植物生态学报 ›› 2020, Vol. 44 ›› Issue (12): 1262-1272.DOI: 10.17521/cjpe.2020.0310
刘珊杉1,2,5, 周文君1,2,5,*(), 况露辉3,5, 刘占锋3,5, 宋清海1,2,5, 刘运通1,2,5, 张一平1,2,5, 鲁志云1,4, 沙丽清1,2,5,*()
收稿日期:
2020-09-11
接受日期:
2020-11-25
出版日期:
2020-12-20
发布日期:
2021-04-01
通讯作者:
周文君,沙丽清
作者简介:
*(Sha LQ:shalq@xtbg.ac.cn;基金资助:
LIU Shan-Shan1,2,5, ZHOU Wen-Jun1,2,5,*(), KUANG Lu-Hui3,5, LIU Zhan-Feng3,5, SONG Qing-Hai1,2,5, LIU Yun- Tong1,2,5, ZHANG Yi-Ping1,2,5, LU Zhi-Yun1,4, SHA Li-Qing1,2,5,*()
Received:
2020-09-11
Accepted:
2020-11-25
Online:
2020-12-20
Published:
2021-04-01
Contact:
ZHOU Wen-Jun,SHA Li-Qing
Supported by:
摘要:
土壤胞外酶来源于土壤微生物、植物和动物, 是土壤生物地球化学过程的积极参与者, 在森林生态系统的物质循环和能量流动过程中扮演着重要角色。为探明土壤胞外酶活性对碳输入变化及增温的响应, 该研究基于长期增温、去除地表凋落物(以下简称去凋)和切根处理的云南哀牢山亚热带常绿阔叶林控制实验平台, 研究了不同处理(对照、去凋、切根、切根并增温)下表层矿质土壤(0-5和5-10 cm)与碳氮磷获取相关的胞外酶活性, 包括多酚氧化酶(POX)、过氧化物酶(PER)、β-葡萄糖苷酶(BG)、β-1,4-N-乙酰氨基葡萄糖苷酶(NAG)和酸性磷酸酶(AP)。结合铵态氮(NH4+-N)含量、硝态氮(NO3--N)含量、溶解有机碳(DOC)含量、溶解总氮(DN)含量、土壤含水量(SWC)等相关指标, 探讨凋落物碳输入、根系碳输入和温度变化对土壤胞外酶活性及其生态化学计量特征的影响。研究结果表明: 在对照样方, 除POX外其余酶活性均为0-5 cm层显著高于5-10 cm层。与对照相比, 长期的凋落物去除显著降低了0-5 cm层土壤AP和BG活性, 对NAG、PER和POX活性则无显著影响; 长期切根处理显著降低了0-5 cm层土壤BG活性, 但提高了两个土层PER活性; 长期切根并增温处理显著降低了0-5 cm层AP和BG活性, 对其余酶活性无显著影响。冗余分析结果显示SWC和NH4+-N含量是驱动土壤酶活性变化的重要因子。本研究为该生态系统土壤碳氮磷生物地球化学关键过程对全球变化的响应提供了土壤酶学的依据。
刘珊杉, 周文君, 况露辉, 刘占锋, 宋清海, 刘运通, 张一平, 鲁志云, 沙丽清. 亚热带常绿阔叶林土壤胞外酶活性对碳输入变化及增温的响应. 植物生态学报, 2020, 44(12): 1262-1272. DOI: 10.17521/cjpe.2020.0310
LIU Shan-Shan, ZHOU Wen-Jun, KUANG Lu-Hui, LIU Zhan-Feng, SONG Qing-Hai, LIU Yun- Tong, ZHANG Yi-Ping, LU Zhi-Yun, SHA Li-Qing. Responses of soil extracellular enzyme activities to carbon input alteration and warming in a subtropical evergreen broad-leaved forest. Chinese Journal of Plant Ecology, 2020, 44(12): 1262-1272. DOI: 10.17521/cjpe.2020.0310
酶 Enzyme | 缩写 Abbreviation | 功能 Function |
---|---|---|
β-葡萄糖苷酶 β-glucosidase | BG | 分解易降解碳 Decomposition of labile carbon |
多酚氧化酶 Polyphenol oxidase | POX | 分解难降解碳 Decomposition of recalcitrant carbon |
过氧化物酶 Peroxidase | PER | 分解难降解碳 Decomposition of recalcitrant carbon |
β-1,4-N-乙酰氨基葡萄糖苷酶 β-1,4-N-acetylglucosaminidase | NAG | 分解氮 Hydrolyze nitrogen |
酸性磷酸酶 Acid phosphatase | AP | 分解磷 Hydrolyze phosphorus |
表1 土壤酶的名称、缩写及功能
Table 1 Name, abbreviation and function of soil enzymes
酶 Enzyme | 缩写 Abbreviation | 功能 Function |
---|---|---|
β-葡萄糖苷酶 β-glucosidase | BG | 分解易降解碳 Decomposition of labile carbon |
多酚氧化酶 Polyphenol oxidase | POX | 分解难降解碳 Decomposition of recalcitrant carbon |
过氧化物酶 Peroxidase | PER | 分解难降解碳 Decomposition of recalcitrant carbon |
β-1,4-N-乙酰氨基葡萄糖苷酶 β-1,4-N-acetylglucosaminidase | NAG | 分解氮 Hydrolyze nitrogen |
酸性磷酸酶 Acid phosphatase | AP | 分解磷 Hydrolyze phosphorus |
观测项目 Observation item | 测定值 Value |
---|---|
酸碱度 pH | 4.25 ± 0.05 |
容重 Bulk density (g·cm-3) | 0.54 ± 0.02 |
总孔隙度 Total porosity (%) | 71.7 ± 2.0 |
土壤最大持水量 Maximum water capacity of soil (%) | 119.1 ± 6.0 |
有机质含量 Organic matter content (g·kg-1) | 175.1 ± 11.7 |
总氮含量 Total nitrogen content (g·kg-1) | 7.18 ± 0.34 |
碳氮比 C:N | 14.1 ± 1.6 |
表2 实验前土壤基本理化性质(平均值±标准偏差)
Table 2 Basic physical and chemical properties of soil before the experiment started in 2010 (mean ± SD)
观测项目 Observation item | 测定值 Value |
---|---|
酸碱度 pH | 4.25 ± 0.05 |
容重 Bulk density (g·cm-3) | 0.54 ± 0.02 |
总孔隙度 Total porosity (%) | 71.7 ± 2.0 |
土壤最大持水量 Maximum water capacity of soil (%) | 119.1 ± 6.0 |
有机质含量 Organic matter content (g·kg-1) | 175.1 ± 11.7 |
总氮含量 Total nitrogen content (g·kg-1) | 7.18 ± 0.34 |
碳氮比 C:N | 14.1 ± 1.6 |
处理 Treatment | 土壤含水量 Soil water content (%) | 铵态氮含量 NH4+-N content (mg·kg-1) | 硝态氮含量 NO3--N content (mg·kg-1) | 溶解有机碳含量 Dissolved organic carbon content (mg·kg-1) | 溶解总氮含量 Total dissolved nitrogen content (mg·kg-1) | 溶解有机氮含量 Dissolved organic nitrogen content (mg·kg-1) | 矿质氮含量 Mineral-N content (mg·kg-1) |
---|---|---|---|---|---|---|---|
0-5 cm | |||||||
CK | 34.35 ± 2.30aA | 61.11 ± 11.30abA | 10.26 ± 3.75aA | 235.88 ± 21.76aA | 118.79 ± 16.82abA | 47.43 ± 7.77aA | 71.36 ± 9.19abA |
LR | 26.35 ± 0.81bA | 43.74 ± 4.55bA | 10.03 ± 3.31aA | 267.48 ± 21.10aA | 93.92 ± 4.01bA | 40.16 ± 3.41aA | 53.76 ± 1.49bA |
TR | 33.65 ± 1.35aA | 89.08 ± 6.10aA | 2.49 ± 0.27aA | 259.62 ± 17.47aA | 143.56 ± 7.52aA | 51.99 ± 8.12aA | 91.57 ± 5.93aA |
TR+W | 29.41 ± 1.16abA | 52.56 ± 1.19bA | 3.90 ± 0.16aA | 232.33 ± 20.29aA | 103.89 ± 7.87abA | 47.44 ± 8.38aA | 56.45 ± 1.31bA |
5-10 cm | |||||||
CK | 32.44 ± 1.07aA | 29.12 ± 3.22aB | 5.73 ± 0.23bA | 207.73 ± 13.46bA | 48.11 ± 2.88bB | 13.27 ± 4.96aB | 34.84 ± 3.09aB |
LR | 30.00 ± 0.58bB | 28.72 ± 1.68aA | 7.55 ± 0.74abA | 269.07 ± 13.14aA | 61.43 ± 2.79aB | 25.16 ± 1.52aB | 36.27 ± 2.34aB |
TR | 32.56 ± 0.72aA | 28.88 ± 1.77aB | 9.35 ± 0.90aB | 189.94 ± 10.05bB | 52.78 ± 4.49abB | 14.55 ± 3.98aB | 38.23 ± 1.73aB |
TR+W | 30.95 ± 0.37abA | 33.42 ± 1.94aB | 5.18 ± 0.75bA | 214.82 ± 9.62bA | 53.44 ± 3.15abB | 14.83 ± 2.20aB | 38.60 ± 2.01aB |
表3 不同处理下亚热带常绿阔叶林土壤基本理化性质(平均值±标准偏差, n = 5)
Table 3 Basic physical and chemical properties of soil in the subtropical evergreen broad-leaved forest under different treatments (mean ± SD, n = 5)
处理 Treatment | 土壤含水量 Soil water content (%) | 铵态氮含量 NH4+-N content (mg·kg-1) | 硝态氮含量 NO3--N content (mg·kg-1) | 溶解有机碳含量 Dissolved organic carbon content (mg·kg-1) | 溶解总氮含量 Total dissolved nitrogen content (mg·kg-1) | 溶解有机氮含量 Dissolved organic nitrogen content (mg·kg-1) | 矿质氮含量 Mineral-N content (mg·kg-1) |
---|---|---|---|---|---|---|---|
0-5 cm | |||||||
CK | 34.35 ± 2.30aA | 61.11 ± 11.30abA | 10.26 ± 3.75aA | 235.88 ± 21.76aA | 118.79 ± 16.82abA | 47.43 ± 7.77aA | 71.36 ± 9.19abA |
LR | 26.35 ± 0.81bA | 43.74 ± 4.55bA | 10.03 ± 3.31aA | 267.48 ± 21.10aA | 93.92 ± 4.01bA | 40.16 ± 3.41aA | 53.76 ± 1.49bA |
TR | 33.65 ± 1.35aA | 89.08 ± 6.10aA | 2.49 ± 0.27aA | 259.62 ± 17.47aA | 143.56 ± 7.52aA | 51.99 ± 8.12aA | 91.57 ± 5.93aA |
TR+W | 29.41 ± 1.16abA | 52.56 ± 1.19bA | 3.90 ± 0.16aA | 232.33 ± 20.29aA | 103.89 ± 7.87abA | 47.44 ± 8.38aA | 56.45 ± 1.31bA |
5-10 cm | |||||||
CK | 32.44 ± 1.07aA | 29.12 ± 3.22aB | 5.73 ± 0.23bA | 207.73 ± 13.46bA | 48.11 ± 2.88bB | 13.27 ± 4.96aB | 34.84 ± 3.09aB |
LR | 30.00 ± 0.58bB | 28.72 ± 1.68aA | 7.55 ± 0.74abA | 269.07 ± 13.14aA | 61.43 ± 2.79aB | 25.16 ± 1.52aB | 36.27 ± 2.34aB |
TR | 32.56 ± 0.72aA | 28.88 ± 1.77aB | 9.35 ± 0.90aB | 189.94 ± 10.05bB | 52.78 ± 4.49abB | 14.55 ± 3.98aB | 38.23 ± 1.73aB |
TR+W | 30.95 ± 0.37abA | 33.42 ± 1.94aB | 5.18 ± 0.75bA | 214.82 ± 9.62bA | 53.44 ± 3.15abB | 14.83 ± 2.20aB | 38.60 ± 2.01aB |
图1 亚热带常绿阔叶林不同处理和深度土壤酶活性的变化(平均值+标准偏差, n = 5)。 CK, 对照处理; LR, 去除地表凋落物处理; TR, 切根处理; TR+W, 切根+增温处理。不同小写字母表示相同深度不同处理间差异显著(p < 0.05), 不同大写字母表示相同处理不同深度土壤之间差异显著(p < 0.05)。AP, 酸性磷酸酶; BG, β-葡萄糖苷酶; NAG, β-1,4-N-乙酰氨基葡萄糖苷酶; PER, 过氧化物酶; POX, 多酚氧化酶。
Fig. 1 Changes of enzyme activities under different treatments and depths in the subtropical evergreen broad-leaved forest (mean + SD, n = 5). CK, control; LR, litter removal; TR, root removal; TR+W, root removal + warming. Different lowercase letters indicate significant differences among different treatments at the same soil depth (p < 0.05). Different uppercase letters indicate significant differences among different soil depths in the same treatment (p < 0.05). AP, acid phosphatase; BG, β-glucosidase; NAG, β-1,4-N- acetylglucosaminidase; PER, peroxidase; POX, polyphenol oxidase.
图2 亚热带常绿阔叶林不同处理和深度土壤酶的化学计量比(平均值+标准偏差, n = 5)。 CK, 对照处理; LR, 去除地表凋落物处理; TR, 切根处理; TR+W, 切根+增温处理。不同小写字母表示相同深度不同处理间差异显著(p < 0.05), 不同大写字母表示相同处理不同深度土壤之间差异显著(p < 0.05)。AP, 酸性磷酸酶; BG, β-葡萄糖苷酶; NAG, β-1,4-N-乙酰氨基葡萄糖苷酶。
Fig. 2 Stoichiometric ratios of soil enzymes at different treatments and depths in the subtropical evergreen broad-leaved forest (mean + SD, n = 5). CK, control; LR, litter removal; TR, root removal; TR+W, root removal + warming. Different lowercase letters indicate significant differences among different treatments at the same soil depth (p < 0.05). Different uppercase letters indicate significant differences among different soil depths in the same treatment (p < 0.05). AP, acid phosphatase; BG, β-glucosidase; NAG, β-1,4-N-acetylglucosaminidase.
图3 亚热带常绿阔叶林0-5 (A、B、C)和5-10 cm (D、E、F)土层BG、NAG和AP活性关系的标准主轴回归分析(n = 20)。 CK, 对照处理; LR, 去除地表凋落物处理; TR, 切根处理; TR+W, 切根+增温处理。AP, 酸性磷酸酶; BG, β-葡萄糖苷酶; NAG, β-1,4-N-乙酰氨基葡萄糖苷酶。
Fig. 3 Standardized major axis regressions of the log-transformed soil BG, NAG and AP activities in 0-5 (A, B, C) and 5-10 cm (D, E, F) soil layers in the subtropical evergreen broad-leaved forest (n = 20). CK, control; LR, litter removal; TR, root removal; TR+W, root removal + warming. AP, acid phosphatase; BG, β-glucosidase; NAG, β-1,4-N-acetylglucosaminidase.
图4 亚热带常绿阔叶林土壤酶活性与土壤理化性质关系的冗余分析(RDA)。 NH4+-N, 铵态氮含量; NO3--N, 硝态氮含量; DOC, 溶解有机碳含量; SWC, 土壤含水量。AP, 酸性磷酸酶; BG, β-葡萄糖苷酶; NAG, β-1,4-N-乙酰氨基葡萄糖苷酶; PER, 过氧化物酶; POX, 多酚氧化酶。
Fig. 4 Redundancy analysis (RDA) of soil enzyme activities and physical and chemical properties in the subtropical evergreen broad-leaved forest. NH4+-N, ammonium nitrogen content; NO3--N, nitrate nitrogen content; DOC, dissolved organic carbon content; SWC, soil water content. AP, acid phosphatase; BG, β-glucosidase; NAG, β-1,4-N-acetylglucosaminidase; PER, Peroxidase; POX, Polyphenol oxidase.
[1] | Allison SD, Vitousek PM (2004). Extracellular enzyme activities and carbon chemistry as drivers of tropical plant litter decomposition. Biotropica, 36, 285-296. |
[2] | Allison SD, Weintraub MN, Gartner TB, Waldrop MP (2010). Evolutionary-economic principles as regulators of soil enzyme production and ecosystem function//Shukla G, Varma A. Soil Enzymology. Springer-Verlag, Berlin. 229-243. |
[3] |
Baldrian P (2009). Ectomycorrhizal fungi and their enzymes in soils: Is there enough evidence for their role as facultative soil saprotrophs? Oecologia, 161, 657-660.
URL PMID |
[4] | Brzostek ER, Greco A, Drake JE, Finzi AC (2013). Root carbon inputs to the rhizosphere stimulate extracellular enzyme activity and increase nitrogen availability in temperate forest soils. Biogeochemistry, 115, 65-76. |
[5] | Chaer GM, Myrold DD, Bottomley PJ (2009). A soil quality index based on the equilibrium between soil organic matter and biochemical properties of undisturbed coniferous forest soils of the Pacific Northwest. Soil Biology & Biochemistry, 41, 822-830. |
[6] | Chen J, Elsgaard L, van Groenigen KJ, Olesen JE, Liang Z, Jiang Y, Laerke PE, Zhang YF, Luo YQ, Hungate BA, Sinsabaugh RL, Jørgensen U (2020). Soil carbon loss with warming: new evidence from carbon-degrading enzymes. Global Change Biology, 26, 1944-1952. |
[7] | Cleveland CC, Liptzin D (2007). C:N:P stoichiometry in soil: Is there a “Redfield ratio” for the microbial biomass? Biogeochemistry, 85, 235-252. |
[8] | Crow SE, Lajtha K, Filley TR, Swanston CW, Bowden RD, Caldwell BA (2009). Sources of plant-derived carbon and stability of organic matter in soil: implications for global change. Global Change Biology, 15, 2003-2019. |
[9] | Fekete I, Kotroczó Z, Varga C, Nagy PT, Várbíró G, Bowden RD, Tóth JA, Lajtha K (2014). Alterations in forest detritus inputs influence soil carbon concentration and soil respiration in a Central-European deciduous forest. Soil Biology & Biochemistry, 74, 106-114. |
[10] | Ge XG, Xiao WF, Zeng LX, Huang ZL, Zhou BZ, Schaub M, Li MH (2017). Relationships between soil-litter interface enzyme activities and decomposition in Pinus massoniana plantations in China. Journal of Soils and Sediments, 17, 996-1008. |
[11] | Gianfreda L (2015). Enzymes of importance to rhizosphere processes. Journal of Soil Science and Plant Nutrition, 15, 283-306. |
[12] | Harrington RA, Fownes JH, Vitousek PM (2001). Production and resource use efficiencies in N- and P-limited tropical forests: a comparison of responses to long-term fertilization. Ecosystems, 4, 646-657. |
[13] | Hill BH, Elonen CM, Jicha TM, Kolka RK, Lehto LLP, Sebestyen SD, Seifert-Monson LR (2014). Ecoenzymatic stoichiometry and microbial processing of organic matter in northern bogs and fens reveals a common P-limitation between peatland types. Biogeochemistry, 120, 203-224. |
[14] | Hu R, Wang XP, Xu JS, Zhang YF, Pan YX, Su X (2020). Themechanism of soil nitrogen transformation under different biocrusts to warming and reduced precipitation: from microbial functional genes to enzyme activity. Science of the Total Environment, 722, 137849. DOI: 10.1016/j.scitotenv. 2020.137849. |
[15] | IPCC (2013). Climate Change 2013: the Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge. |
[16] | Jiang MH, Ni MY, Zhou JC, Chen YM, Yang YS (2018). Effects of warming and precipitation reduction on soil enzyme activity in a young Cunning-hamia lanceolata plantation. Chinese Journal of Ecology, 37, 3210-3219. |
[ 江淼华, 倪梦颖, 周嘉聪, 陈岳民, 杨玉盛 (2018). 增温和降雨减少对杉木幼林土壤酶活性的影响. 生态学杂志, 37, 3210-3219.] | |
[17] | Jones DL, Willett VB (2006). Experimental evaluation of methods to quantify Dissolved organic nitrogen (DON) and Dissolved organic carbon (DOC) in soil. Soil Biology & Biochemistry, 38, 991-999. |
[18] | Kang H, Lee D (2005). Inhibition of extracellular enzyme activities in a forest soil by additions of inorganic nitrogen. Communications in Soil Science and Plant Analysis, 36, 2129-2135. |
[19] |
Karhu K, Auffret MD, Dungait JAJ, Hopkins DW, Prosser JI, Singh BK, Subke JA, Wookey PA, Agren GI, Sebastià MT, Gouriveau F, Bergkvist G, Meir P, Nottingham AT, Salinas N, Hartley IP (2014). Temperature sensitivity of soil respiration rates enhanced by microbial community response. Nature, 513, 81-84.
URL PMID |
[20] | Li GL, Kim S, Han SH, Chang HN, Du DL, Son Y (2018). Precipitation affects soil microbial and extracellular enzymatic responses to warming. Soil Biology & Biochemistry, 120, 212-221. |
[21] |
Lu M, Zhou XH, Yang Q, Li H, Lou YQ, Fang CM, Chen JK, Yang X, Li B (2013). Responses of ecosystem carbon cycle to experimental warming: a meta-analysis. Ecology, 94, 726-738.
URL PMID |
[22] | Lu ZY (2016). Effects of Increasing Temperature and Root Cutting on Soil Nitrogen Mineralization in Evergreen Broad-leaved Forest of Ailao Mountain. Master degree dissertation, University of Chinese Academy of Sciences, Beijing. |
[ 鲁志云 (2016). 增温和切根对哀牢山常绿阔叶林土壤氮矿化的影响. 硕士学位论文, 中国科学院大学, 北京.] | |
[23] | Luo YQ, Sherry R, Zhou XH, Wan SQ (2009). Terrestrial carbon- cycle feedback to climate warming: experimental evidence on plant regulation and impacts of biofuel feedstock harvest. Global Change Biology: Bioenergy, 1, 62-74. |
[24] | Martens DA, Johanson JB, Frankenberger WT JR (1992). Production and persistence of soil enzymes with repeated addition of organic residues. Soil Science, 153, 53-61. |
[25] | McDaniel MD, Kaye JP, Kaye MW (2013). Increased temperature and precipitation had limited effects on soil extracellular enzyme activities in a post-harvest forest. Soil Biology & Biochemistry, 56, 90-98. |
[26] | Michalak A (2006). Phenolic compounds and their antioxidant activity in plants growing under heavy metal stress. Polish Journal of Environmental Studies, 15, 523-530. |
[27] | Moorhead DL, Sinsabaugh RL, Hill BH, Weintraub MN (2016). Vector analysis of ecoenzyme activities reveal constraints on coupled C, N and P dynamics. Soil Biology & Biochemistry, 93, 1-7. |
[28] | Peng XQ, Wang W (2016). Stoichiometry of soil extracellular enzyme activity along a climatic transect in temperate grasslands of Northern China. Soil Biology & Biochemistry, 98, 74-84. |
[29] | Piotrowska-Długosz A, Charzyński P (2015). The impact of the soil sealing degree on microbial biomass, enzymatic activity, and physicochemical properties in the Ekranic Technosols of Toruń (Poland). Journal of Soils and Sediments, 15, 47-59. |
[30] | Ren CJ, Zhao FZ, Shi Z, Chen J, Han XH, Yang GH, Feng YZ, Ren GX (2017). Differential responses of soil microbial biomass and carbon-degrading enzyme activities to altered precipitation. Soil Biology & Biochemistry, 115, 1-10. |
[31] |
Rustad L, Campbell J, Marion G, Norby R, Mitchell M, Hartley A, Cornelissen J, Gurevitch J, GCTE-NEWS (2001). A meta-analysis of the response of soil respiration, net nitrogen mineralization, and aboveground plant growth to experimental ecosystem warming. Oecologia, 126, 543-562.
DOI URL PMID |
[32] | Sardans J, Peñuelas J, Estiarte M (2008). Changes in soil enzymes related to C and N cycle and in soil C and N content under prolonged warming and drought in a Mediterranean shrubland. Applied Soil Ecology, 39, 223-235. |
[33] | Seo J, Jang I, Jung JY, Lee YK, Kang H (2015). Warming and increased precipitation enhance phenol oxidase activity in soil while warming induces drought stress in vegetation of an Arctic ecosystem. Geoderma, 259- 260, 347-353. |
[34] | Sinsabaugh RL, Carreiro MM, Repert DA (2002). Allocation of extracellular enzymatic activity in relation to litter composition, N deposition, and mass loss. Biogeochemistry, 60, 1-24. |
[35] | Sinsabaugh RL, Follstad Shah JJ (2012). Ecoenzymatic stoichiometry and ecological theory. Annual Review of Ecology, Evolution, and Systematics, 43, 313-343. |
[36] |
Sinsabaugh RL, Hill BH, Follstad Shah JJ (2009). Ecoenzymatic stoichiometry of microbial organic nutrient acquisition in soil and sediment. Nature, 462, 795-798.
URL PMID |
[37] |
Sinsabaugh RL, Lauber CL, Weintraub MN, Ahmed B, Allison SD, Crenshaw C, Contosta AR, Cusack D, Frey S, Gallo ME, Gartner TB, Hobbie SE, Holland K, Keeler BL, Powers JS, Stursova M, Takacs-Vesbach C, Waldrop MP, Wallenstein MD, Zak DR, Zeglin LH (2008). Stoichiometry of soil enzyme activity at global scale. Ecology Letters, 11, 1252-1264.
DOI URL PMID |
[38] | Spohn M, Kuzyakov Y (2014). Spatial and temporal dynamics of hotspots of enzyme activity in soil as affected by living and dead roots—A soil zymography analysis. Plant and Soil, 379, 67-77. |
[39] |
Steinweg JM, Dukes JS, Paul EA, Wallenstein MD (2013). Microbial responses to multi-factor climate change: effects on soil enzymes. Frontiers in Microbiology, 4, 146. DOI: 10.3389/fmicb.2013.00146.
DOI URL PMID |
[40] | Steinweg JM, Dukes JS, Wallenstein MD (2012). Modeling the effects of temperature and moisture on soil enzyme activity: linking laboratory assays to continuous field data. Soil Biology & Biochemistry, 55, 85-92. |
[41] | Stone MM, DeForest JL, Plante AF (2014). Changes in extracellular enzyme activity and microbial community structure with soil depth at the Luquillo Critical Zone Observatory. Soil Biology & Biochemistry, 75, 237-247. |
[42] | Stone MM, Weiss MS, Goodale CL, Adams MB, Fernandez IJ, German DP, Allison SD (2012). Temperature sensitivity of soil enzyme kinetics under N-fertilization in two temperate forests. Global Change Biology, 18, 1173-1184. |
[43] | Tan ZH, Zhang YP, Liang NS, Hsia YJ, Zhang YJ, Zhou GY, Li YL, Juang JY, Chu HS, Yan JH, Yu GR, Sun XM, Song QH, Cao KF, Schaefer DA, Liu YH (2012). An observational study of the carbon-sink strength of East Asian subtropical evergreen forests. Environmental Research Letters, 7, 044017. DOI: 10.1088/1748-9326/7/4/044017. |
[44] | Veres Z, Kotroczó Z, Fekete I, Tóth JA, Lajtha K, Townsend K, Tóthmérész B (2015). Soil extracellular enzyme activities are sensitive indicators of detrital inputs and carbon availability. Applied Soil Ecology, 92, 18-23. |
[45] |
Wang SP, Duan JC, Xu GP, Wang YF, Zhang ZH, Rui YC, Luo CY, Xu B, Zhu XX, Chang XF, Cui XY, Niu HS, Zhao XQ, Wang WY (2012). Effects of warming and grazing on soil N availability, species composition, and ANPP in an alpine meadow. Ecology, 93, 2365-2376.
URL PMID |
[46] | Wang XC, Lu Q (2006). Beta-glucosidase activity in paddy soils of the Taihu Lake region, China. Pedosphere, 16, 118-124. |
[47] | Waring BG, Weintraub SR, Sinsabaugh RL (2014). Ecoenzymatic stoichiometry of microbial nutrient acquisition in tropical soils. Biogeochemistry, 117, 101-113. |
[48] | Warton DI, Duursma RA, Falster DS, Taskinen S (2012). Smatr 3—An R package for estimation and inference about allometric lines. Methods in Ecology and Evolution, 3, 257-259. |
[49] | Wei CC, Liu XF, Lin CF, Li XF, Li Y, Zheng YX (2018). Response of soil enzyme activities to litter input changes in two secondary Castanopsis carlessii forests in subtropical China. Chinese Journal of Plant Ecology, 42, 692-702. |
[ 魏翠翠, 刘小飞, 林成芳, 李先锋, 李艳, 郑裕雄 (2018). 凋落物输入改变对亚热带两种米槠次生林土壤酶活性的影响. 植物生态学报, 42, 692-702.] | |
[50] | Weintraub SR, Wieder WR, Cleveland CC, Townsend AR (2013). Organic matter inputs shift soil enzyme activity and allocation patterns in a wet tropical forest. Biogeochemistry, 114, 313-326. |
[51] |
Wu CS, Liang NS, Sha LQ, Xu XL, Zhang YP, Lu HZ, Song L, Song QH, Xie YN (2016). Heterotrophic respiration does not acclimate to continuous warming in a subtropical forest. Scientific Reports, 6, 21561. DOI: 10.1038/srep21561.
URL PMID |
[52] | Wu CS, Zhang YP, Xu XL, Sha LQ, You GY, Liu YH, Xie YN (2014). Influence of interactions between litter decomposition and rhizosphere activity on soil respiration and on the temperature sensitivity in a subtropical montane forest in SW China. Plant and Soil, 381, 215-224. |
[53] | Xiao W, Chen X, Jing X, Zhu B (2018). A meta-analysis of soil extracellular enzyme activities in response to global change. Soil Biology & Biochemistry, 123, 21-32. |
[54] | Yang WQ, Wang KY (2004). Advances in forest soil enzymology. Scientia Silvae Sinicae, 40, 152-159. |
[ 杨万勤, 王开运 (2004). 森林土壤酶的研究进展. 林业科学, 40, 152-159.] | |
[55] | Zhang XL, Hu ZQ, Chu SL (2005). Methods for measuring soil water content: a reciew. Chinese Journal of Soil Science, 1, 118-7123. |
[ 张学礼, 胡振琪, 初士立 (2005). 土壤含水量测定方法研究进展. 土壤通报, 1, 118-7123.] | |
[56] | Zheng WG, Xue L, Xu PB, Liang LL, Feng HF (2011). Soil response to litter in a Pinus caribaea woodland. Journal of South China Agricultural University, 32, 120-123. |
[ 郑卫国, 薛立, 许鹏波, 梁丽丽, 冯慧芳 (2011). 加勒比松林地土壤对凋落物的响应. 华南农业大学学报, 32, 120-123.] | |
[57] | Zhou LG, Liu YT, Zhang YP, Sha LQ, Song QH, Zhou WJ, Balasubramanian D, Palingamoorthy G, Gao JB, Lin YX, Li J, Zhou RW, Zar Myo ST, Tang XH, Zhang J, Zhang P, Wang SS, Grace J (2019). Soil respiration after six years of continuous drought stress in the tropical rainforest in Southwest China. Soil Biology & Biochemistry, 138, 107564. DOI: 10.1016/j.soilbio.2019.107564. |
[58] | Zhou XQ, Chen CR, Wang YF, Xu ZH, Han HY, Li LH, Wan SQ (2013). Warming and increased precipitation have differential effects on soil extracellular enzyme activities in a temperate grassland. Science of the Total Environment, 444, 552-558. |
[59] | Zhu H (2016). Discussion on the origin of mid-montane wet evergreen broad-leaved forest in Yunnan. Plant Science Journal, 34, 715-723. |
[ 朱华 (2016). 云南中山湿性常绿阔叶林起源的探讨. 植物科学学报, 34, 715-723.] |
[1] | 张文瑾 佘维维 秦树高 乔艳桂 张宇清. 氮和水分添加对黑沙蒿群落优势植物叶片氮磷化学计量特征的影响[J]. 植物生态学报, 2024, 48(5): 590-600. |
[2] | 索南吉, 李博文, 吕汪汪, 王文颖, 拉本, 陆徐伟, 宋扎磋, 陈程浩, 苗琪, 孙芳慧, 汪诗平. 增温增水情景下钉柱委陵菜物候序列的变化及其抗冻性[J]. 植物生态学报, 2024, 48(2): 158-170. |
[3] | 韩路, 冯宇, 李沅楷, 王雨晴, 王海珍. 地下水埋深对灰胡杨叶片与土壤养分生态化学计量特征及其内稳态的影响[J]. 植物生态学报, 2024, 48(1): 92-102. |
[4] | 李伟斌, 张红霞, 张玉书, 陈妮娜. 昼夜不对称增温对长白山阔叶红松林碳汇能力的影响[J]. 植物生态学报, 2023, 47(9): 1225-1233. |
[5] | 赵艳超, 陈立同. 土壤养分对青藏高原高寒草地生物量响应增温的调节作用[J]. 植物生态学报, 2023, 47(8): 1071-1081. |
[6] | 郭敏, 罗林, 梁进, 王彦杰, 赵春章. 冻融变化对西南亚高山森林优势种云杉和华西箭竹根区土壤理化性质与酶活性的影响[J]. 植物生态学报, 2023, 47(6): 882-894. |
[7] | 吴帆, 吴晨, 张宇辉, 余恒, 魏智华, 郑蔚, 刘小飞, 陈仕东, 杨智杰, 熊德成. 增温对成熟杉木人工林不同季节细根生长、形态及生理代谢特征的影响[J]. 植物生态学报, 2023, 47(6): 856-866. |
[8] | 李兆光, 文高, 和桂青, 徐天才, 和琼姬, 侯志江, 李燕, 薛润光. 滇西北藜麦氮磷钾生态化学计量特征的物候期动态[J]. 植物生态学报, 2023, 47(5): 724-732. |
[9] | 林少颖, 曾瑜, 杨文文, 陈斌, 阮敏敏, 尹晓雷, 阳祥, 王维奇. 添加秸秆及其生物炭对茉莉植株与土壤碳氮磷生态化学计量特征的影响[J]. 植物生态学报, 2023, 47(4): 530-545. |
[10] | 刘婧, 缑倩倩, 王国华, 赵峰侠. 晋西北丘陵风沙区柠条锦鸡儿叶片与土壤生态化学计量特征[J]. 植物生态学报, 2023, 47(4): 546-558. |
[11] | 夏璟钰, 张扬建, 郑周涛, 赵广, 赵然, 朱艺旋, 高洁, 沈若楠, 李文宇, 郑家禾, 张雨雪, 朱军涛, 孙建新. 青藏高原那曲高山嵩草草甸植物物候对增温的异步响应[J]. 植物生态学报, 2023, 47(2): 183-194. |
[12] | 钟楠蝶, 王力, 肖杰, 王琼. 增温条件下花粉来源对红雉凤仙花生殖成功的影响[J]. 植物生态学报, 2022, 46(4): 416-427. |
[13] | 田磊, 朱毅, 李欣, 韩国栋, 任海燕. 不同降水条件下内蒙古荒漠草原主要植物物候对长期增温和氮添加的响应[J]. 植物生态学报, 2022, 46(3): 290-299. |
[14] | 韩聪, 刘鹏, 母艳梅, 原媛, 郝少荣, 田赟, 查天山, 贾昕. 黑沙蒿灌丛生态系统碳平衡对昼夜非对称增温的响应[J]. 植物生态学报, 2022, 46(12): 1473-1485. |
[15] | 毛瑾, 朵莹, 邓军, 程杰, 程积民, 彭长辉, 郭梁. 冬季增温和减雪对黄土高原典型草原土壤养分和细菌群落组成的影响[J]. 植物生态学报, 2021, 45(8): 891-902. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19