 | 2.41 | 4.80 | 11.47 | 3.11 | 2.59 | 27.56 | 5.44 | 2.85 | 20.63 | 8.24 | 5.26 |
变异来源 Source of variation | df | 离差平方和 SS | 均方 MS | F | p | |
---|---|---|---|---|---|---|
C (g·kg-1) | 管理方式 Management mode | 2, 12 | 20 017.89 | 10 008.94 | 4.21 | 0.04* |
器官 Organ | 2, 6 | 87 690.42 | 43 845.21 | 40.03 | <0.01** | |
管理方式×器官 Management mode × Organ | 4, 12 | 3 785.61 | 9 346.40 | 3.93 | 0.03* | |
N (g·kg-1) | 管理方式 Management mode | 2, 12 | 476.04 | 238.02 | 91.00 | <0.01** |
器官 Organ | 2, 6 | 992.25 | 496.13 | 138.98 | <0.01** | |
管理方式×器官 Management mode × Organ | 4, 12 | 90.47 | 22.62 | 8.65 | <0.01** | |
P (g·kg-1) | 管理方式 Management mode | 2, 12 | 6.95 | 3.48 | 67.28 | <0.01** |
器官 Organ | 2, 6 | 0.27 | 0.14 | 2.68 | 0.15 | |
管理方式×器官 Management mode × Organ | 4, 12 | 2.45 | 0.61 | 11.84 | <0.01** | |
C:N | 管理方式 Management mode | 2, 12 | 2 926.23 | 1 463.12 | 23.42 | <0.01** |
器官 Organ | 2, 6 | 2 501.42 | 1 250.71 | 70.82 | <0.01** | |
管理方式×器官 Management mode × Organ | 4, 12 | 574.02 | 143.51 | 2.30 | 0.12 | |
C:P | 管理方式 Management mode | 2, 12 | 1 101 790.54 | 550 895.27 | 50.32 | <0.01** |
器官 Organ | 2, 6 | 10 833.52 | 5 416.76 | 1.10 | 0.39 | |
管理方式×器官 Management mode × Organ | 4, 12 | 18 979.84 | 4 744.96 | 0.43 | 0.78 | |
N:P | 管理方式 Management mode | 2, 12 | 137.92 | 68.96 | 16.11 | <0.01** |
器官 Organ | 2, 6 | 471.81 | 235.91 | 41.13 | <0.01** | |
管理方式×器官 Management mode × Organ | 4, 12 | 43.98 | 11.00 | 2.57 | 0.09 |
表2 茶树碳(C)、氮(N)、磷(P)含量及其计量比的变异来源分析
Table 2 Variation source analysis of carbon (C), nitrogen (N), phosphorus (P) content and their stoichiometric ratios of tea plants
变异来源 Source of variation | df | 离差平方和 SS | 均方 MS | F | p | |
---|---|---|---|---|---|---|
C (g·kg-1) | 管理方式 Management mode | 2, 12 | 20 017.89 | 10 008.94 | 4.21 | 0.04* |
器官 Organ | 2, 6 | 87 690.42 | 43 845.21 | 40.03 | <0.01** | |
管理方式×器官 Management mode × Organ | 4, 12 | 3 785.61 | 9 346.40 | 3.93 | 0.03* | |
N (g·kg-1) | 管理方式 Management mode | 2, 12 | 476.04 | 238.02 | 91.00 | <0.01** |
器官 Organ | 2, 6 | 992.25 | 496.13 | 138.98 | <0.01** | |
管理方式×器官 Management mode × Organ | 4, 12 | 90.47 | 22.62 | 8.65 | <0.01** | |
P (g·kg-1) | 管理方式 Management mode | 2, 12 | 6.95 | 3.48 | 67.28 | <0.01** |
器官 Organ | 2, 6 | 0.27 | 0.14 | 2.68 | 0.15 | |
管理方式×器官 Management mode × Organ | 4, 12 | 2.45 | 0.61 | 11.84 | <0.01** | |
C:N | 管理方式 Management mode | 2, 12 | 2 926.23 | 1 463.12 | 23.42 | <0.01** |
器官 Organ | 2, 6 | 2 501.42 | 1 250.71 | 70.82 | <0.01** | |
管理方式×器官 Management mode × Organ | 4, 12 | 574.02 | 143.51 | 2.30 | 0.12 | |
C:P | 管理方式 Management mode | 2, 12 | 1 101 790.54 | 550 895.27 | 50.32 | <0.01** |
器官 Organ | 2, 6 | 10 833.52 | 5 416.76 | 1.10 | 0.39 | |
管理方式×器官 Management mode × Organ | 4, 12 | 18 979.84 | 4 744.96 | 0.43 | 0.78 | |
N:P | 管理方式 Management mode | 2, 12 | 137.92 | 68.96 | 16.11 | <0.01** |
器官 Organ | 2, 6 | 471.81 | 235.91 | 41.13 | <0.01** | |
管理方式×器官 Management mode × Organ | 4, 12 | 43.98 | 11.00 | 2.57 | 0.09 |
图2 不同管理模式下茶园碳(C)、氮(N)、磷(P)生态化学计量比特征(平均值±标准误)。M1, 常规模式; M2, 间作套种模式; M3, 配套现代技术模式。不同字母表示处理间差异显著(p < 0.05)。
Fig. 2 Stoichiometric characteristics of carbon (C), nitrogen (N) and phosphorus (P) in tea plantations under different management modes (mean ± SE). M1, routine management mode; M2, intercropping mode; M3, modern technology mode. Different lowercase letters indicate significant difference between treatments (p < 0.05).
图3 茶树不同器官碳(C)、氮(N)、磷(P)含量的标准化主轴分析(SMA)。
Fig. 3 Standardized major analysis (SMA) of carbon (C), nitrogen (N), phosphorus (P) contents of different organs in tea plants.
图4 环境因子与茶树不同器官碳(C)、氮(N)、磷(P)含量及其生态化学计量比之间的主成分分析(PCA)。M1, 常规模式; M2, 间作套种模式; M3, 配套现代技术模式。BD, 土壤容重; Salinity, 土壤盐度; SWC, 土壤饱和含水量; TC, 土壤全碳含量; TN, 土壤全氮含量; TP, 土壤全磷含量; WC, 土壤含水量。
Fig. 4 Principal component analysis (PCA) of the relationship between environmental factors and carbon (C), nitrogen (N), phosphorus (P) contents and their stoichiometric ratios in different tea plant organs. M1, routine management mode; M2, intercropping mode; M3, modern technology mode. BD, soil bulk density; SWC, soil saturated water content; TC, soil total C content; TN, soil total N content; TP, soil total P content; WC, soil water content.
图5 不同管理模式茶树碳(C)、氮(N)、磷(P)含量及其化学计量比与环境因子的综合相关关系。M1, 常规模式; M2, 间作套种模式; M3, 配套现代技术模式。BD, 土壤容重; Salinity, 土壤盐度; SWC, 土壤饱和含水量; TC, 土壤全碳含量; TN, 土壤全氮含量; TP, 土壤全磷含量; WC, 土壤含水量。
Fig. 5 Comprehensive correlation between carbon (C), nitrogen (N), phosphorus (P) contents and their stoichiometry and environmental factors under three management modes. M1, routine management mode; M2, intercropping mode; M3, modern technology mode. BD, soil bulk density; SWC, soil saturated water content; TC, soil total C content; TN, soil total N content; TP, soil total P content; WC, soil water content.
图6 三种管理模式茶树养分特征概念模型图。M1, 常规模式; M2, 间作套种模式; M3, 配套现代技术模式。
Fig. 6 Conceptual model of nutrient characteristics of tea plant under three management modes. M1, routine management mode; M2, intercropping mode; M3, modern technology mode.
[1] |
Asseng S, Turner NC, Keating BA (2001). Analysis of water- and nitrogen-use efficiency of wheat in a Mediterranean climate. Plant and Soil, 233, 127-143.
DOI URL |
[2] |
Deng WW, Fei Y, Wang S, Wan XC, Zhang ZZ, Hu XY (2013). Effect of shade treatment on theanine biosynthesis in Camellia sinensis seedlings. Plant Growth Regulation, 71, 295-299.
DOI URL |
[3] |
Gitari HI, Karanja NN, Gachene CKK, Kamau S, Sharma K, Schulte-Geldermann E (2018). Nitrogen and phosphorous uptake by potato (Solanum tuberosum L.) and their use efficiency under potato-legume intercropping systems. Field Crops Research, 222, 78-84.
DOI URL |
[4] |
Graciano C, Guiamét JJ, Goya JF (2005). Impact of nitrogen and phosphorus fertilization on drought responses in Eucalyptus grandis seedlings. Forest Ecology and Management, 212, 40-49.
DOI URL |
[5] |
Gren GI, Weih M (2012). Plant stoichiometry at different scales: element concentration patterns reflect environment more than genotype. New Phytologist, 194, 944-952.
DOI URL |
[6] |
Han WX, Fang JY, Guo DL, Zhang Y (2005). Leaf nitrogen and phosphorus stoichiometry across 753 terrestrial plant species in China. New Phytologist, 168, 377-385.
DOI URL |
[7] |
He MZ, Zhang K, Tan HJ, Hu R, Su JQ, Wang J, Huang L, Zhang YF, Li XR (2015). Nutrient levels within leaves, stems, and roots of the xeric species Reaumuria soongorica in relation to geographical, climatic, and soil conditions. Ecology and Evolution, 5, 1494-1503.
DOI URL |
[8] |
Heuck C, Spohn M (2016). Carbon, nitrogen and phosphorus net mineralization in organic horizons of temperate forests: stoichiometry and relations to organic matter quality. Biogeochemistry, 131, 229-242.
DOI URL |
[9] | Jin Q, An WL, Liu XY, Chen XX, Lin SY, Wang WQ (2020). Effects of simulated acid rain on carbon, nitrogen, phosphorus contents and the ecological stoichiometry of rice leaves in Fuzhou rice fields along the river. Acta Ecologica Sinica, 40, 3085-3095. |
[ 金强, 安婉丽, 刘旭阳, 陈晓旋, 林少颖, 王维奇 (2020). 模拟酸雨对福州沿江稻田水稻叶片碳氮磷含量及其生态化学计量学特征的影响. 生态学报, 40, 3085-3095.] | |
[10] |
Koojiman SALM (1995). The stoichiometry of animal energetics. Journal of Theoretical Biology, 177, 139-149.
DOI URL |
[11] |
Ku KM, Choi JN, Kim J, Kim JK, Yoo LG, Lee SJ, Hong YS, Lee CH (2010). Metabolomics analysis reveals the compositional differences of shade grown tea (Camellia sinensis L.). Journal of Agricultural and Food Chemistry, 58, 418-426.
DOI URL |
[12] |
Leishman MR, Haslehurst T, Ares A, Baruch Z (2007). Leaf trait relationships of native and invasive plants: community- and global-scale comparisons. New Phytologist, 176, 635-643.
DOI URL |
[13] |
Li F, Gao H, Zhu LL, Xie YH, Yang GS, Hu C, Chen XS, Deng ZM (2017). Foliar nitrogen and phosphorus stoichiometry of three wetland plants distributed along an elevation gradient in Dongting Lake, China. Scientific Reports, 7, 2820. DOI: 10.1038/s41598-017-03126-9.
DOI URL |
[14] | Lin ZH, Chen LS, Chen RB, Peng A (2009). Effects of phosphorus deficiency on nutrient absorption of young tea bushes. Journal of Tea Science, 29, 295-300. |
[ 林郑和, 陈立松, 陈荣冰, 彭艾 (2009). 缺磷对茶树幼苗养分吸收的影响. 茶叶科学, 29, 295-300.] | |
[15] |
Liu FD, Yang WJ, Zhang M, Liu YH, Zheng JW, Wang WJ, Zhang ST, Wang ZS, An SQ (2010). Does strategy of resource acquisition in tropical woody species vary with life form, leaf texture, and canopy gradient? European Journal of Forest Research, 129, 1093-1108.
DOI URL |
[16] | Liu MY, Yi XY, Shi YZ, Ma LF, Ruan JY (2015). Research progress of soil properties in tea gardens and the absorption and translocation mechanisms of nutrients and other elements in tea plant. Journal of Tea Science, 35, 110-120. |
[ 刘美雅, 伊晓云, 石元值, 马立锋, 阮建云 (2015). 茶园土壤性状及茶树营养元素吸收、转运机制研究进展. 茶叶科学, 35, 110-120.] | |
[17] | Lu RK (1999). Soil and Agrochemistry Analysis. China Agricultural Science and Technology Press, Beijing. |
[ 鲁如坤 (1999). 土壤化学农业分析方法. 中国农业科技出版社, 北京.] | |
[18] | Lu WX, Zhang HJ, Cheng JH, Wu YH, Wang HY, Li JQ, Wang W (2012). Effect of a hedgerow agroforestry system on the soil properties of sloping cultivated lands in the Three- Gorges area in China. Journal of Food, Agriculture and Environment, 10, 1368-1375. |
[19] |
Luo XZ, Hou EQ, Chen JQ, Li J, Zhang LL, Zang XW, Wen DZ (2020). Dynamics of carbon, nitrogen, and phosphorus stocks and stoichiometry resulting from conversion of primary broadleaf forest to plantation and secondary forest in subtropical China. Catena, 193, 104606. DOI: 10.1016/j.catena.2020.104606.
DOI URL |
[20] | Ma R, Fang Y, An S (2016). Ecological stoichiometry of carbon, nitrogen, phosphorus and C:N:P in shoots and litter of plants in grassland in Yunwu Mountain. Acta Pedologica Sinica, 53, 1170-1180. |
[21] |
Ma W, Li J, Jimoh SO, Zhang Y, Guo F, Ding Y, Li X, Hou X (2019a). Stoichiometric ratios support plant adaption to grazing moderated by soil nutrients and root enzymes. PeerJ, 7, e7047. DOI: 10.7717/peerj.7047.eCollection2019.
DOI URL |
[22] |
Ma XX, Hong JT, Wang XD (2019b). C:N:P stoichiometry of perennial herbs’ organs in the alpine steppe of the northern Tibetan Plateau. Journal of Mountain Science, 16, 2039-2047.
DOI URL |
[23] |
Möller M, Weatherhead EK (2007). Evaluating drip irrigation in commercial tea production in Tanzania. Irrigation and Drainage Systems, 21, 17-34.
DOI URL |
[24] |
Mortimer PE, Gui H, Xu J, Zhang C, Barrios E, Hyde KD (2015). Alder trees enhance crop productivity and soil microbial biomass in tea plantations. Applied Soil Ecology, 96, 25-32.
DOI URL |
[25] |
Niklas KJ, Owens T, Reich PB, Cobb ED (2005). Nitrogen/ phosphorus leaf stoichiometry and the scaling of plant growth. Ecology Letters, 8, 636-642.
DOI URL |
[26] |
Sardans J, Rivas-Ubach A, Peñuelas J (2012). The elemental stoichiometry of aquatic and terrestrial ecosystems and its relationships with organismic lifestyle and ecosystem structure and function: a review and perspectives. Biogeochemistry, 111, 1-39.
DOI URL |
[27] |
Shi LJ, Li QK, Fu XL, Kou L, Dai XQ, Wang HM (2021). Foliar, root and rhizospheric soil C:N:P stoichiometries of overstory and understory species in subtropical plantations. Catena, 198, 105020. DOI: 10.1016/j.catena.2020.105020.
DOI URL |
[28] | Shui W, Chen YP, Su ZA, Fan SS (2017). Agricultural ecosystem services function value evaluation under the influence of specialized tea planting: a case study in Anxi, Fujian Province. Acta Ecologica Sinica, 37, 3311-3326. |
[ 税伟, 陈毅萍, 苏正安, 范水生 (2017). 专业化茶叶种植影响下的农业生态系统服务功能价值评价--以福建省安溪县为例. 生态学报, 37, 3311-3326.] | |
[29] | Sun LT, Wang Y, Ding ZT (2011). Effects of ground surface mulching in tea garden on soil water and nutrient dynamics and tea plant growth. Chinese Journal of Applied Ecology, 22, 2291-2296. |
[ 孙立涛, 王玉, 丁兆堂 (2011). 地表覆盖对茶园土壤水分、养分变化及茶树生长的影响. 应用生态学报, 22, 2291-2296.] | |
[30] |
Sun X, Yu K, Shugart HH, Wang G (2015). Species richness loss after nutrient addition as affected by N:C ratios and phytohormone GA3 contents in an alpine meadow community. Journal of Plant Ecology, 9, 201-211.
DOI URL |
[31] | Tang H, Wu JY, Li JL, Wu LR, Tang JC (2013). Study on the influence of drip irrigated fertilization on tea yields, quality and soil nutrient effect. Journal of Tea Science, 33, 85-90. |
[ 唐颢, 吴家尧, 黎健龙, 吴利荣, 唐劲驰 (2013). 茶园滴灌施肥的增产提质及土壤养分效应研究. 茶叶科学, 33, 85-90.] | |
[32] |
Tessier JT, Raynal DJ (2003). Use of nitrogen to phosphorus ratios in plant tissue as an indicator of nutrient limitation and nitrogen saturation. Journal of Applied Ecology, 40, 523-534.
DOI URL |
[33] |
von Oheimb G, Power SA, Falk K, Friedrich U, Mohamed A, Krug A, Boschatzke N, Härdtle W (2010). N:P ratio and the nature of nutrient limitation in Calluna-dominated heathlands. Ecosystems, 13, 317-327.
DOI URL |
[34] |
Wang HB, Wang YH, Zhang Q, Lin SX, Zhang QX, Ye JH, Ding L, Lin S, He HB (2020). Construction of the microbial protein metabolism map of tea rhizosphere soil in acidified plantations. Scientia Sinica Vitae, 50, 849-865.
DOI URL |
[ 王海斌, 王裕华, 张奇, 林舜贤, 张清旭, 叶江华, 丁力, 林生, 何海斌 (2020). 酸化茶园茶树根际土壤微生物蛋白质代谢图谱构建. 中国科学: 生命科学, 50, 849-865.] | |
[35] |
Wang M, Moore TR (2014). Carbon, nitrogen, phosphorus, and potassium stoichiometry in an ombrotrophic peatland reflects plant functional type. Ecosystems, 17, 673-684.
DOI URL |
[36] | Wu ZD, Jiang FY, Zhang L, You ZM (2020). Study on soil nitrogen status of Tieguanyin tea gardens in Anxi County of Fujian Province. Soils, 52, 16-24. |
[ 吴志丹, 江福英, 张磊, 尤志明 (2020). 福建省安溪县铁观音茶园土壤氮素状况. 土壤, 52, 16-24.] | |
[37] |
Yan Y, Lu XY (2020). Are N, P, and N:P stoichiometry limiting grazing exclusion effects on vegetation biomass and biodiversity in alpine grassland? Global Ecology and Conservation, 24, e01315. DOI: 10.1016/j.gecco.2020.e01315.
DOI URL |
[38] |
Yang DX, Song L, Jin GZ (2019). The soil C:N:P stoichiometry is more sensitive than the leaf C:N:P stoichiometry to nitrogen addition: a four-year nitrogen addition experiment in a Pinus koraiensis plantation. Plant and Soil, 442, 183-198.
DOI URL |
[39] |
Zeng Y, Yi XY, Li YS, Ma LF, Ruan JY, Tang Q (2016). The effect of nitrogen fertilization on biomass and nutrient storage in the fibrous roots of tea plants (Camellia sinensis) during summer and autumn. Acta Ecologica Sinica, 36, 411-419.
DOI URL |
[ 曾艳, 伊晓云, 李延升, 马立锋, 阮建云, 唐茜 (2016). 氮肥对夏秋季茶树吸收根生物量和养分储量的影响. 生态学报, 36, 411-419.] | |
[40] |
Zhang J, He N, Liu C, Xu L, Chen Z, Li Y, Wang R, Yu G, Sun W, Xiao C, Chen HYH, Reich PB (2020a). Variation and evolution of C:N ratio among different organs enable plants to adapt to N-limited environments. Global Change Biology, 26, 2534-2543.
DOI URL |
[41] |
Zhang QH, Sairebieli K, Zhao MM, Sun XH, Wang W, Yu XN, Du N, Guo WH (2020b). Nutrients have a different impact on the salt tolerance of two coexisting suaeda species in the Yellow River Delta. Wetlands, 40, 2811-2823.
DOI URL |
[42] |
Zhang YF, Fang XM, Chen FS, Zong YY, Gu HJ, Hu XF (2017). Influence of simulated acid rain on nitrogen and phosphorus contents and their stoichiometric ratios of tea organs in a red soil region, China. Chinese Journal of Applied Ecology, 28, 1309-1316.
DOI PMID |
[ 张宇飞, 方向民, 陈伏生, 宗莹莹, 顾菡娇, 胡小飞 (2017). 模拟酸雨对红壤区茶树器官氮磷含量及其化学计量比的影响. 应用生态学报, 28, 1309-1316.]
PMID |
|
[43] |
Zhang ZS, Song XL, Lu XG, Xue ZS (2013). Ecological stoichiometry of carbon, nitrogen, and phosphorus in estuarine wetland soils: influences of vegetation coverage, plant communities, geomorphology, and seawalls. Journal of Soils and Sediments, 13, 1043-1051.
DOI URL |
[44] |
Zhou GW, Zhang W, Ma LJ, Guo HJ, Min W, Li Q, Liao N, Hou ZN (2016). Effects of saline water irrigation and N application rate on NH3 volatilization and N use efficiency in a drip-irrigated cotton field. Water, Air, & Soil Pollution, 227, 103. DOI: 10.1007/s11270-016-2806-2.
DOI |
[1] | 张文瑾 佘维维 秦树高 乔艳桂 张宇清. 氮和水分添加对黑沙蒿群落优势植物叶片氮磷化学计量特征的影响[J]. 植物生态学报, 2024, 48(5): 590-600. |
[2] | 韩大勇, 李海燕, 张维, 杨允菲. 松嫩草地全叶马兰种群分株养分的季节运转及衰老过程[J]. 植物生态学报, 2024, 48(2): 192-200. |
[3] | 韩路, 冯宇, 李沅楷, 王雨晴, 王海珍. 地下水埋深对灰胡杨叶片与土壤养分生态化学计量特征及其内稳态的影响[J]. 植物生态学报, 2024, 48(1): 92-102. |
[4] | 李兆光, 文高, 和桂青, 徐天才, 和琼姬, 侯志江, 李燕, 薛润光. 滇西北藜麦氮磷钾生态化学计量特征的物候期动态[J]. 植物生态学报, 2023, 47(5): 724-732. |
[5] | 刘婧, 缑倩倩, 王国华, 赵峰侠. 晋西北丘陵风沙区柠条锦鸡儿叶片与土壤生态化学计量特征[J]. 植物生态学报, 2023, 47(4): 546-558. |
[6] | 林少颖, 曾瑜, 杨文文, 陈斌, 阮敏敏, 尹晓雷, 阳祥, 王维奇. 添加秸秆及其生物炭对茉莉植株与土壤碳氮磷生态化学计量特征的影响[J]. 植物生态学报, 2023, 47(4): 530-545. |
[7] | 董楠, 唐明明, 崔文倩, 岳梦瑶, 刘洁, 黄玉杰. 不同根系分隔方式对栗和茶幼苗生长的影响[J]. 植物生态学报, 2022, 46(1): 62-73. |
[8] | 张效境, 梁潇洒, 马望, 王正文. 呼伦贝尔草地植物茎秆和叶片中养分的时间动态与回收[J]. 植物生态学报, 2021, 45(7): 738-748. |
[9] | 刘珊杉, 周文君, 况露辉, 刘占锋, 宋清海, 刘运通, 张一平, 鲁志云, 沙丽清. 亚热带常绿阔叶林土壤胞外酶活性对碳输入变化及增温的响应[J]. 植物生态学报, 2020, 44(12): 1262-1272. |
[10] | 熊星烁, 蔡宏宇, 李耀琪, 马文红, 牛克昌, 陈迪马, 刘娜娜, 苏香燕, 景鹤影, 冯晓娟, 曾辉, 王志恒. 内蒙古典型草原植物叶片碳氮磷化学计量特征的季节动态[J]. 植物生态学报, 2020, 44(11): 1138-1153. |
[11] | 贾丙瑞. 凋落物分解及其影响机制[J]. 植物生态学报, 2019, 43(8): 648-657. |
[12] | 刘璐, 葛结林, 舒化伟, 赵常明, 徐文婷, 申国珍, 谢宗强. 神农架常绿落叶阔叶混交林碳氮磷化学计量比[J]. 植物生态学报, 2019, 43(6): 482-489. |
[13] | 杨文高, 字洪标, 陈科宇, 阿的鲁骥, 胡雷, 王鑫, 王根绪, 王长庭. 青海森林生态系统中灌木层和土壤生态化学计量特征[J]. 植物生态学报, 2019, 43(4): 352-364. |
[14] | 张希金, 宋坤, 蒲发光, 高志文, 倪田品, 褚兴行, 王泽英, 商侃侃, 达良俊. 安徽大别山木本植物幼树小枝薄壁组织组成特征初探[J]. 植物生态学报, 2019, 43(3): 238-244. |
[15] | 汤丹丹, 吴毅, 刘文耀, 胡涛, 黄俊彪, 张婷婷. 云南哀牢山两种常见半寄生植物的生态化学计量特征及其与寄主的关系[J]. 植物生态学报, 2019, 43(3): 245-257. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19