植物生态学报 ›› 2005, Vol. 29 ›› Issue (4): 644-651.DOI: 10.17521/cjpe.2005.0086
收稿日期:
2004-06-02
接受日期:
2005-03-15
出版日期:
2005-06-02
发布日期:
2005-07-31
作者简介:
E-mail: sky79@zjnu.cn
基金资助:
LIU Peng1,2(), YANG YS2, XU Gen-Di1, GUO Shui-Liang1, WANG Min1
Received:
2004-06-02
Accepted:
2005-03-15
Online:
2005-06-02
Published:
2005-07-31
摘要:
不同的植物对铝胁迫的生理响应不同, 因而对铝毒的耐性也不相同。设置5种铝浓度,进行砂培法处理,研究了4种我国南方红壤广泛分布的草本植物——牵牛(Pharbitis nil)、望江南(Cassia occidentlis)、光头稗(Echinochloa colonum)和合萌(Aeschynomene indica)的种子萌发、光合色素、脯氨酸含量、丙二醛(MDA)含量、可溶性糖(SS)含量、质膜透性(MP)、过氧化氢酶 (CAT) 活性以及过氧化物酶 (POD)活性的变化。结果表明铝对4种植物的生理特性都有明显的影响。4种植物的种子在10 000 mg·L-1 Al3+处理条件下都不能萌发。2 000 mg·L-1 Al3+处理都不利于4种植物的生长,与对照相比,2 000 mg·L-1 Al3+处理时4种草本植物叶绿素和叶绿素总含量显著降低(p<0.05);MDA含量和MP显著增加(p<0.05);脯氨酸含量极显著增加(p<0.01);POD和CAT活性极显著降低(p<0.01)。中低铝(80和400 mg·L-1)处理时,牵牛和合萌与对照相比,MP和MDA含量降低,POD和CAT活性升高;望江南的反应与牵牛和合萌的反应相反;光头稗在80 mg·L-1 Al3+处理时,与牵牛和合萌的变化一致,在400 mg·L-1 Al3+处理时,则相反。植物在中低铝处理条件下,通过维持较高的POD和CAT活性和脯氨酸、叶绿素含量,较低的MP和MDA含量来增加其对铝的耐性。
刘鹏, 徐根娣, 郭水良, 汪敏. 南方4种草本植物对铝胁迫生理响应的研究. 植物生态学报, 2005, 29(4): 644-651. DOI: 10.17521/cjpe.2005.0086
LIU Peng, YANG YS, XU Gen-Di, GUO Shui-Liang, WANG Min. PHYSIOLOGICAL RESPONSE OF FOUR SOUTHERN HERBACEOUS PLANTS TO ALUMINIUM STRESS. Chinese Journal of Plant Ecology, 2005, 29(4): 644-651. DOI: 10.17521/cjpe.2005.0086
种Species | Al3+处理浓度Treatment concentration of Al3+ (mg·L-1) | ||||||||
---|---|---|---|---|---|---|---|---|---|
0 | 80 | 400 | 2 000 | 10 000 | |||||
牵牛Pharbitis nil | 13.30% | 21.30% | 24.00% | 17.30% | 0 | ||||
望江南Cassia occidentlis | 58.05% | 45.20% | 46.40% | 6.00% | 0 | ||||
光头稗Echinochloa colonum | 36.70% | 19.80% | 20.10% | 7.30% | 0 | ||||
合萌Aeschynomene indica | 7.00% | 6.60% | 10.20% | 3.10% | 0 |
表1 铝对4种草本植物种子发芽率的影响
Table 1 The effect of Al3+ on the germination percentage of 4 herbaceous plants
种Species | Al3+处理浓度Treatment concentration of Al3+ (mg·L-1) | ||||||||
---|---|---|---|---|---|---|---|---|---|
0 | 80 | 400 | 2 000 | 10 000 | |||||
牵牛Pharbitis nil | 13.30% | 21.30% | 24.00% | 17.30% | 0 | ||||
望江南Cassia occidentlis | 58.05% | 45.20% | 46.40% | 6.00% | 0 | ||||
光头稗Echinochloa colonum | 36.70% | 19.80% | 20.10% | 7.30% | 0 | ||||
合萌Aeschynomene indica | 7.00% | 6.60% | 10.20% | 3.10% | 0 |
铝处理 Al3+ treatment (mg·L-1) | 叶绿素含量 Chlorophyll content | 牵牛 Ipomeanil pharbitisnil | 望江南 Cassia occidentlis | 光头稗 Echinochloa colonum | 合萌 Aeschynomene elaphroxylon |
---|---|---|---|---|---|
0 | a | 1.840±0.02a | 2.597±0.03a | 2.549±0.04a | 2.315±0.03a |
b | 0.862±0.02a | 1.314±0.01a | 1.428±0.02a | 1.404±0.01a | |
a+b | 2.802±0.04a | 3.911±0.03a | 3.967±0.05a | 3.719±0.04a | |
80 | a | 1.938±0.02a | 2.661±0.02a | 2.675±0.03a | 2.437±0.02a |
b | 0.894±0.01a | 1.347±0.02a | 1.772±0.02b | 1.426±0.02a | |
a+b | 2.832±0.03a | 4.008±0.05a | 4.247±0.06b | 3.863±0.02a | |
400 | a | 1.951±0.03a | 2.724±0.02a | 2.660±0.04b | 2.534±0.03b |
b | 1.086±0.04a | 1.218±0.01a | 1.787±0.03b | 1.793±0.02a | |
a+b | 3.037±0.05a | 3.942±0.04b | 4.470±0.03b | 4.372±0.05a | |
2 000 | a | 1.639±0.03b | 2.141±0.03b | 2.240±0.04b | 1.971±0.03b |
b | 0.860±0.02a | 0.924±0.02b | 1.360±0.03a | 1.415±0.04a | |
a+b | 2.499±0.06b | 3.065±0.05b | 3.600±0.06b | 3.386±0.07b |
表2 铝对4种草本植物叶绿素含量的影响(平均值±标准差)
Table 2 The effect of Al3+ on the chlorophyll of 4 herbaceous plants in leaves (mg·g-1 FW) (Means±SD)
铝处理 Al3+ treatment (mg·L-1) | 叶绿素含量 Chlorophyll content | 牵牛 Ipomeanil pharbitisnil | 望江南 Cassia occidentlis | 光头稗 Echinochloa colonum | 合萌 Aeschynomene elaphroxylon |
---|---|---|---|---|---|
0 | a | 1.840±0.02a | 2.597±0.03a | 2.549±0.04a | 2.315±0.03a |
b | 0.862±0.02a | 1.314±0.01a | 1.428±0.02a | 1.404±0.01a | |
a+b | 2.802±0.04a | 3.911±0.03a | 3.967±0.05a | 3.719±0.04a | |
80 | a | 1.938±0.02a | 2.661±0.02a | 2.675±0.03a | 2.437±0.02a |
b | 0.894±0.01a | 1.347±0.02a | 1.772±0.02b | 1.426±0.02a | |
a+b | 2.832±0.03a | 4.008±0.05a | 4.247±0.06b | 3.863±0.02a | |
400 | a | 1.951±0.03a | 2.724±0.02a | 2.660±0.04b | 2.534±0.03b |
b | 1.086±0.04a | 1.218±0.01a | 1.787±0.03b | 1.793±0.02a | |
a+b | 3.037±0.05a | 3.942±0.04b | 4.470±0.03b | 4.372±0.05a | |
2 000 | a | 1.639±0.03b | 2.141±0.03b | 2.240±0.04b | 1.971±0.03b |
b | 0.860±0.02a | 0.924±0.02b | 1.360±0.03a | 1.415±0.04a | |
a+b | 2.499±0.06b | 3.065±0.05b | 3.600±0.06b | 3.386±0.07b |
图1 铝对4种草本植物脯氨酸含量的影响 同种植物不同处理间不同小写字母表明两者差异达到显著水平(p<0.05),不同大写字母表明两者差异达到显著水平(p<0.01),下同
Fig.1 The effect of Al3+ on the proline content of 4 herbaceous plants in leaves The differences between the treatments (of same species) without the same letters were very significant (p<0.01, capital letters) or significant (p<0.05, small letter), the same as follow
[1] | Ahn SJ, Rgngel Z, Matsumoto H (2004). Aluminum-induced plasma membrane surface potential and H+-ATPase activity in near-isogenic wheat lines differing in tolerance to aluminium. New Phytologist, 162,71-79. |
[2] | Barceló J, Poschenrieder C (2002). Fast root growth responses, root exudates and internal detoxification as clues to the mechanisms of aluminum toxicity and resistance: a review. Environment Experimental Botany, 48,75-92. |
[3] | Bowler C, Montagu MV, Inze D (1992). Superoxide dismutase and stress tolerance. Annual Review Plant Physiology Plant Molecular Biology, 43,83-116. |
[4] | Chen CJ (陈超君), Xu JY (徐建云), Liang CP (梁传平) (2001). Aluminium stress to sugarcane in earlier growth stage. Sugarcane (甘蔗), 8(1),10-14. (in Chinese with English abstract) |
[5] | Ċiamporová M (2002). Morphological and structural responses of plant roots to aluminum at organ, tissue and cellular levels. Biology Plant, 45,161-171. |
[6] | Deborah A, Tesfaye M (2003). Plant improvement for tolerance to aluminum in acid soils—a review. Plant Cell, Tissue and Organ Culture, 75,189-207. |
[7] | Devi SR, Yamamoto Y, Matsumoto H (2003). An intracellular mechanism of aluminium tolerance associated with high antioxidant status in cultured tobacco cells. Journal of Inorganic Biochemistry, 97,59-68. |
[8] | Ermolayev V, Weschke W, Manteuffel R (2003). Comparison of Al-induced gene expression in sensitive and tolerant soybean cultivars. Journal of Experimental Botany, 393,2745-2756. |
[9] | Fang JM (方金梅), Ying CY (应朝阳), Huang YB (黄毅斌), Chen N (陈恩), Li CY (李春燕) (2003). Effect of aluminium force to the root system of herbage seedlings of Chamaccrista ssp. for soil and water conservation. Soil and Water Conservation in China (中国水土保持), (7),30-32. (in Chinese with English abstract) |
[10] | Foyer C, Lelandais M, Kunet JJ (1994). Photooxidative stress in plants. Physiology Plant, 93,696-717. |
[11] | Guo TR, Zhang GP, Zhou MX, Wu FB, Chen JX (2004). Effects of aluminum and cadmium toxicity on growth and antioxidant enzyme activities of two barley genotypes with different Al resistance. Plant and Soil, 258,241-248. |
[12] | Kidd PS, Proctor J (2000). Effects of aluminium on the growth and mineral composition of Betula pendula Roth. Journal of Experimental Botany, 51,1057-1066. |
[13] | Kochian LV (1995). Cellular mechanism of aluminum toxicity and resistance in plants. Annual Review Plant Physiology Plant Molecular Biology, 46,237-260. |
[14] | Kochian LV, Jones DL (1997). Aluminum toxicity and resistance in plants. In: Yokel RA, Golub MS eds. Research Issues in Aluminium Toxicity. Taylor & Francis Ltd, Lord,69-89. |
[15] | Kong FX(孔繁翔), Sang WL(桑伟莲), Jing X(蒋新), Wang LS(王连生) (2000). Aluminum toxicity and tolerance in plants. Acta Ecologica Sinica (生态学报), 20,855-863. (in Chinese with English abstract) |
[16] | Institute of Plant Physiology of Shanghai, the Chinese Academy of Sciences ( 中国科学院上海植物生理研究所) (1999). Guide to Modern Plant Physiological Experiments (现代植物生理实验指南). Science Press, Bejiang. (in Chinese) |
[17] | Li HS (李海生), Zhang ZQ (张志权), Chen LZ (陈连周) (2000). The effects of aluminium to the growth of tea seedlings. Journal of Guangdong Education institute (广东教育学院学报), 20,107-110. (in Chinese with English abstract) |
[18] | Liu P (刘鹏), Yang YA (杨玉爱) (2000). Effects of molybdenum and boron on membrane lipid peroxidation and endogenous protective systems of soybean leaves. Acta Botanica Sinica (植物学报), 42,461-466. (in Chinese with English abstract) |
[19] | Liu P (刘鹏), Xu GD (徐根娣), Jiang XM (姜雪梅), Ying XF (应小芳) (2003). The effect of aluminum on germination of soybean seed. Seed (种子), (1),30-32. (in Chinese with English abstract) |
[20] | Liu P (刘鹏), Xu GD (徐根娣), Jiang XM (姜雪梅), Ying XF (应小芳) (2004). The effect of aluminum on membrane lipid peroxidation and endogenous protective systems of soybean. Agricultural Environment Science Sinica (农业环境科学学报), 23,51-54. (in Chinese with English abstract) |
[21] |
Ma JF, Zheng SJ, Matsumoto H (1997). Detoxifying aluminum with buckwheat. Nature, 390,569-570.
URL PMID |
[22] | Meriga B, Reddy K, Rao KR, Reddy LA, Kishor PBK (2004). Aluminium-induced production of oxygen radicals, lipid peroxidation and DNA damage in seedlings of rice (Oryza sativa). Journal of Plant Physiology, 161,63-68. |
[23] | Naumann A, Horst WJ (2003). Effect of aluminum supply on aluminium uptake, translocation and blueing of Hydrangea macrophylla (Thunb.) Ser. Cultivars in a peatclay substrate. Journal of Horticultural Science & Biotechnology, 78,463-469. |
[24] |
Oteiza PI (1994). A mechanism for the stimulatory effect of aluminium on iron-induced lipid peroxidation. Archives of Biochemistry and Biophysics, 308,374-379.
URL PMID |
[25] | Pan WH (潘伟槐), Tong WX (童微星), Shen GM (沈国民), Pan JW (潘建明), Zhao ZX (赵章杏), Zhu MY (朱睦元). 1998. Effect of pH and aluminium in hydroponics on two soybean (Glycine max L.) cultivars. Journal of Hangzhou University (Natural Science Edition) (杭州大学学报(自然科学版)), 25,85-88. (in Chinese with English abstract) |
[26] | Peng XX, Yu L, Yang C (2003). Genotypic difference in aluminum resistance and oxalate exudation of buckwheat. Journal of Plant Nutrition, 26,1767-1777. |
[27] | Qin RJ (秦瑞君), Chen FX (陈福兴) (1999). The aluminium toxicity of some crop seedlings in red soil of Southern Hunan. Plant Nutrition Fertilizer Science (植物营养与肥料学报), 5,50-55. (in Chinese with English abstract) |
[28] | Rout GR, Samantary S, Das P (2001). Aluminium toxicity in plants: a review. Agronomie, 21,2-21. |
[29] | Wagatsuma T, Akiba R (1989). Low surface negativity of root protoplasts from aluminium-tolerant plant species. Soil Science and Plant Nutrition, 35,443-452. |
[30] | Xiao XX (肖祥希), Liu XH (刘星辉), Zhang XW (张学武) (2002). Effect of aluminium stress on the growth of young longan seedling. Fujian Journal of Agricultural Science (福建农业学报), 17,182-185. (in Chinese with English abstract) |
[31] | Yamamoto Y, Kobayashi Y, Matsumoto H (2001). Lipid peroxidation is an early symptom triggered by aluminum, but not the primary cause of elongation inhibition in pea roots. Plant Physiology, 125,199-208. |
[32] | Yan SC (闫世才), Mao XW (毛学文), Yang YL (杨勇理) (2003). Effect of aluminium on Posum savium growth. Chinese Journal of Ecology (生态学杂志), 22(2),80-81. (in Chinese with English abstract) |
[33] | Yang JL, Zheng SJ, He YF, Matsumoto H (2005). Aluminium resistance requires resistance to acid stress: a case study with spinach that exudes oxalate rapidly when exposed to Al stress. Journal of Experimental Botany, 56,1197-1203. |
[34] | Ying XF (应小芳), Liu P (刘鹏) (2005). Effects of aluminium stress on photosynthetic characters of soybean. Chinese Journal of Applied Ecology (应用生态学报), 16,166-170. (in Chinese with English abstract) |
[35] | Yu CL (余纯丽), Wang LJ (王力军), Zhang K (张可) (1994). Effects of aluminium on growth on plant seed-root. Journal of Yuzhou University (Natural Science Edition) (渝州大学学报(自然科学版)), 11(2),10-13. (in Chinese with English abstract) |
[36] | Zhang G, Slaski JJ, Archambault DJ, Taylor J (1996). Aluminium-induced alterations in lipid composition of microsomal membranes from an aluminium-resistant and an aluminium-resistant and an aluminium sensitive cultivar of triticum aesitvum. Physiologia Plantarum, 96,683-691. |
[37] | Zeng SX (曾韶西), Wang YR (王以柔), Liu HX (刘鸿先) (1991). Some enzymatic reactions related to chlorophyll degradation in cucumber cotyledons under chilling in the light. Acta Phytophysiology Sinica (植物生理学报), 17,177-182. (in Chinese with English abstract) |
[1] | 李文博 孙龙 娄虎 于澄 韩宇 胡同欣. 火干扰对兴安落叶松种子萌发的影响[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[2] | 袁涵 钟爱文 刘送平 徐磊 彭焱松. 水毛花种子萌发特性的差异及休眠解除方法[J]. 植物生态学报, 2024, 48(5): 638-650. |
[3] | 张效境, 梁潇洒, 马望, 王正文. 呼伦贝尔草地植物茎秆和叶片中养分的时间动态与回收[J]. 植物生态学报, 2021, 45(7): 738-748. |
[4] | 李绍阳, 马红媛, 赵丹丹, 马梦谣, 亓雯雯. 火烧信号对种子萌发影响的研究进展[J]. 植物生态学报, 2021, 45(11): 1177-1190. |
[5] | 艾沙江•阿不都沙拉木, 迪丽娜尔•阿布拉, 张凯, 买热也木古•吐尔逊, 卡迪尔•阿布都热西提, 李玲. 喀什霸王的结实和种子萌发特性[J]. 植物生态学报, 2019, 43(5): 437-446. |
[6] | 吴小琪, 杨圣贺, 黄力, 李笑寒, 杨超, 钱深华, 杨永川. 常绿阔叶林林冠环境对栲幼苗建成的影响[J]. 植物生态学报, 2019, 43(1): 55-64. |
[7] | 赵鸣飞, 薛峰, 王宇航, 王国义, 邢开雄, 康慕谊, 王菁兰. 山西芦芽山针叶林草本层群落谱系结构与多样性的海拔格局[J]. 植物生态学报, 2017, 41(7): 707-715. |
[8] | 刘波, 吕宪国, 姜明, 张文广, 武海涛. 光照、水深交互作用对松嫩湿地芦苇种子萌发的影响[J]. 植物生态学报, 2015, 39(6): 616-620. |
[9] | 吴启美, 周启星. 大金发藓对土壤多氯联苯污染的生理生态响应[J]. 植物生态学报, 2015, 39(3): 275-282. |
[10] | 李晓娟, 王强, 倪穗, 阮晓, 王永红, 张焕, 王高峰. 栗与美国板栗化感作用的比较[J]. 植物生态学报, 2013, 37(2): 173-182. |
[11] | 陈志颖, 阮晓, 张玉竹, 潘存德, 王强. 3,4-二羟基苯乙酮胁迫对天山云杉种子萌发过程中内源植物激素含量变化的影响[J]. 植物生态学报, 2013, 37(12): 1114-1122. |
[12] | 刘会良, 张永宽, 张道远, 尹林克, 张元明. 不同居群准噶尔无叶豆果实和种子特性及种子萌发差异[J]. 植物生态学报, 2012, 36(8): 802-811. |
[13] | 王桔红, 马瑞君, 陈文. 冷层积和室温干燥贮藏对河西走廊8种荒漠植物种子萌发的影响[J]. 植物生态学报, 2012, 36(8): 791-801. |
[14] | 张敏, 朱教君, 闫巧玲. 光对种子萌发的影响机理研究进展[J]. 植物生态学报, 2012, 36(8): 899-908. |
[15] | 胡小文, 王娟, 王彦荣. 野豌豆属4种植物种子萌发的积温模型分析[J]. 植物生态学报, 2012, 36(8): 841-848. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19