植物生态学报 ›› 2020, Vol. 44 ›› Issue (7): 715-729.DOI: 10.17521/cjpe.2020.0024
所属专题: 植物功能性状
曹嘉瑜1, 刘建峰1, 袁泉1, 徐德宇1, 樊海东1, 陈海燕1, 谭斌1, 刘立斌1,2, 叶铎1,2, 倪健1,2,*()
收稿日期:
2020-01-18
接受日期:
2020-05-21
出版日期:
2020-07-20
发布日期:
2020-06-12
通讯作者:
*倪健: ORCID:0000-0001-5411-7050, nijian@zjnu.edu.cn
基金资助:
CAO Jia-Yu1, LIU Jian-Feng1, YUAN Quan1, XU De-Yu1, FAN Hai-Dong1, CHEN Hai-Yan1, TAN Bin1, LIU Li-Bin1,2, YE Duo1,2, NI Jian1,2,*()
Received:
2020-01-18
Accepted:
2020-05-21
Online:
2020-07-20
Published:
2020-06-12
Contact:
NI Jian: ORCID:0000-0001-5411-7050, nijian@zjnu.edu.cn
Supported by:
摘要:
灌木是森林和灌丛生态系统的重要组成部分, 探究森林与灌丛灌木功能性状的差异, 可揭示灌木在不同生境的适应策略。该研究以金华北山森林群落林下灌木层、低山灌丛和山顶灌丛共24个样地中的优势灌木为研究对象, 分析叶片和小枝9个功能性状在3种生境下的总体差异, 以及种间、种内变异和不同生活型的差异。结果表明: 1) 9个性状在3种不同生境下存在差异。林下灌木具有较大的叶面积和比叶面积, 较小的叶干物质含量、叶和小枝的组织密度, 低山灌丛相较于山顶灌丛具有较大的叶厚度、叶组织密度和较小的比叶面积、小枝干物质含量。2)林下灌木的比叶面积、小枝直径、小枝组织密度和小枝干物质含量的种内种间变异系数最大, 低山灌丛的比叶面积、叶和小枝的干物质含量、叶和小枝的组织密度的种内种间变异系数最小。3)不同生活型间, 林下常绿灌木的叶厚度、叶组织密度、叶干物质含量显著高于落叶灌木, 落叶灌木的比叶面积显著高于常绿灌木, 而山顶灌丛叶厚度和比叶面积的差异规律与林下灌木相同, 叶组织密度和叶干物质含量的差异与其相反。4)影响灌木性状的主要因素是物种以及物种和生境的交互作用。总之, 森林群落林下灌木形成较大叶面积和比叶面积, 较小叶和小枝组织密度、叶干物质含量的性状组合, 以快速生长而适应光照较弱、竞争作用强的林下环境, 是资源获取型策略; 低山灌丛和山顶灌丛具有较大叶厚度、组织密度、干物质含量和小枝组织密度和较小叶面积、比叶面积等一系列储存养分、慢速生长的性状组合, 属于资源保守型策略。灌木植物性状的不同组合及其所反映的不同生活策略, 对亚热带地区退化植被的生态恢复具有指导意义。
曹嘉瑜, 刘建峰, 袁泉, 徐德宇, 樊海东, 陈海燕, 谭斌, 刘立斌, 叶铎, 倪健. 森林与灌丛的灌木性状揭示不同的生活策略. 植物生态学报, 2020, 44(7): 715-729. DOI: 10.17521/cjpe.2020.0024
CAO Jia-Yu, LIU Jian-Feng, YUAN Quan, XU De-Yu, FAN Hai-Dong, CHEN Hai-Yan, TAN Bin, LIU Li-Bin, YE Duo, NI Jian. Traits of shrubs in forests and bushes reveal different life strategies. Chinese Journal of Plant Ecology, 2020, 44(7): 715-729. DOI: 10.17521/cjpe.2020.0024
图1 金华北山3种不同生境灌木的功能性状(平均值±标准误差)。 lmb, 低山灌丛; mtb, 山顶灌丛; uss, 林下灌木层。LA, 叶面积; LDMC, 叶干物质含量; LT, 叶厚度; LTD, 叶组织密度; SLA, 比叶面积; TBT, 小枝树皮厚度; TD, 小枝直径; TDMC, 小枝干物质含量; TTD, 小枝组织密度。不同小写字母代表差异显著(p < 0.05)。
Fig. 1 Shrub functional traits (mean ± SE) for three different habitats in Beishan Mountain of Jinhua, Zhejiang Province. lmb, low mountain bushes; mtb, mountaintop bushes; uss, understory shrub layer. LA, leaf area; LDMC, leaf dry-matter content; LT, leaf thickness; LTD, leaf tissue density; SLA, specific leaf area; TBT, twig bark thickness; TD, twig diameter; TDMC, twig dry-matter content; TTD, twig tissue density. Different lowercase letters indicate significant differences (p < 0.05).
图2 金华北山3种不同生境下灌木功能性状的种间和种内变异系数。 lmb, 低山灌丛; mtb, 山顶灌丛; uss, 林下灌木层。LA, 叶面积; LDMC, 叶干物质含量; LT, 叶厚度; LTD, 叶组织密度; SLA, 比叶面积; TBT, 小枝树皮厚度; TD, 小枝直径; TDMC, 小枝干物质含量; TTD, 小枝组织密度。
Fig. 2 Inter- and intra-specific coefficients of variation (CV) in shrub functional traits from three different habitats in Beishan Mountain of Jinhua, Zhejiang Province. lmb, low mountain bushes; mtb, mountaintop bushes; uss, understory shrub layer. LA, leaf area; LDMC, leaf dry-matter content; LT, leaf thickness; LTD, leaf tissue density; SLA, specific leaf area; TBT, twig bark thickness; TD, twig diameter; TDMC, twig dry-matter content; TTD, twig tissue density.
性状 Trait | 物种 Species | 生活型 Life form | 生境 Habitat | 生活型×生境 Life form × Habitat | 物种×生境 Species × Habitat | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
F | Sig | R2 | F | Sig | R2 | F | Sig | R2 | F | Sig | R2 | F | Sig | R2 | |
叶面积 LA | 145.24 | *** | 0.79 | 20.51 | *** | 0.02 | 16.09 | *** | 0.03 | 20.13 | *** | 0.02 | 0.47 | *** | 0.78 |
叶厚度 LT | 82.01 | *** | 0.68 | 187.76 | *** | 0.16 | 1.14 | ns | 0.00 | 9.19 | ** | 0.01 | 3.16 | ** | 0.69 |
叶组织密度 LTD | 31.03 | *** | 0.44 | 0.14 | ns | 0.00 | 79.49 | *** | 0.17 | 15.35 | *** | 0.02 | 3.83 | *** | 0.53 |
比叶面积 SLA | 140.51 | *** | 0.78 | 290.78 | *** | 0.17 | 38.24 | *** | 0.04 | 1.65 | ns | 0.00 | 2.05 | ** | 0.80 |
叶干物质含量 LDMC | 99.58 | *** | 0.72 | 0.84 | ns | 0.00 | 33.02 | *** | 0.08 | 12.28 | *** | 0.01 | 6.56 | *** | 0.76 |
小枝直径 TD | 21.82 | *** | 0.36 | 11.48 | ** | 0.01 | 7.16 | ** | 0.02 | 12.68 | *** | 0.01 | 0.76 | ** | 0.35 |
小枝树皮厚度 TBT | 60.72 | *** | 0.61 | 0.08 | ns | 0.00 | 15.89 | *** | 0.04 | 0.50 | ns | 0.00 | 6.04 | *** | 0.65 |
小枝组织密度 TTD | 43.07 | *** | 0.53 | 3.28 | ns | 0.00 | 11.31 | *** | 0.03 | 3.24 | ns | 0.00 | 3.28 | *** | 0.53 |
小枝干物质含量 TDMC | 39.70 | *** | 0.51 | 3.23 | ns | 0.00 | 21.48 | *** | 0.05 | 1.70 | ns | 0.00 | 2.46 | * | 0.50 |
表3 物种、生活型和生境对灌木性状的影响
Table 3 Effects of species, life forms and habitats on shrub functional traits
性状 Trait | 物种 Species | 生活型 Life form | 生境 Habitat | 生活型×生境 Life form × Habitat | 物种×生境 Species × Habitat | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
F | Sig | R2 | F | Sig | R2 | F | Sig | R2 | F | Sig | R2 | F | Sig | R2 | |
叶面积 LA | 145.24 | *** | 0.79 | 20.51 | *** | 0.02 | 16.09 | *** | 0.03 | 20.13 | *** | 0.02 | 0.47 | *** | 0.78 |
叶厚度 LT | 82.01 | *** | 0.68 | 187.76 | *** | 0.16 | 1.14 | ns | 0.00 | 9.19 | ** | 0.01 | 3.16 | ** | 0.69 |
叶组织密度 LTD | 31.03 | *** | 0.44 | 0.14 | ns | 0.00 | 79.49 | *** | 0.17 | 15.35 | *** | 0.02 | 3.83 | *** | 0.53 |
比叶面积 SLA | 140.51 | *** | 0.78 | 290.78 | *** | 0.17 | 38.24 | *** | 0.04 | 1.65 | ns | 0.00 | 2.05 | ** | 0.80 |
叶干物质含量 LDMC | 99.58 | *** | 0.72 | 0.84 | ns | 0.00 | 33.02 | *** | 0.08 | 12.28 | *** | 0.01 | 6.56 | *** | 0.76 |
小枝直径 TD | 21.82 | *** | 0.36 | 11.48 | ** | 0.01 | 7.16 | ** | 0.02 | 12.68 | *** | 0.01 | 0.76 | ** | 0.35 |
小枝树皮厚度 TBT | 60.72 | *** | 0.61 | 0.08 | ns | 0.00 | 15.89 | *** | 0.04 | 0.50 | ns | 0.00 | 6.04 | *** | 0.65 |
小枝组织密度 TTD | 43.07 | *** | 0.53 | 3.28 | ns | 0.00 | 11.31 | *** | 0.03 | 3.24 | ns | 0.00 | 3.28 | *** | 0.53 |
小枝干物质含量 TDMC | 39.70 | *** | 0.51 | 3.23 | ns | 0.00 | 21.48 | *** | 0.05 | 1.70 | ns | 0.00 | 2.46 | * | 0.50 |
图3 金华北山3种不同生境下不同生活型灌木的功能性状(平均值±标准误差)。 lmb, 低山灌丛; mtb, 山顶灌丛; uss, 林下灌木层。LA, 叶面积; LDMC, 叶干物质含量; LT, 叶厚度; LTD, 叶组织密度; SLA, 比叶面积; TBT, 小枝树皮厚度; TD, 小枝直径; TDMC, 小枝干物质含量; TTD, 小枝组织密度。不同小写字母代表差异显著(p < 0.05)。
Fig. 3 Shrub functional traits (mean ± SE) for different life forms from three different habitats in Beishan Mountain of Jinhua, Zhejiang Province. lmb, low mountain bushes; mtb, mountaintop bushes; uss, understory shrub layer. LA, leaf area; LDMC, leaf dry-matter content; LT, leaf thickness; LTD, leaf tissue density; SLA, specific leaf area; TBT, twig bark thickness; TD, twig diameter; TDMC, twig dry-matter content; TTD, twig tissue density. Different lowercase letters indicate significant differences (p < 0.05).
[1] |
Ackerly DD, Cornwell WK (2007). A trait-based approach to community assembly: partitioning of species trait values into within- and among-community components. Ecology Letters, 10, 135-145.
DOI URL PMID |
[2] | Auger S, Shipley B (2013). Inter-specific and intra-specific trait variation along short environmental gradients in an old-growth temperate forest. Journal of Vegetation Science, 24, 419-428. |
[3] |
Chave J, Coomes D, Jansen S, Lewis SL, Swenson NG, Zanne AE (2009). Towards a worldwide wood economics spectrum. Ecology Letters, 12, 351-366.
DOI URL PMID |
[4] | Chen W, Wang JH, Ma RJ, Qi W, Liu K, Zhang LN, Chen XL (2016). Variance in leaf functional traits of 89 species from the eastern Guangdong of China. Chinese Journal of Ecology, 35, 2101-2109. |
[ 陈文, 王桔红, 马瑞君, 齐威, 刘坤, 张丽娜, 陈学林 (2016). 粤东89种常见植物叶功能性状变异特征. 生态学杂志, 35, 2101-2109.] | |
[5] | Chen YT, Xu ZZ (2014). Review on research of leaf economics spectrum. Chinese Journal of Plant Ecology, 38, 1135-1153. |
[ 陈莹婷, 许振柱 (2014). 植物叶经济谱的研究进展. 植物生态学报, 38, 1135-1153.] | |
[6] | Cornelissen JHC, Lavorel S, Garnier E, Díaz S, Buchmann N, Gurvich DE, Reich PB, ter Steege H, Morgan HD, van der Heijden MGA, Pausas JG, Poorter H (2003). A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Australian Journal of Botany, 51, 335-380. |
[7] | de la Riva EG, Tosto A, Pérez-Ramos IM, Navarro-Fernández CM, Olmo M, Anten NPR, Marañón T, Villar R (2016). A plant economics spectrum in Mediterranean forests along environmental gradients: Is there coordination among leaf, stem and root traits? Journal of Vegetation Science, 27, 187-199. |
[8] | de Smedt P, Ottaviani G, Wardell-Johnson G, Sýkora KV, Mucina L (2018). Habitat heterogeneity promotes intraspecific trait variability of shrub species in Australian granite inselbergs. Folia Geobotanica, 53, 133-145. |
[9] |
Díaz S, Kattge J, Cornelissen JHC, Wright IJ, Lavorel S, Dray S, Reu B, Kleyer M, Wirth C, Colin Prentice I, Garnier E, Bönisch G, Westoby M, Poorter H, Reich PB, Moles AT, Dickie J, Gillison AN, Zanne AE, Chave J, Joseph Wright S, Sheremet’ev SN, Jactel H, Baraloto C, Cerabolini B, Pierce S, Shipley B, Kirkup D, Casanoves F, Joswig JS, Günther A, Falczuk V, Rüger N, Mahecha MD, Gorné LD (2016). The global spectrum of plant form and function. Nature, 529, 167-171.
URL PMID |
[10] |
Dlugos DM, Collins H, Bartelme EM, Drenovsky RE (2015). The non-native plant Rosa multiflora expresses shade avoidance traits under low light availability. American Journal of Botany, 102, 1323-1331.
URL PMID |
[11] |
Fan HD, Chen HY, Wu YN, Liu JF, Xu DY, Cao JY, Yuan Q, Tan B, Liu XT, Xu J, Wang GM, Han WJ, Liu LB, Ni J (2019). Community characteristics of main vegetation types on the southern slope of Beishan Mountain in Jinhua, Zhejiang, China. Chinese Journal of Plant Ecology, 43, 921-928.
DOI URL |
[ 樊海东, 陈海燕, 吴雁南, 刘建峰, 徐德宇, 曹嘉瑜, 袁泉, 谭斌, 刘晓彤, 徐佳, 王国敏, 韩文娟, 刘立斌, 倪健 (2019). 金华北山南坡主要植被类型的群落特征. 植物生态学报, 43, 921-928.] | |
[12] |
Fort F, Jouany C, Cruz P (2013). Root and leaf functional trait relations in Poaceae species: implications of differing resource-acquisition strategies. Journal of Plant Ecology, 6, 211-219.
DOI URL |
[13] |
Funk JL, Cornwell WK (2013). Leaf traits within communities: context may affect the mapping of traits to function. Ecology, 94, 1893-1897.
URL PMID |
[14] | Gao J, Xu B, Wang JN, Zhou HY, Wang YX, Wu Y (2015). Correlations among leaf traits of typical shrubs and their responses to different light environments in shrub-grassland of southern China. Chinese Journal of Ecology, 34, 2424-2431. |
[ 高景, 徐波, 王金牛, 周海燕, 王彦星, 吴彦 (2015). 南方灌草丛典型灌木不同叶片性状的相关性及其对不同光环境的响应. 生态学杂志, 34, 2424-2431.] | |
[15] |
Gao SH, Ge YX, Zhou LY, Zhu BL, Ge XY, Li K, Ni J (2018). What is the optimal number of leaves when measuring leaf area of tree species in a forest community? Chinese Journal of Plant Ecology, 42, 917-925.
DOI URL |
[ 高思涵, 葛珏希, 周李奕, 朱宝琳, 葛星宇, 李凯, 倪健 (2018). 测定森林树木叶面积的最适叶片数是多少? 植物生态学报, 42, 917-925.] | |
[16] | Garnier E, Vile D, Roumet C, Lavorel S, Grigulis K, Navas M-L, Lloret F (2019). Inter- and intra-specific trait shifts among sites differing in drought conditions at the north western edge of the Mediterranean Region. Flora, 254, 147-160. |
[17] | Gratani L, Bombelli A (2001). Differences in leaf traits among Mediterranean broad-leaved evergreen shrubs. Annales Botanici Fennici, 38, 15-24. |
[18] | Guo SL, Liu P, Chen G, Lu X (1993). Observations on the vegetation of Mount Bei of Jinhua in Zhejiang Province. Journal of Zhejiang Normal University (Nature Sciences), 16, 59-67. |
[ 郭水良, 刘鹏, 陈刚, 卢晓 (1993). 浙江金华北山植物区系及植被. 浙江师范大学学报(自然科学版), 16, 59-67.] | |
[19] | He NP, Liu CC, Zhang JH, Xu L, Yu GR (2018). Perspectives and challenges in plant traits: from organs to communities. Acta Ecologica Sinica, 38, 6787-6796. |
[ 何念鹏, 刘聪聪, 张佳慧, 徐丽, 于贵瑞 (2018). 植物性状研究的机遇与挑战: 从器官到群落. 生态学报, 38, 6787-6796.] | |
[20] |
Heberling JM, Fridley JD (2013). Resource-use strategies of native and invasive plants in Eastern North American forests. New Phytologist, 200, 523-533.
URL PMID |
[21] | Jung V, Violle C, Mondy C, Hoffmann L, Muller S (2010). Intraspecific variability and trait-based community assembly. Journal of Ecology, 98, 1134-1140. |
[22] |
Kattge J, Bönisch G, Díaz S, Lavorel S, Prentice IC, Wirth C (2020). TRY plant trait database-enhanced coverage and open access. Global Change Biology, 26, 119-188.
DOI URL PMID |
[23] | Kumordzi BB, Aubin I, Cardou F, Shipley B, Violle C, Johnstone J, Anand M, Arsenault A, Bell FW, Bergeron Y, Boulangeat I, Brousseau M, De Grandpré L, Delagrange S, Fenton NJ, Gravel D, Ellen Macdonald S, Hamel B, Higelin M, Hébert F, Isabel N, Mallik A, Mclntosh ACS, McLaren JR, Messier C, Morris D, Thiffault N, Tremblay J-P, Munson AD (2019). Geographic scale and disturbance influence intraspecific trait variability in leaves and roots of North American understorey plants. Functional Ecology, 33, 1771-1784. |
[24] |
Lebrija-Trejos E, Pérez-García EA, Meave JA, Bongers F, Poorter L (2010). Functional traits and environmental filtering drive community assembly in a species-rich tropical system. Ecology, 91, 386-398.
URL PMID |
[25] |
Li GY, Yang DM, Sun SC (2008). Allometric relationships between lamina area, lamina mass and petiole mass of 93 temperate woody species vary with leaf habit, leaf form and altitude. Functional Ecology, 22, 557-564.
DOI URL |
[26] |
Li L, Li XY, Xu XW, Lin LS, Zeng FJ, Chen FL (2014). Assimilative branches and leaves of the desert plant Alhagi sparsifolia Shap. possesses a different adaptation mechanism to shade. Plant Physiology and Biochemistry, 74, 239-245.
URL PMID |
[27] | Liu XJ, Ma KP (2015). Plant functional traits—Concepts, applications and future directions. Scientia Sinica Vitae, 45, 325-339. |
[ 刘晓娟, 马克平 (2015). 植物功能性状研究进展. 中国科学: 生命科学, 45, 325-339.] | |
[28] | Long JY, Zhao YM, Kong XQ, Chen ZY, Wang XS, Zhao K, Cao R, Huang LS, Lü J, Cui Y, Yu YL, Xu CY (2018). Trade-offs between twig and leaf traits of ornamental shrubs grown in shade. Acta Ecologica Sinica, 38, 8022-8030. |
[ 龙嘉翼, 赵宇萌, 孔祥琦, 陈治羊, 王秀松, 赵凯, 曹然, 黄丽莎, 吕娇, 崔义, 余玉磊, 徐程扬 (2018). 观赏灌木小枝和叶性状在林下庇荫环境中的权衡关系. 生态学报, 38, 8022-8030.] | |
[29] | Luo YK, Hu HF, Zhao MY, Li H, Liu SS, Fang JY (2019). Latitudinal pattern and the driving factors of leaf functional traits in 185 shrub species across eastern China. Journal of Plant Ecology, 12, 67-77. |
[30] | Ma XL (2014). A Study on Twig and Leaf Traits of the Shrub Species in Secondary Forest Succession Process . Master degree dissertation, Northwest Normal University, Lanzhou. |
[ 马小丽 (2014). 次生林演替过程中灌木物种小枝与叶性状研究. 硕士学位论文, 西北师范大学, 兰州.] | |
[31] |
Ma Z, Guo D, Xu X, Lu M, Bardgett RD, Eissenstat DM, Luke McCormack M, Hedin LO (2018). Evolutionary history resolves global organization of root functional traits. Nature, 555, 94-97.
DOI URL PMID |
[32] | McDonald PG, Fonseca CR, Overton JMcC, Westoby M (2003). Leaf-size divergence along rainfall and soil-nutrient gradients: Is the method of size reduction common among clades? Functional Ecology, 17, 50-57. |
[33] | Meng TT, Ni J, Wang GH (2007). Plant functional traits, environments and ecosystem functioning. Journal of Plant Ecology (Chinese Version), 31, 150-165. |
[ 孟婷婷, 倪健, 王国宏 (2007). 植物功能性状与环境和生态系统功能. 植物生态学报, 31, 150-165.] | |
[34] |
Nielsen RL, James JJ, Drenovsky RE (2019). Functional traits explain variation in chaparral shrub sensitivity to altered water and nutrient availability. Frontiers in Plant Science, 10, 505. DOI: 10.3389/fpls.2019.00505.
URL PMID |
[35] | Pan YF, Chen XB, Jiang Y, Liang SC, Lu ZR, Huang YX, Ni MY, Qin CL, Liu RH (2018). Changes in leaf functional traits and soil environmental factors in response to slope gradient in karst hills of Guilin. Acta Ecologica Sinica, 38, 1581-1589. |
[ 盘远方, 陈兴彬, 姜勇, 梁士楚, 陆志任, 黄宇欣, 倪鸣源, 覃彩丽, 刘润红 (2018). 桂林岩溶石山灌丛植物叶功能性状和土壤因子对坡向的响应. 生态学报, 38, 1581-1589.] | |
[36] | Pausas JG, Bradstock RA (2007). Fire persistence traits of plants along a productivity and disturbance gradient in mediterranean shrublands of south-east Australia. Global Ecology and Biogeography, 16, 330-340. |
[37] | Rolhauser AG, Pucheta E (2016). Annual plant functional traits explain shrub facilitation in a desert community. Journal of Vegetation Science, 27, 60-68. |
[38] |
Rosell JA, Gleason S, Méndez-Alonzo R, Chang Y, Westoby M (2014). Bark functional ecology: evidence for tradeoffs, functional coordination, and environment producing bark diversity. New Phytologist, 201, 486-497.
URL PMID |
[39] |
Scheepens JF, Frei ES, Stöcklin J (2010). Genotypic and environmental variation in specific leaf area in a widespread Alpine plant after transplantation to different altitudes. Oecologia, 164, 141-150.
URL PMID |
[40] | Shah S, Shrestha KK, Scheidegger C (2019). Variation in plant functional traits along altitudinal gradient and land use types in Sagarmatha National Park and buffer zone, Nepal. American Journal of Plant Sciences, 10, 595-614. |
[41] |
Siefert A, Violle C, Chalmandrier L, Albert CH, Taudiere A, Fajardo A, Aarssen LW, Baraloto C, Carlucci MB, Cianciaruso MV, Dantas V, de Bello F, Duarte LDS, Fonseca CR, Freschet GT, Gaucherand S, Gross Nicolas, Hikosaka K, Jackson B, Jung V, Kamiyama C, Katabuchi M, Kembel SW, Kichenin E, Kraft NJB, Lagerström A, Bagousse-Pinguet YL, Li Y, Mason N, Messier J, Nakashizuka T, Overton J, Peltzer DA, Pérez‐Ramos IM, Pillar VD, Prentice HC, Richardson S, Sasaki T, Schamp BS, Schöb C, Shipley B, Sundqvist M, Sykes MT, Vandewalle M, Wardle DA (2015). A global meta-analysis of the relative extent of intraspecific trait variation in plant communities. Ecology Letters, 18, 1406-1419.
URL PMID |
[42] | Song YC (2013). China Evergreen Broad-leaved Forest: Classification, Ecology, Conservation. Science Press, Beijing. 12-13. |
[ 宋永昌 (2013). 中国常绿阔叶林: 分类•生态•保育. 科学出版社, 北京. 12-13.] | |
[43] | Sterck FJ, van Gelder HA, Poorter L (2006). Mechanical branch constraints contribute to life-history variation across tree species in a Bolivian forest. Journal of Ecology, 94, 1192-1200. |
[44] | Tang QQ, Huang YT, Ding Y, Zang RG (2016). Interspecific and intraspecific variation in functional traits of subtropical evergreen and deciduous broad-leaved mixed forests. Biodiversity Science, 24, 262-270. |
[ 唐青青, 黄永涛, 丁易, 臧润国 (2016). 亚热带常绿落叶阔叶混交林植物功能性状的种间和种内变异. 生物多样性, 24, 262-270.] | |
[45] |
Tian D, Yan ZB, Niklas KJ, Han WX, Kattge J, Reich PB, Luo YK, Chen YH, Tang ZY, Hu HF, Wright IJ, Schmid B, Fang JY (2018). Global leaf nitrogen and phosphorus stoichiometry and their scaling exponent. National Science Review, 5, 728-739.
DOI URL |
[46] | Vanneste T, Valdés A, Verheyen K, Perring MP, Bernhardt-Römermann M, Andrieu E, Brunet J, Cousins SAO, Deconchat M, de Smedt P, Diekmann M, Ehrmann S, Heinken T, Hermy M, Kolb A, Lenoir J, Liira J, Naaf T, Paal T, Wulf M, Decocq G, de Frenne P (2019). Functional trait variation of forest understorey plant communities across Europe. Basic and Applied Ecology, 34, 02356900. DOI: 10.1016/j.baae.2018.09.004. |
[47] | Violle C, Navas ML, Vile D, Kazakou E, Fortunel C, Hummel I, Garnier E (2007). Let the concept of trait be functional! Oikos, 116, 882-892. |
[48] | Wang CY, Xiao HG, Liu J, Zhou JW (2017a). Differences in leaf functional traits between red and green leaves of two evergreen shrubs Photinia × fraseri and Osmanthus fragrans. Journal of Forestry Research, 28, 473-479. |
[49] | Wang M, Wan PC, Guo JC, Xu JS, Chai YF, Yue M (2017b). Relationships among leaf, stem and root traits of the dominant shrubs from four vegetation zones in Shaanxi Province, China. Israel Journal of Ecology & Evolution, 63, 25-32. |
[50] |
Wang Y, Wang J, Lai L, Jiang L, Zhuang P, Zhang L, Zheng Y, Baskin JM, Baskin CC (2014). Geographic variation in seed traits within and among forty-two species of Rhododendron(Ericaceae) on the Tibetan Plateau: relationships with altitude, habitat, plant height, and phylogeny. Ecology and Evolution, 4, 1913-1923.
DOI URL PMID |
[51] |
Westoby M, Reich PB, Wright IJ (2013). Understanding ecological variation across species: area-based vs mass-based expression of leaf traits. New Phytologist, 199, 322-323.
URL PMID |
[52] |
Wright IJ, Ackerly DD, Bongers F, Harms KE, Ibarra-Manriquez G, Martinez-Ramos M, Mazer SJ, Muller-Landau HC, Paz H, Pitman NCA, Poorter L, Silman MR, Vriesendorp CF, Webb CO, Westoby M, Wright SJ (2007). Relationships among ecologically important dimensions of plant trait variation in seven Neotropical forests. Annals of Botany, 99, 1003-1015.
DOI URL PMID |
[53] |
Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, Cavender-Bares J, Chapin T, Cornelissen JHC, Diemer M, Flexas J, Garnier E, Groom PK, Gulias J, Hikosaka K, Lamont BB, Lee T, Lee W, Lusk C, Midgley JJ, Navas M-L, Niinemets Ü, Oleksyn J, Osada N, Poorter H, Poot P, Prior L, Pyankov VI, Roumet C, Thomas SC, Tjoelker MG, Veneklaas EJ, Villar R (2004). The worldwide leaf economics spectrum. Nature, 428, 821-827.
URL PMID |
[54] | Xiang L, Chen FQ, Geng MY, Wang YB, Lü K, Yang SL (2019). Response of leaf functional traits of shrubs to altitude in Rhododendron latoucheae communities in Mt. Jinggangshan, Jiangxi, China. Journal of Tropical and Subtropical Botany, 27, 129-138. |
[ 向琳, 陈芳清, 耿梦娅, 王玉兵, 吕坤, 杨世林 (2019). 井冈山鹿角杜鹃群落灌木层植物叶功能性状对海拔梯度的响应. 热带亚热带植物学报, 27, 129-138.] | |
[55] | Yang DM, Zhang JJ, Zhou D, Qian MJ, Zheng Y, Jin LM (2012). Leaf and twig functional traits of woody plants and their relationships with environmental change: a review. Chinese Journal of Ecology, 31, 702-713. |
[ 杨冬梅, 章佳佳, 周丹, 钱敏杰, 郑瑶, 金灵妙 (2012). 木本植物茎叶功能性状及其关系随环境变化的研究进展. 生态学杂志, 31, 702-713.] | |
[56] | Yang WG, Zi HB, Chen KY, Ade LJ, Hu L, Wang X, Wang GX, Wang CT (2019). Ecological stoichiometric characteristics of shrubs and soils in different forest types in Qinghai, China. Chinese Journal of Plant Ecology, 43, 352-364. |
[ 杨文高, 字洪标, 陈科宇, 阿的鲁骥, 胡雷, 王鑫, 王根绪, 王长庭 (2019). 青海森林生态系统中灌木层和土壤生态化学计量特征. 植物生态学报, 43, 352-364.] | |
[57] | Zhang XY (2018). Plant Functional Traits of Terperate Shrubs in Inner Mongolia. Master degree dissertation, Inner Mongolia University, Hohhot. |
[ 张芯毓 (2018). 内蒙古温带灌木的植物功能性状研究. 硕士学位论文, 内蒙古大学, 呼和浩特.] | |
[58] | Zhong QL, Liu LB, Xu X, Yang Y, Guo YM, Xu HY, Cai XL, Ni J (2018). Variations of plant functional traits and adaptive strategy of woody species in a karst forest of central Guizhou Province, southwestern China. Chinese Journal of Plant Ecology, 42, 562-572. |
[ 钟巧连, 刘立斌, 许鑫, 杨勇, 郭银明, 许海洋, 蔡先立, 倪健 (2018). 黔中喀斯特木本植物功能性状变异及其适应策略. 植物生态学报, 42, 562-572.] |
[1] | 文佳 张新娜 王娟 赵秀海 张春雨. 性状调节幼苗存活率对邻体竞争和环境的响应 [J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[2] | 付粱晨, 丁宗巨, 唐茂, 曾辉, 朱彪. 北京东灵山白桦和蒙古栎的根际效应及其季节动态[J]. 植物生态学报, 2024, 48(4): 508-522. |
[3] | 杨安娜, 李曾燕, 牟凌, 杨柏钰, 赛碧乐, 张立, 张增可, 王万胜, 杜运才, 由文辉, 阎恩荣. 上海大金山岛不同植被类型土壤细菌群落的变异[J]. 植物生态学报, 2024, 48(3): 377-389. |
[4] | 马常钦, 黄海龙, 彭政淋, 吴纯泽, 韦庆钰, 贾红涛, 卫星. 水曲柳雌雄株复叶类型及光合功能对不同生境的响应[J]. 植物生态学报, 2023, 47(9): 1287-1297. |
[5] | 韩聪, 母艳梅, 查天山, 秦树高, 刘鹏, 田赟, 贾昕. 2012-2016年宁夏盐池毛乌素沙地黑沙蒿灌丛生态系统通量观测数据集[J]. 植物生态学报, 2023, 47(9): 1322-1332. |
[6] | 冯珊珊, 黄春晖, 唐梦云, 蒋维昕, 白天道. 细叶云南松针叶形态和显微性状地理变异及其环境解释[J]. 植物生态学报, 2023, 47(8): 1116-1130. |
[7] | 张慧玲, 张耀艺, 彭清清, 杨静, 倪祥银, 吴福忠. 中亚热带同质园不同生活型树种微量元素重吸收效率的差异[J]. 植物生态学报, 2023, 47(7): 978-987. |
[8] | 张琦, 冯可, 常智慧, 何双辉, 徐维启. 灌丛化对林草交错带植物和土壤微生物的影响[J]. 植物生态学报, 2023, 47(6): 770-781. |
[9] | 冯可, 刘冬梅, 张琦, 安菁, 何双辉. 旅游干扰对松山油松林土壤微生物多样性及群落结构的影响[J]. 植物生态学报, 2023, 47(4): 584-596. |
[10] | 石荡, 郭传超, 蒋南林, 唐莹莹, 郑凤, 王瑾, 廖康, 刘立强. 新疆野杏天然更新幼株的个体特征及空间分布格局[J]. 植物生态学报, 2023, 47(4): 515-529. |
[11] | 汪晶晶, 王嘉浩, 黄致云, Vanessa Chiamaka OKECHUKW, 胡蝶, 祁珊珊, 戴志聪, 杜道林. 不同氮水平下内生固氮菌对入侵植物南美蟛蜞菊生长策略的影响[J]. 植物生态学报, 2023, 47(2): 195-205. |
[12] | 汤璐瑶, 方菁, 钱海蓉, 张博纳, 上官方京, 叶琳峰, 李姝雯, 童金莲, 谢江波. 落羽杉和池杉功能性状随高度的变异与协同[J]. 植物生态学报, 2023, 47(11): 1561-1575. |
[13] | 张志山, 韩高玲, 霍建强, 黄日辉, 薛书文. 固沙灌木柠条锦鸡儿和中间锦鸡儿木质部导水与叶片光合能力对土壤水分的响应[J]. 植物生态学报, 2023, 47(10): 1422-1431. |
[14] | 万春燕, 余俊瑞, 朱师丹. 喀斯特与非喀斯特森林乔木叶性状及其相关性网络的差异[J]. 植物生态学报, 2023, 47(10): 1386-1397. |
[15] | 余秋伍, 杨菁, 沈国春. 浙江天童常绿阔叶林林冠结构与群落物种组成的关系[J]. 植物生态学报, 2022, 46(5): 529-538. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19