植物生态学报 ›› 2020, Vol. 44 ›› Issue (12): 1273-1284.DOI: 10.17521/cjpe.2020.0097
梅孔灿1,2, 程蕾1,2, 张秋芳1,2, 林开淼2,3, 周嘉聪1,2, 曾泉鑫1,2, 吴玥1,2, 徐建国3, 周锦容1,2, 陈岳民1,2,*()
收稿日期:
2020-04-07
接受日期:
2020-07-07
出版日期:
2020-12-20
发布日期:
2021-04-01
通讯作者:
陈岳民
作者简介:
*(ymchen@fjnu.edu.cn)基金资助:
MEI Kong-Can1,2, CHENG Lei1,2, ZHANG Qiu-Fang1,2, LIN Kai-Miao2,3, ZHOU Jia-Cong1,2, ZENG Quan-Xin1,2, WU Yue1,2, XU Jian-Guo3, ZHOU Jin-Rong1,2, CHEN Yue-Min1,2,*()
Received:
2020-04-07
Accepted:
2020-07-07
Online:
2020-12-20
Published:
2021-04-01
Contact:
CHEN Yue-Min
Supported by:
摘要:
探究不同植物来源可溶性有机质(DOM)进入土壤后对酶活性的影响, 可以为降水淋溶下亚热带地区不同森林生态系统土壤碳循环提供科学依据。该研究提取杉木(Cunninghamia lanceolata)、木荷(Schima superba)和楠木(Phoebe zherman) 3种植物鲜叶中的DOM分别输入杉木人工林土壤中, 以等量的去离子水添加为对照, 进行25天的室内培养。培养结束后测定土壤理化性质、微生物生物量和酶活性等指标。结果表明: 与对照处理(CT)相比, 添加3种叶片DOM后, 土壤总有机碳(SOC)、总氮(TN)含量和碳氮比均无显著变化。杉木叶片DOM添加处理(CL)的TN含量显著低于木荷叶片DOM添加处理(SL)和楠木叶片DOM添加处理(PL), 碳氮比显著高于SL和PL。3种叶片DOM输入整体上提高了土壤溶解有机碳(DOC)和溶解有机氮(DON)的含量。叶片DOM输入后土壤微生物生物量碳(MBC)含量无显著变化, 然而CL和SL的土壤微生物生物量氮(MBN)含量分别比CT降低了50.9%和51.1%, PL的MBN含量比CT提高了54.0%。与CT相比, 不同植物来源DOM输入后, β-葡萄糖苷酶(βG)、纤维素水解酶(CBH)和过氧化物酶(PEO) 3种酶活性均显著上升, 而多酚氧化酶(PPO)活性则显著下降; 此外, βG和CBH活性均表现出CL > SL > PL的特征。相关性分析的结果表明, 添加叶片DOM 3种处理的SOC、TN、MBN含量和βG、CBH活性都与所输入DOM的DOC含量和腐殖化指数(HIX)显著相关, 此外, 土壤MBN含量和PPO活性与输入叶片DOM的pH呈正相关关系。冗余分析(RDA)结果表明, 叶片DOM输入后引起土壤酶活性变化的关键因子是DON和DOC含量。总体来说, 不同植物来源DOM性质的差异会影响土壤碳循环水解酶的活性, 而叶片DOM输入后增加了土壤碳和氮的有效性, 引起4种碳循环酶的不同响应。
梅孔灿, 程蕾, 张秋芳, 林开淼, 周嘉聪, 曾泉鑫, 吴玥, 徐建国, 周锦容, 陈岳民. 不同植物来源可溶性有机质对亚热带森林土壤酶活性的影响. 植物生态学报, 2020, 44(12): 1273-1284. DOI: 10.17521/cjpe.2020.0097
MEI Kong-Can, CHENG Lei, ZHANG Qiu-Fang, LIN Kai-Miao, ZHOU Jia-Cong, ZENG Quan-Xin, WU Yue, XU Jian-Guo, ZHOU Jin-Rong, CHEN Yue-Min. Effects of dissolved organic matter from different plant sources on soil enzyme activities in subtropical forests. Chinese Journal of Plant Ecology, 2020, 44(12): 1273-1284. DOI: 10.17521/cjpe.2020.0097
DOM来源 DOM from different plant sources | 溶解有机碳含量 Dissolved organic carbon content (g·kg-1) | 溶解有机氮含量 Dissolved organic nitrogen content (mg·kg-1) | 腐殖化指数 Humification index | 酸碱度 pH |
---|---|---|---|---|
杉木 Cunninghamia lanceolata | 19.32 ± 0.90a | 7.63 ± 1.44b | 0.27 ± 0.02c | 5.44 ± 0.11b |
木荷 Schima superba | 12.77 ± 2.86b | 26.10 ± 2.11a | 1.67 ± 0.55b | 5.28 ± 0.03c |
楠木 Phoebe zherman | 6.95 ± 0.45c | 11.20 ± 2.72b | 4.36 ± 0.59a | 5.76 ± 0.02a |
p | <0.01 | <0.01 | <0.01 | <0.01 |
表1 不同植物叶片及其可溶性有机质(DOM)的性质(平均值±标准偏差)
Table 1 Characterizations of leaves and dissolved organic matter (DOM) from different plant sources (mean ± SD)
DOM来源 DOM from different plant sources | 溶解有机碳含量 Dissolved organic carbon content (g·kg-1) | 溶解有机氮含量 Dissolved organic nitrogen content (mg·kg-1) | 腐殖化指数 Humification index | 酸碱度 pH |
---|---|---|---|---|
杉木 Cunninghamia lanceolata | 19.32 ± 0.90a | 7.63 ± 1.44b | 0.27 ± 0.02c | 5.44 ± 0.11b |
木荷 Schima superba | 12.77 ± 2.86b | 26.10 ± 2.11a | 1.67 ± 0.55b | 5.28 ± 0.03c |
楠木 Phoebe zherman | 6.95 ± 0.45c | 11.20 ± 2.72b | 4.36 ± 0.59a | 5.76 ± 0.02a |
p | <0.01 | <0.01 | <0.01 | <0.01 |
土壤酶 Soil enzyme | 缩写 Abbreviation | 底物 Substrate | 功能 Function |
---|---|---|---|
β-葡萄糖苷酶 β-glucosidase | βG | 4-MUB-β-D-glucoside | 水解纤维素 Hydrolyze cellulose |
纤维素水解酶 Cellobiohydrolase | CBH | 4-MUB-β-D-cellobioside | 水解纤维素 Hydrolyze cellulose |
过氧化物酶 Peroxidase | PEO | L-dihydroxyphenylalanine | 降解木质素 Degrade lignin |
多酚氧化酶 Polyphenol oxidase | PPO | L-dihydroxyphenylalanine | 降解木质素 Degrade lignin |
表2 与碳循环相关的4种土壤酶的缩写、底物和功能
Table 2 Substrates and functions of four soil enzymes related to carbon cycling
土壤酶 Soil enzyme | 缩写 Abbreviation | 底物 Substrate | 功能 Function |
---|---|---|---|
β-葡萄糖苷酶 β-glucosidase | βG | 4-MUB-β-D-glucoside | 水解纤维素 Hydrolyze cellulose |
纤维素水解酶 Cellobiohydrolase | CBH | 4-MUB-β-D-cellobioside | 水解纤维素 Hydrolyze cellulose |
过氧化物酶 Peroxidase | PEO | L-dihydroxyphenylalanine | 降解木质素 Degrade lignin |
多酚氧化酶 Polyphenol oxidase | PPO | L-dihydroxyphenylalanine | 降解木质素 Degrade lignin |
处理 Treatment | 土壤总有机碳含量 Total soil organic carbon content (g·kg-1) | 总氮含量 Total soil nitrogen content (g·kg-1) | 碳氮比 C:N | 酸碱度 pH | 溶解有机碳含量 Dissolved organic carbon content (mg·kg-1) | 溶解有机氮含量 Dissolved organic nitrogen content (mg·kg-1) |
---|---|---|---|---|---|---|
CT | 75.96 ± 0.14a | 4.72 ± 0.13ab | 16.11 ± 0.45ab | 4.49 ± 0.02b | 32.65 ± 12.20b | 5.39 ± 1.32b |
CL | 70.94 ± 2.17a | 4.26 ± 0.23b | 16.69 ± 0.72a | 4.70 ± 0.12a | 139.02 ± 24.90a | 26.95 ± 8.65a |
SL | 70.55 ± 1.77a | 4.53 ± 0.10ab | 15.58 ± 0.07b | 4.72 ± 0.09a | 154.06 ± 56.81a | 9.42 ± 1.44b |
PL | 75.63 ± 5.22a | 4.89 ± 0.40a | 15.48 ± 0.31b | 4.59 ± 0.12ab | 110.24 ± 20.41a | 6.51 ± 1.78b |
p | 0.10 | 0.06 | 0.04 | 0.06 | 0.01 | <0.01 |
表3 可溶性有机质(DOM)输入对土壤理化性质的影响(平均值±标准偏差)
Table 3 Effects of dissolved organic matter (DOM) addition on physicochemical properties of the soil (mean ± SD)
处理 Treatment | 土壤总有机碳含量 Total soil organic carbon content (g·kg-1) | 总氮含量 Total soil nitrogen content (g·kg-1) | 碳氮比 C:N | 酸碱度 pH | 溶解有机碳含量 Dissolved organic carbon content (mg·kg-1) | 溶解有机氮含量 Dissolved organic nitrogen content (mg·kg-1) |
---|---|---|---|---|---|---|
CT | 75.96 ± 0.14a | 4.72 ± 0.13ab | 16.11 ± 0.45ab | 4.49 ± 0.02b | 32.65 ± 12.20b | 5.39 ± 1.32b |
CL | 70.94 ± 2.17a | 4.26 ± 0.23b | 16.69 ± 0.72a | 4.70 ± 0.12a | 139.02 ± 24.90a | 26.95 ± 8.65a |
SL | 70.55 ± 1.77a | 4.53 ± 0.10ab | 15.58 ± 0.07b | 4.72 ± 0.09a | 154.06 ± 56.81a | 9.42 ± 1.44b |
PL | 75.63 ± 5.22a | 4.89 ± 0.40a | 15.48 ± 0.31b | 4.59 ± 0.12ab | 110.24 ± 20.41a | 6.51 ± 1.78b |
p | 0.10 | 0.06 | 0.04 | 0.06 | 0.01 | <0.01 |
图1 可溶性有机质(DOM)输入对土壤微生物生物量的影响(平均值±标准偏差)。 不同小写字母表示不同处理间差异显著(p < 0.05)。CL, 输入杉木叶片DOM处理; CT, 对照处理; PL, 输入楠木叶片DOM处理; SL, 输入木荷叶片DOM处理。
Fig. 1 Effects of dissolved organic matter (DOM) addition on soil microbial biomass (mean ± SD). Different lowercase letters indicate significant difference among different treatments (p < 0.05). CL, Cunninghamia lanceolata leaf DOM addition treatment; CT, control treatment; PL, Phoebe zherman leaf DOM addition treatment; SL, Schima superba leaf DOM addition treatment.
图2 可溶性有机质(DOM)输入对土壤酶活性的影响(平均值±标准偏差)。 图中不同小写字母表示不同处理间差异显著(p < 0.05)。CL, 输入杉木叶片DOM处理; CT, 对照处理; PL, 输入楠木叶片DOM处理; SL, 输入木荷叶片DOM处理。
Fig. 2 Effects of dissolved organic matter (DOM) addition on soil enzyme activities (mean ± SD). Different lowercase letters indicate significant difference among different treatments (p < 0.05). CL, Cunninghamia lanceolata leaf DOM addition treatment; CT, control treatment; PL, Phoebe zherman leaf DOM addition treatment; SL, Schima superba leaf DOM addition treatment.
DOM性质 DOM property | 土壤理化性质 Soil physical and chemical properties | 微生物生物量Microbial biomass | 土壤酶活性 Soil enzyme activities | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
SOC | TN | C:N | pH | DOC | DON | MBC | MBN | βG | CBH | PEO | PPO | |
L-DOC | -0.79* | -0.73* | 0.69* | 0.59 | 0.12 | 0.83** | 0.14 | -0.78* | 0.87** | 0.94** | -0.10 | -0.25 |
L-DON | -0.15 | 0.16 | -0.52 | 0.14 | 0.16 | -0.46 | -0.25 | -0.27 | -0.51 | -0.30 | -0.20 | -0.84** |
L-HIX | 0.81** | 0.79* | -0.69* | -0.59 | -0.52 | -0.76* | 0.04 | 0.90** | -0.86* | -0.93* | -0.08 | 0.44 |
L-pH | 0.52 | 0.65 | -0.14 | -0.47 | -0.39 | -0.19 | 0.14 | 0.86** | -0.34 | -0.54 | 0.09 | 0.88** |
表4 土壤理化性质、微生物生物量和酶活性与叶片可溶性有机质(DOM)性质的相关性分析
Table 4 Correlation analysis of soil physical and chemical properties, microbial biomass and enzyme activities with properties of dissolved organic matter (DOM) of fresh leaves
DOM性质 DOM property | 土壤理化性质 Soil physical and chemical properties | 微生物生物量Microbial biomass | 土壤酶活性 Soil enzyme activities | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
SOC | TN | C:N | pH | DOC | DON | MBC | MBN | βG | CBH | PEO | PPO | |
L-DOC | -0.79* | -0.73* | 0.69* | 0.59 | 0.12 | 0.83** | 0.14 | -0.78* | 0.87** | 0.94** | -0.10 | -0.25 |
L-DON | -0.15 | 0.16 | -0.52 | 0.14 | 0.16 | -0.46 | -0.25 | -0.27 | -0.51 | -0.30 | -0.20 | -0.84** |
L-HIX | 0.81** | 0.79* | -0.69* | -0.59 | -0.52 | -0.76* | 0.04 | 0.90** | -0.86* | -0.93* | -0.08 | 0.44 |
L-pH | 0.52 | 0.65 | -0.14 | -0.47 | -0.39 | -0.19 | 0.14 | 0.86** | -0.34 | -0.54 | 0.09 | 0.88** |
图3 可溶性有机质(DOM)输入对土壤酶活性影响的冗余分析。 CL, 输入杉木叶片DOM处理; CT, 对照处理; PL, 输入楠木叶片DOM处理; SL, 输入木荷叶片DOM处理。βG, β-葡萄糖苷酶; CBH, 纤维素水解酶; PEO, 过氧化物酶; PPO, 多酚氧化酶。DOC, 土壤溶解有机碳含量; DON, 土壤溶解有机氮含量; MBN, 微生物生物量氮含量; SOC, 土壤总有机碳含量。图中实线箭头表示物种因子, 虚线箭头表示环境因子。图右下角变量注释表示对土壤酶活性变化有显著影响的环境因子的相应解释比例。
Fig. 3 Redundant analysis of the effect of dissolved organic matter (DOM) input on soil enzyme activities. CL, Cunninghamia lanceolata leaf DOM addition treatment; CT, control treatment; PL, Phoebe zherman leaf DOM addition treatment; SL, Schima superba leaf DOM addition treatment. βG, β-glucosidase; CBH, cellulolytic enzymes; PEO, peroxidase; PPO, polyphenol oxidase. DOC, soil dissolved organic carbon content; DON, soil dissolved organic nitrogen content; MBN, microbial biomass nitrogen content; SOC, total soil organic carbon content. The solid arrows represent species factors and the dotted arrows represent environmental factors. The notes of variables in lower right corner of the picture represent the corresponding proportion of environmental factors that have a significant effect on changes in soil enzyme activities.
[1] |
Ågren GI, Bosatta E, Magill AH (2001). Combining theory and experiment to understand effects of inorganic nitrogen on litter decomposition. Oecologia, 128, 94-98.
DOI URL PMID |
[2] | Allison SD, Vitousek PM (2005). Responses of extracellular enzymes to simple and complex nutrient inputs. Soil Biology & Biochemistry, 37, 937-944. |
[3] | Allison SD, Weintraub MN, Gartner TB, Waldrop MP (2010). Evolutionary-economic principles as regulators of soil enzyme production and ecosystem function//Shukla G, Varma A. Soil Enzymology. Springer, Berlin, Germany. 229-243. |
[4] | Bao Y, Gao Y, Zeng XM, Yuan P, Si YT, Chen YM, Chen YY (2018). Relationships between carbon and nitrogen contents and enzyme activities in soil of three typical subtropical forests in China. Chinese Journal of Plant Ecology, 42, 508-516. |
[ 鲍勇, 高颖, 曾晓敏, 袁萍, 司友涛, 陈岳民, 陈滢伊 (2018). 中亚热带3种典型森林土壤碳氮含量和酶活性的关系. 植物生态学报, 42, 508-516.] | |
[5] | Boddy E, Hill PW, Farrar J, Jones DL (2007). Fast turnover of low molecular weight components of the dissolved organic carbon pool of temperate grassland field soils. Soil Biology & Biochemistry, 39, 827-835. |
[6] | Chen GS, Yang ZJ, Gao R, Xie JS, Guo JF, Huang ZQ, Yang YS (2013). Carbon storage in a chronosequence of Chinese fir plantations in southern China. Forest Ecology and Management, 300, 68-76. |
[7] |
Chen J, Luo YQ, Li JW, Zhou XH, Cao JJ, Wang RW, Wang YQ, Shelton S, Jin Z, Walker LM, Feng ZZ, Niu SL, Feng WT, Jian SY, Zhou LY (2017). Costimulation of soil glycosidase activity and soil respiration by nitrogen addition. Global Change Biology, 23, 1328-1337.
URL PMID |
[8] | Chen X, Hao B, Jing X, He JS, Ma W, Zhu B (2019). Minor responses of soil microbial biomass, community structure and enzyme activities to nitrogen and phosphorus addition in three grassland ecosystems. Plant and Soil, 444, 21-37. |
[9] | Curtin D, Campbell CA, Jalil A (1998). Effects of acidity on mineralization: pH-dependence of organic matter mineralization in weakly acidic soils. Soil Biology & Biochemistry, 30, 57-64. |
[10] | Du YX, Zhang YY, Chen FZ, Chang YG, Liu ZW (2016). Photochemical reactivities of dissolved organic matter (DOM) in a sub-alpine lake revealed by EEM-PARAFAC: an insight into the fate of allochthonous DOM in alpine lakes affected by climate change. Science of the Total Environment, 568, 216-225. |
[11] | Fan YX, Zhong XJ, Lin TC, Lyu MK, Wang MH, Hu WF, Yang ZJ, Chen GS, Guo JF, Yang YS (2020). Effects of nitrogen addition on DOM-induced soil priming effects in a subtropical plantation forest and a natural forest. Biology and Fertility of Soils, 56, 205-216. |
[12] |
Fang Y, Nazaries L, Singh BK, Singh BP (2018). Microbial mechanisms of carbon priming effects revealed during the interaction of crop residue and nutrient inputs in contrasting soils. Global Change Biology, 24, 2775-2790.
URL PMID |
[13] |
Fontaine S, Barot S, Barré P, Bdioui N, Mary B, Rumpel C (2007). Stability of organic carbon in deep soil layers controlled by fresh carbon supply. Nature, 450, 277-280.
DOI URL PMID |
[14] | Gao YQ, Dai XQ, Wang JL, Fu XL, Kou L, Wang HM (2019). Characteristics of soil enzymes stoichiometry in rhizosphere of understory vegetation in subtropical forest plantations. Chinese Journal of Plant Ecology, 43, 258-272. |
[ 高雨秋, 戴晓琴, 王建雷, 付晓莉, 寇亮, 王辉民 (2019). 亚热带人工林下植被根际土壤酶化学计量特征. 植物生态学报, 43, 258-272.] | |
[15] | Gauthier A, Amiotte-Suchet P, Nelson PN, Lévêque J, Zeller B, Hénault C (2010). Dynamics of the water extractable organic carbon pool during mineralisation in soils from a Douglas fir plantation and an oak-beech forest—An incubation experiment. Plant and Soil, 330, 465-479. |
[16] | Guo JF, Yang YS, Chen GS, Lin P (2005). Dissolved organic carbon and nitrogen in precipitation, throughfall and stemflow from Schima superba and Cunninghamia lanceolata plantations in subtropical China. Journal of Forestry Research, 16, 19-22. |
[17] | Inubushi K, Brookes PC, Jenkinson DS (1991). Soil microbial biomass C, N and ninhydrin-N in aerobic and anaerobic soils measured by the fumigation-extraction method. Soil Biology & Biochemistry, 23, 737-741. |
[18] | Ji YH, Zhang QF, Zhou JC, You ZT, Xu PC, Lin WS, Chen YM, Yang YS (2018). Spectral characteristics and quantities of dissolved organic matter released from leaves with competitive and stress-tolerant ecological strategies in a subtropical region. Acta Ecologica Sinica, 38, 3998-4007. |
[ 纪宇皝, 张秋芳, 周嘉聪, 游章湉, 徐鹏程, 林伟盛, 陈岳民, 杨玉盛 (2018). 亚热带地区竞争型和忍耐型树种叶片可溶性有机质数量及光谱学特征. 生态学报, 38, 3998-4007.] | |
[19] | Jiang Y, Lei Y, Qin W, Korpelainen H, Li C (2019). Revealing microbial processes and nutrient limitation in soil through ecoenzymatic stoichiometry and glomalin-related soil proteins in a retreating glacier forefield. Geoderma, 338, 313-324. |
[20] | Jing X, Chen X, Tang M, Ding ZJ, Jiang L, Li P, Ma SH, Tian D, Xu LC, Zhu JX, Ji CJ, Shen HH, Zheng CY, Fang JY, Zhu B (2017). Nitrogen deposition has minor effect on soil extracellular enzyme activities in six Chinese forests. Science of the Total Environment, 607-608, 806-815. |
[21] | Jones DL, Willett VB (2006). Experimental evaluation of methods to quantify dissolved organic nitrogen (DON) and dissolved organic carbon (DOC) in soil. Soil Biology & Biochemistry, 38, 991-999. |
[22] | Kalbitz K, Geyer W, Geyer S (1999). Spectroscopic properties of dissolved humic substances—A reflection of land use history in a fen area. Biogeochemistry, 47, 219-238. |
[23] | Kalbitz K, Solinger S, Park JH, Michalzik B, Matzner E (2000). Controls on the dynamics of dissolved organic matter in soils: a review. Soil Science, 165, 277-304. |
[24] | Kang GL, Gao R, Yang YS, Chen GS, Yang ZJ, Si YT (2014). Quantities and qualities of leaf-leached DOM of four species in a secondary Castanopsis carlesii forest. Journal of Subtropical Resources and Environment, 9, 30-37. |
[ 康根丽, 高人, 杨玉盛, 陈光水, 杨智杰, 司友涛 (2014). 米槠次生林内4种植物叶片DOM的数量和质量特征. 亚热带资源与环境学报, 9, 30-37.] | |
[25] | Kotroczó Z, Veres Z, Fekete I, Krakomperger Z, Tóth JA, Lajtha K, Tóthmérész B (2014). Soil enzyme activity in response to long-term organic matter manipulation. Soil Biology & Biochemistry, 70, 237-243. |
[26] | Li YL, Zhang XB, Ren FL, Sun N, Xu M, Xu MG (2020). A meta-analysis of long-term fertilization impact on soil dissolved organic carbon and nitrogen across Chinese cropland. Scientia Agricultura Sinica, 53, 1224-1233. |
[ 李亚林, 张旭博, 任凤玲, 孙楠, 徐梦, 徐明岗 (2020). 长期施肥对中国农田土壤溶解性有机碳氮含量影响的整合分析. 中国农业科学, 53, 1224-1233.] | |
[27] | Lin KM, Zhang ZQ, Ye FM, Lin Y, Li QS (2010). Dynamic analysis of decomposition characteristics and content change of nutrient elements of leaf litter of Cunninghamia lanceolata, Phoebe bournei and Schima superba under C. lanceolata artificial forest. Journal of Plant Resources and Environment, 19(2), 34-39. |
[ 林开敏, 章志琴, 叶发茂, 林艳, 李卿叁 (2010). 杉木人工林下杉木、楠木和木荷叶凋落物分解特征及营养元素含量变化的动态分析. 植物资源与环境学报, 19(2), 34-39.] | |
[28] | Luo G, Li L, Friman VP, Guo J, Guo S, Shen Q, Ling N (2018). Organic amendments increase crop yields by improving microbe-mediated soil functioning of agroecosystems: a meta-analysis. Soil Biology & Biochemistry, 124, 105-115. |
[29] | Lyu M, Xie J, Vadeboncoeur MA, Wang M, Qiu X, Ren Y, Jiang M, Yang Y, Kuzyakov Y (2018). Simulated leaf litter addition causes opposite priming effects on natural forest and plantation soils. Biology and Fertility of Soils, 54, 925-934. |
[30] | Miano TM, Senesi N (1992). Synchronous excitation fluorescence spectroscopy applied to soil humic substances chemistry. Science of the Total Environment, 117, 41-51. |
[31] | Näsholm T, Ekblad A, Nordin A, Giesler R, Högberg M, Högberg P (1998). Boreal forest plants take up organic nitrogen. Nature, 392, 914-916. |
[32] | Ni MY, Zhang QF, Gao JT, Zheng Y, Zhou JC, Chen YM, Yang YS (2018). Seasonal response of extracellular enzyme activity to precipitation exclusion in a subtropical Cunninghamia lanceolata plantation. Acta Ecologica Sinica, 38, 2119-2127. |
[ 倪梦颖, 张秋芳, 高金涛, 郑永, 周嘉聪, 陈岳民, 杨玉盛 (2018). 亚热带杉木人工林土壤胞外酶活性对隔离降雨的季节响应. 生态学报, 38, 2119-2127.] | |
[33] | Pérez-Harguindeguy N, Díaz S, Garnier E, Lavorel S, Poorter H, Jaureguiberry P, Bret-Harte MS, Cornwell WK, Craine JM, Gurvich DE, Urcelay C, Veneklaas EJ, Reich PB, Poorter L, Wright IJ, et al. (2013). New handbook for standardised measurement of plant functional traits worldwide. Australian Journal of Botany, 61, 167-234. |
[34] | Peterson ME, Curtin D, Thomas S, Clough TJ, Meenken ED (2013). Denitrification in vadose zone material amended with dissolved organic matter from topsoil and subsoil. Soil Biology & Biochemistry, 61, 96-104. |
[35] |
Piao S, Fang J, Ciais P, Peylin P, Huang Y, Sitch S, Wang T (2009). The carbon balance of terrestrial ecosystems in China. Nature, 458, 1009-1013.
URL PMID |
[36] | Saiya-Cork KR, Sinsabaugh RL, Zak DR (2002). The effects of long term nitrogen deposition on extracellular enzyme activity in an Acer saccharum forest soil. Soil Biology & Biochemistry, 34, 1309-1315. |
[37] |
Schimel J, Balser TC, Wallenstein M (2007). Microbial stress response physiology and its implications for ecosystem function. Ecology, 88, 1386-1394.
DOI URL PMID |
[38] | Singh JS, Gupta VK (2018). Soil microbial biomass: a key soil driver in management of ecosystem functioning. Science of the Total Environment, 634, 497-500. |
[39] | Sinsabaugh RL (2010). Phenol oxidase, peroxidase and organic matter dynamics of soil. Soil Biology & Biochemistry, 42, 391-404. |
[40] |
Sinsabaugh RL, Carreiro MM, Repert DA (2002). Allocation of extracellular enzymatic activity in relation to litter composition, N deposition, and mass loss. Biogeochemistry, 60, 1-24.
DOI URL |
[41] | Šnajdr J, Valášková V, Merhautová V, Herinková J, Cajthaml T, Baldrian P (2008). Spatial variability of enzyme activities and microbial biomass in the upper layers of Quercus petraea forest soil. Soil Biology & Biochemistry, 40, 2068-2075. |
[42] | Song XZ, Chen XF, Zhou GM, Jiang H, Peng CH (2017). Observed high and persistent carbon uptake by Moso bamboo forests and its response to environmental drivers. Agricultural and Forest Meteorology, 247, 467-475. |
[43] | Soussana JF, Lemaire G (2014). Coupling carbon and nitrogen cycles for environmentally sustainable intensification of grasslands and crop-livestock systems. Agriculture, Ecosystems & Environment, 190, 9-17. |
[44] | Vance ED, Brookes PC, Jenkinson DS (1987). An extraction method for measuring soil microbial biomass C. Soil Biology & Biochemistry, 19, 703-707. |
[45] | Wan JJ, Guo JF, Ji SR, Ren WL, Yang YS (2016). Effects of dissolved organic matter input on soil CO2 emission and microbial community composition in a subtropical forest. Scientia Silvae Sinicae, 52(2), 106-113. |
[ 万菁娟, 郭剑芬, 纪淑蓉, 任卫岭, 杨玉盛 (2016). 可溶性有机物输入对亚热带森林土壤CO2排放及微生物群落的影响. 林业科学, 52(2), 106-113.] | |
[46] | Wang JY, Song CC, Wang XW, Wang LL (2011). Progress in the study of effect of freeze-thaw processes on the organic carbon pool and microorganisms in soils. Journal of Glaciology and Geocryology, 33, 442-452. |
[ 王娇月, 宋长春, 王宪伟, 王丽丽 (2011). 冻融作用对土壤有机碳库及微生物的影响研究进展. 冰川冻土, 33, 442-452.] | |
[47] | Wang QK, Wang SL, He TX, Liu L, Wu JB (2014). Response of organic carbon mineralization and microbial community to leaf litter and nutrient additions in subtropical forest soils. Soil Biology & Biochemistry, 71, 13-20. |
[48] | Wang XB, Song DL, Liang GQ, Zhang Q, Ai C, Zhou W (2015). Maize biochar addition rate influences soil enzyme activity and microbial community composition in a fluvo-aquic soil. Applied Soil Ecology, 96, 265-272. |
[49] | Wei CC, Liu XF, Lin CF, Li XF, Li Y, Zheng YX (2018). Response of soil enzyme activities to litter input changes in two secondary Castanopsis carlessii forests in subtropical China. Chinese Journal of Plant Ecology, 42, 692-702. |
[ 魏翠翠, 刘小飞, 林成芳, 李先锋, 李艳, 郑裕雄 (2018). 凋落物输入改变对亚热带两种米槠次生林土壤酶活性的影响. 植物生态学报, 42, 692-702.] | |
[50] | Wieder WR, Cleveland CC, Townsend AR (2008). Tropical tree species composition affects the oxidation of dissolved organic matter from litter. Biogeochemistry, 88, 127-138. |
[51] | Xiao W, Chen X, Jing X, Zhu B (2018). A meta-analysis of soil extracellular enzyme activities in response to global change. Soil Biology & Biochemistry, 123, 21-32. |
[52] | Zhang CX, Nan ZB (2010). Research progress of soil microbial biomass in China. Pratacultural Science, 27, 50-57. |
[ 张成霞, 南志标 (2010). 土壤微生物生物量的研究进展. 草业科学, 27, 50-57.] | |
[53] | Zheng HF, Liu Y, Zhang J, Chen YM, Yang L, Li HJ, Wang LF (2018). Factors influencing soil enzyme activity in China’s forest ecosystems. Plant Ecology, 219, 31-44. |
[54] | Zhou JB, Chen ZJ, Zheng XF (2005). Soluble organic nitrogen in soil and its roles in the supply and transformation of N. Chinese Journal of Soil Science, 36, 244-248. |
[ 周建斌, 陈竹君, 郑险峰 (2005). 土壤可溶性有机氮及其在氮素供应及转化中的作用. 土壤通报, 36, 244-248.] | |
[55] | Zhou JC, Liu XF, Zheng Y, Ji YH, Li XF, Xu PC, Chen YM, Yang YS (2017). Effects of nitrogen deposition on soil microbial biomass and enzyme activities in Castanopsis carlesii natural forests in subtropical regions. Acta Ecologica Sinica, 37, 127-135. |
[ 周嘉聪, 刘小飞, 郑永, 纪宇皝, 李先锋, 徐鹏程, 陈岳民, 杨玉盛 (2017). 氮沉降对中亚热带米槠天然林微生物生物量及酶活性的影响. 生态学报, 37, 127-135.] | |
[56] |
Zhou Y, Boutton TW, Wu XB (2018). Soil phosphorus does not keep pace with soil carbon and nitrogen accumulation following woody encroachment. Global Change Biology, 24, 1992-2007.
DOI URL PMID |
[57] | Zhu ZK, Ge T, Luo Y, Liu SL, Xu XL, Tong CL, Shibistova O, Guggenberger G, Wu JS (2018). Microbial stoichiometric flexibility regulates rice straw mineralization and its priming effect in paddy soil. Soil Biology & Biochemistry, 121, 67-76. |
[1] | 刘瑶 钟全林 徐朝斌 程栋梁 郑跃芳 邹宇星 张雪 郑新杰 周云若. 不同大小刨花楠细根功能性状与根际微环境关系[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[2] | 吴君梅, 曾泉鑫, 梅孔灿, 林惠瑛, 谢欢, 刘苑苑, 徐建国, 陈岳民. 土壤磷有效性调控亚热带森林土壤酶活性和酶化学计量对凋落叶输入的响应[J]. 植物生态学报, 2024, 48(2): 242-253. |
[3] | 张慧玲, 张耀艺, 彭清清, 杨静, 倪祥银, 吴福忠. 中亚热带同质园不同生活型树种微量元素重吸收效率的差异[J]. 植物生态学报, 2023, 47(7): 978-987. |
[4] | 万春燕, 余俊瑞, 朱师丹. 喀斯特与非喀斯特森林乔木叶性状及其相关性网络的差异[J]. 植物生态学报, 2023, 47(10): 1386-1397. |
[5] | 甘子莹, 王浩, 丁驰, 雷梅, 杨晓刚, 蔡敬琰, 丘清燕, 胡亚林. 亚热带森林不同植物及器官来源的可溶性有机质输入对土壤激发效应的影响及其作用机理[J]. 植物生态学报, 2022, 46(7): 797-810. |
[6] | 张英, 张常洪, 汪其同, 朱晓敏, 尹华军. 氮沉降下西南山地针叶林根际和非根际土壤微生物养分限制特征差异[J]. 植物生态学报, 2022, 46(4): 473-483. |
[7] | 吴秋霞, 吴福忠, 胡仪, 康自佳, 张耀艺, 杨静, 岳楷, 倪祥银, 杨玉盛. 亚热带同质园11个树种新老叶非结构性碳水化合物含量比较[J]. 植物生态学报, 2021, 45(7): 771-779. |
[8] | 汪子微, 万松泽, 蒋洪毛, 胡扬, 马书琴, 陈有超, 鲁旭阳. 青藏高原不同高寒草地类型土壤酶活性及其影响因子[J]. 植物生态学报, 2021, 45(5): 528-538. |
[9] | 解梦怡, 冯秀秀, 马寰菲, 胡汗, 王洁莹, 郭垚鑫, 任成杰, 王俊, 赵发珠. 秦岭锐齿栎林土壤酶活性与化学计量比变化特征及其影响因素[J]. 植物生态学报, 2020, 44(8): 885-894. |
[10] | 曹嘉瑜, 刘建峰, 袁泉, 徐德宇, 樊海东, 陈海燕, 谭斌, 刘立斌, 叶铎, 倪健. 森林与灌丛的灌木性状揭示不同的生活策略[J]. 植物生态学报, 2020, 44(7): 715-729. |
[11] | 陈思路, 蔡劲松, 林成芳, 宋豪威, 杨玉盛. 亚热带不同树种凋落叶分解对氮添加的响应[J]. 植物生态学报, 2020, 44(3): 214-227. |
[12] | 车俭, 郑洁, 蒋娅, 金毅, 乙引. 中国亚热带森林动态监测样地常绿和落叶木本被子植物谱系结构及生态习性差异[J]. 植物生态学报, 2020, 44(10): 1007-1014. |
[13] | 张振振, 赵平, 张锦秀, 斯瑶. 亚热带常绿阔叶林散孔材和环孔材树种导管及叶片功能性状的比较[J]. 植物生态学报, 2019, 43(2): 131-138. |
[14] | 邹瓒, 陈劲松, 李洋, 宋会兴. 光合产物传输方向对蓉城竹根际微生物过程的影响[J]. 植物生态学报, 2018, 42(8): 863-872. |
[15] | 魏翠翠, 刘小飞, 林成芳, 李先锋, 李艳, 郑裕雄. 凋落物输入改变对亚热带两种米槠次生林土壤酶活性的影响[J]. 植物生态学报, 2018, 42(6): 692-702. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19